Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [120,4,Mod(59,120)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(120, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 1, 1, 1]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("120.59");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 120 = 2^{3} \cdot 3 \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 120.m (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(7.08022920069\) |
Analytic rank: | \(0\) |
Dimension: | \(64\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
59.1 | −2.80496 | − | 0.363625i | 3.73183 | − | 3.61572i | 7.73555 | + | 2.03990i | 2.66357 | − | 10.8584i | −11.7824 | + | 8.78495i | 26.3409 | −20.9561 | − | 8.53468i | 0.853113 | − | 26.9865i | −11.4196 | + | 29.4889i | ||
59.2 | −2.80496 | − | 0.363625i | 3.73183 | + | 3.61572i | 7.73555 | + | 2.03990i | −2.66357 | − | 10.8584i | −9.15285 | − | 11.4989i | −26.3409 | −20.9561 | − | 8.53468i | 0.853113 | + | 26.9865i | 3.52280 | + | 31.4259i | ||
59.3 | −2.80496 | + | 0.363625i | 3.73183 | − | 3.61572i | 7.73555 | − | 2.03990i | −2.66357 | + | 10.8584i | −9.15285 | + | 11.4989i | −26.3409 | −20.9561 | + | 8.53468i | 0.853113 | − | 26.9865i | 3.52280 | − | 31.4259i | ||
59.4 | −2.80496 | + | 0.363625i | 3.73183 | + | 3.61572i | 7.73555 | − | 2.03990i | 2.66357 | + | 10.8584i | −11.7824 | − | 8.78495i | 26.3409 | −20.9561 | + | 8.53468i | 0.853113 | + | 26.9865i | −11.4196 | − | 29.4889i | ||
59.5 | −2.73183 | − | 0.732884i | −2.64167 | − | 4.47455i | 6.92576 | + | 4.00422i | −10.4671 | − | 3.92924i | 3.93726 | + | 14.1597i | −4.10158 | −15.9854 | − | 16.0146i | −13.0432 | + | 23.6406i | 25.7147 | + | 18.4052i | ||
59.6 | −2.73183 | − | 0.732884i | −2.64167 | + | 4.47455i | 6.92576 | + | 4.00422i | 10.4671 | − | 3.92924i | 10.4959 | − | 10.2877i | 4.10158 | −15.9854 | − | 16.0146i | −13.0432 | − | 23.6406i | −31.4741 | + | 3.06281i | ||
59.7 | −2.73183 | + | 0.732884i | −2.64167 | − | 4.47455i | 6.92576 | − | 4.00422i | 10.4671 | + | 3.92924i | 10.4959 | + | 10.2877i | 4.10158 | −15.9854 | + | 16.0146i | −13.0432 | + | 23.6406i | −31.4741 | − | 3.06281i | ||
59.8 | −2.73183 | + | 0.732884i | −2.64167 | + | 4.47455i | 6.92576 | − | 4.00422i | −10.4671 | + | 3.92924i | 3.93726 | − | 14.1597i | −4.10158 | −15.9854 | + | 16.0146i | −13.0432 | − | 23.6406i | 25.7147 | − | 18.4052i | ||
59.9 | −2.22835 | − | 1.74197i | 4.99538 | − | 1.43044i | 1.93108 | + | 7.76344i | −10.2117 | + | 4.55196i | −13.6232 | − | 5.51430i | 3.90466 | 9.22055 | − | 20.6635i | 22.9077 | − | 14.2912i | 30.6847 | + | 7.64520i | ||
59.10 | −2.22835 | − | 1.74197i | 4.99538 | + | 1.43044i | 1.93108 | + | 7.76344i | 10.2117 | + | 4.55196i | −8.63968 | − | 11.8893i | −3.90466 | 9.22055 | − | 20.6635i | 22.9077 | + | 14.2912i | −14.8260 | − | 27.9319i | ||
59.11 | −2.22835 | + | 1.74197i | 4.99538 | − | 1.43044i | 1.93108 | − | 7.76344i | 10.2117 | − | 4.55196i | −8.63968 | + | 11.8893i | −3.90466 | 9.22055 | + | 20.6635i | 22.9077 | − | 14.2912i | −14.8260 | + | 27.9319i | ||
59.12 | −2.22835 | + | 1.74197i | 4.99538 | + | 1.43044i | 1.93108 | − | 7.76344i | −10.2117 | − | 4.55196i | −13.6232 | + | 5.51430i | 3.90466 | 9.22055 | + | 20.6635i | 22.9077 | + | 14.2912i | 30.6847 | − | 7.64520i | ||
59.13 | −2.12434 | − | 1.86740i | 0.659128 | − | 5.15418i | 1.02565 | + | 7.93398i | 10.6502 | − | 3.40199i | −11.0251 | + | 9.71838i | −28.2468 | 12.6371 | − | 18.7698i | −26.1311 | − | 6.79452i | −28.9775 | − | 12.6612i | ||
59.14 | −2.12434 | − | 1.86740i | 0.659128 | + | 5.15418i | 1.02565 | + | 7.93398i | −10.6502 | − | 3.40199i | 8.22469 | − | 12.1801i | 28.2468 | 12.6371 | − | 18.7698i | −26.1311 | + | 6.79452i | 16.2718 | + | 27.1151i | ||
59.15 | −2.12434 | + | 1.86740i | 0.659128 | − | 5.15418i | 1.02565 | − | 7.93398i | −10.6502 | + | 3.40199i | 8.22469 | + | 12.1801i | 28.2468 | 12.6371 | + | 18.7698i | −26.1311 | − | 6.79452i | 16.2718 | − | 27.1151i | ||
59.16 | −2.12434 | + | 1.86740i | 0.659128 | + | 5.15418i | 1.02565 | − | 7.93398i | 10.6502 | + | 3.40199i | −11.0251 | − | 9.71838i | −28.2468 | 12.6371 | + | 18.7698i | −26.1311 | + | 6.79452i | −28.9775 | + | 12.6612i | ||
59.17 | −1.65669 | − | 2.29246i | −4.82386 | − | 1.93142i | −2.51074 | + | 7.59580i | 7.20740 | − | 8.54713i | 3.56395 | + | 14.2583i | 30.0545 | 21.5726 | − | 6.82812i | 19.5392 | + | 18.6338i | −31.5344 | − | 2.36271i | ||
59.18 | −1.65669 | − | 2.29246i | −4.82386 | + | 1.93142i | −2.51074 | + | 7.59580i | −7.20740 | − | 8.54713i | 12.4193 | + | 7.85874i | −30.0545 | 21.5726 | − | 6.82812i | 19.5392 | − | 18.6338i | −7.65352 | + | 30.6826i | ||
59.19 | −1.65669 | + | 2.29246i | −4.82386 | − | 1.93142i | −2.51074 | − | 7.59580i | −7.20740 | + | 8.54713i | 12.4193 | − | 7.85874i | −30.0545 | 21.5726 | + | 6.82812i | 19.5392 | + | 18.6338i | −7.65352 | − | 30.6826i | ||
59.20 | −1.65669 | + | 2.29246i | −4.82386 | + | 1.93142i | −2.51074 | − | 7.59580i | 7.20740 | + | 8.54713i | 3.56395 | − | 14.2583i | 30.0545 | 21.5726 | + | 6.82812i | 19.5392 | − | 18.6338i | −31.5344 | + | 2.36271i | ||
See all 64 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
5.b | even | 2 | 1 | inner |
8.d | odd | 2 | 1 | inner |
15.d | odd | 2 | 1 | inner |
24.f | even | 2 | 1 | inner |
40.e | odd | 2 | 1 | inner |
120.m | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 120.4.m.b | ✓ | 64 |
3.b | odd | 2 | 1 | inner | 120.4.m.b | ✓ | 64 |
4.b | odd | 2 | 1 | 480.4.m.b | 64 | ||
5.b | even | 2 | 1 | inner | 120.4.m.b | ✓ | 64 |
8.b | even | 2 | 1 | 480.4.m.b | 64 | ||
8.d | odd | 2 | 1 | inner | 120.4.m.b | ✓ | 64 |
12.b | even | 2 | 1 | 480.4.m.b | 64 | ||
15.d | odd | 2 | 1 | inner | 120.4.m.b | ✓ | 64 |
20.d | odd | 2 | 1 | 480.4.m.b | 64 | ||
24.f | even | 2 | 1 | inner | 120.4.m.b | ✓ | 64 |
24.h | odd | 2 | 1 | 480.4.m.b | 64 | ||
40.e | odd | 2 | 1 | inner | 120.4.m.b | ✓ | 64 |
40.f | even | 2 | 1 | 480.4.m.b | 64 | ||
60.h | even | 2 | 1 | 480.4.m.b | 64 | ||
120.i | odd | 2 | 1 | 480.4.m.b | 64 | ||
120.m | even | 2 | 1 | inner | 120.4.m.b | ✓ | 64 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
120.4.m.b | ✓ | 64 | 1.a | even | 1 | 1 | trivial |
120.4.m.b | ✓ | 64 | 3.b | odd | 2 | 1 | inner |
120.4.m.b | ✓ | 64 | 5.b | even | 2 | 1 | inner |
120.4.m.b | ✓ | 64 | 8.d | odd | 2 | 1 | inner |
120.4.m.b | ✓ | 64 | 15.d | odd | 2 | 1 | inner |
120.4.m.b | ✓ | 64 | 24.f | even | 2 | 1 | inner |
120.4.m.b | ✓ | 64 | 40.e | odd | 2 | 1 | inner |
120.4.m.b | ✓ | 64 | 120.m | even | 2 | 1 | inner |
480.4.m.b | 64 | 4.b | odd | 2 | 1 | ||
480.4.m.b | 64 | 8.b | even | 2 | 1 | ||
480.4.m.b | 64 | 12.b | even | 2 | 1 | ||
480.4.m.b | 64 | 20.d | odd | 2 | 1 | ||
480.4.m.b | 64 | 24.h | odd | 2 | 1 | ||
480.4.m.b | 64 | 40.f | even | 2 | 1 | ||
480.4.m.b | 64 | 60.h | even | 2 | 1 | ||
480.4.m.b | 64 | 120.i | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{16} - 3184 T_{7}^{14} + 3946344 T_{7}^{12} - 2379623680 T_{7}^{10} + 707003826880 T_{7}^{8} + \cdots + 31\!\cdots\!00 \) acting on \(S_{4}^{\mathrm{new}}(120, [\chi])\).