Properties

Label 120.4.k.b
Level $120$
Weight $4$
Character orbit 120.k
Analytic conductor $7.080$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [120,4,Mod(61,120)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(120, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("120.61");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 120 = 2^{3} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 120.k (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.08022920069\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.55839580416.4
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} + 7x^{6} - 6x^{5} + 18x^{4} - 24x^{3} + 112x^{2} - 128x + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{5} q^{2} + 3 \beta_{2} q^{3} + (\beta_{4} - \beta_{3} + 3 \beta_{2} - 3) q^{4} + 5 \beta_{2} q^{5} - 3 \beta_1 q^{6} + (\beta_{6} - \beta_{5} + 2 \beta_{4} + \cdots - 10) q^{7}+ \cdots - 9 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - \beta_{5} q^{2} + 3 \beta_{2} q^{3} + (\beta_{4} - \beta_{3} + 3 \beta_{2} - 3) q^{4} + 5 \beta_{2} q^{5} - 3 \beta_1 q^{6} + (\beta_{6} - \beta_{5} + 2 \beta_{4} + \cdots - 10) q^{7}+ \cdots + ( - 9 \beta_{7} - 54 \beta_{6} + \cdots + 9) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{2} - 24 q^{4} + 6 q^{6} - 80 q^{7} + 44 q^{8} - 72 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 2 q^{2} - 24 q^{4} + 6 q^{6} - 80 q^{7} + 44 q^{8} - 72 q^{9} + 10 q^{10} - 60 q^{12} + 76 q^{14} - 120 q^{15} + 88 q^{16} - 216 q^{17} - 18 q^{18} - 100 q^{20} + 272 q^{22} - 32 q^{23} - 60 q^{24} - 200 q^{25} - 264 q^{26} + 432 q^{28} - 30 q^{30} - 136 q^{31} - 8 q^{32} - 24 q^{33} + 84 q^{34} + 216 q^{36} + 680 q^{38} + 72 q^{39} - 100 q^{40} + 176 q^{41} + 12 q^{42} + 256 q^{44} + 880 q^{46} - 848 q^{47} - 576 q^{48} - 1320 q^{49} - 50 q^{50} + 1728 q^{52} - 54 q^{54} - 40 q^{55} - 872 q^{56} + 192 q^{57} - 36 q^{58} + 360 q^{60} + 1988 q^{62} + 720 q^{63} - 1728 q^{64} + 120 q^{65} - 528 q^{66} + 1344 q^{68} + 20 q^{70} + 3088 q^{71} - 396 q^{72} - 496 q^{73} - 2800 q^{74} + 1312 q^{76} - 1008 q^{78} - 2056 q^{79} - 960 q^{80} + 648 q^{81} - 124 q^{82} + 600 q^{84} + 2632 q^{86} + 720 q^{87} - 3728 q^{88} + 3472 q^{89} - 90 q^{90} + 1632 q^{92} + 3136 q^{94} + 320 q^{95} - 2184 q^{96} - 4256 q^{97} - 2022 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - 2x^{7} + 7x^{6} - 6x^{5} + 18x^{4} - 24x^{3} + 112x^{2} - 128x + 256 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 23\nu^{7} + 70\nu^{6} + 201\nu^{5} - 126\nu^{4} + 342\nu^{3} + 672\nu^{2} + 80\nu + 1216 ) / 2880 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -29\nu^{7} - 10\nu^{6} - 3\nu^{5} + 18\nu^{4} - 306\nu^{3} + 624\nu^{2} - 1040\nu - 1408 ) / 2880 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 8\nu^{7} - 5\nu^{6} - 24\nu^{5} + 9\nu^{4} + 72\nu^{3} + 402\nu^{2} + 380\nu + 1096 ) / 360 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -67\nu^{7} + 250\nu^{6} - 429\nu^{5} + 414\nu^{4} - 1278\nu^{3} + 2832\nu^{2} - 4240\nu + 9856 ) / 2880 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 67\nu^{7} - 250\nu^{6} + 429\nu^{5} - 414\nu^{4} + 1278\nu^{3} - 2832\nu^{2} + 10000\nu - 12736 ) / 2880 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -13\nu^{7} + 34\nu^{6} - 51\nu^{5} + 54\nu^{4} - 18\nu^{3} + 312\nu^{2} - 928\nu + 1504 ) / 288 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 137\nu^{7} + 370\nu^{6} + 39\nu^{5} + 1926\nu^{4} + 1818\nu^{3} + 3408\nu^{2} + 5360\nu + 27904 ) / 2880 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{5} + \beta_{4} + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} + 3\beta_{2} + \beta _1 - 2 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 3\beta_{6} + \beta_{5} - 3\beta_{4} + \beta_{3} - 2\beta_{2} - 5 ) / 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 3\beta_{7} - \beta_{6} - 2\beta_{5} - 3\beta_{4} - 2\beta_{3} + 11\beta_{2} - 7\beta _1 - 8 ) / 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 2\beta_{7} - 3\beta_{6} - \beta_{5} - 3\beta_{4} - 5\beta_{3} + 26\beta_{2} + 12\beta _1 + 25 ) / 2 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( -\beta_{7} + 3\beta_{6} + 10\beta_{5} + 21\beta_{4} - 8\beta_{3} - 43\beta_{2} + 23\beta _1 - 40 ) / 2 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( 2\beta_{7} - 33\beta_{6} - 51\beta_{5} - 13\beta_{4} + 13\beta_{3} - 94\beta_{2} + 8\beta _1 - 117 ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/120\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(41\) \(61\) \(97\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
61.1
0.217599 + 1.98813i
0.217599 1.98813i
−1.53189 + 1.28581i
−1.53189 1.28581i
1.61974 + 1.17321i
1.61974 1.17321i
0.694547 + 1.87553i
0.694547 1.87553i
−1.77053 2.20573i 3.00000i −1.73045 + 7.81060i 5.00000i 6.61718 5.31159i −18.2117 20.2919 10.0120i −9.00000 11.0286 8.85264i
61.2 −1.77053 + 2.20573i 3.00000i −1.73045 7.81060i 5.00000i 6.61718 + 5.31159i −18.2117 20.2919 + 10.0120i −9.00000 11.0286 + 8.85264i
61.3 −0.246076 2.81770i 3.00000i −7.87889 + 1.38674i 5.00000i −8.45311 + 0.738229i −19.1119 5.84623 + 21.8591i −9.00000 −14.0885 + 1.23038i
61.4 −0.246076 + 2.81770i 3.00000i −7.87889 1.38674i 5.00000i −8.45311 0.738229i −19.1119 5.84623 21.8591i −9.00000 −14.0885 1.23038i
61.5 0.446531 2.79296i 3.00000i −7.60122 2.49428i 5.00000i 8.37887 + 1.33959i −3.73490 −10.3606 + 20.1161i −9.00000 13.9648 + 2.23265i
61.6 0.446531 + 2.79296i 3.00000i −7.60122 + 2.49428i 5.00000i 8.37887 1.33959i −3.73490 −10.3606 20.1161i −9.00000 13.9648 2.23265i
61.7 2.57007 1.18098i 3.00000i 5.21057 6.07042i 5.00000i −3.54294 7.71022i 1.05849 6.22250 21.7550i −9.00000 −5.90490 12.8504i
61.8 2.57007 + 1.18098i 3.00000i 5.21057 + 6.07042i 5.00000i −3.54294 + 7.71022i 1.05849 6.22250 + 21.7550i −9.00000 −5.90490 + 12.8504i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 61.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 120.4.k.b 8
3.b odd 2 1 360.4.k.b 8
4.b odd 2 1 480.4.k.b 8
8.b even 2 1 inner 120.4.k.b 8
8.d odd 2 1 480.4.k.b 8
12.b even 2 1 1440.4.k.b 8
24.f even 2 1 1440.4.k.b 8
24.h odd 2 1 360.4.k.b 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
120.4.k.b 8 1.a even 1 1 trivial
120.4.k.b 8 8.b even 2 1 inner
360.4.k.b 8 3.b odd 2 1
360.4.k.b 8 24.h odd 2 1
480.4.k.b 8 4.b odd 2 1
480.4.k.b 8 8.d odd 2 1
1440.4.k.b 8 12.b even 2 1
1440.4.k.b 8 24.f even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{4} + 40T_{7}^{3} + 444T_{7}^{2} + 784T_{7} - 1376 \) acting on \(S_{4}^{\mathrm{new}}(120, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} - 2 T^{7} + \cdots + 4096 \) Copy content Toggle raw display
$3$ \( (T^{2} + 9)^{4} \) Copy content Toggle raw display
$5$ \( (T^{2} + 25)^{4} \) Copy content Toggle raw display
$7$ \( (T^{4} + 40 T^{3} + \cdots - 1376)^{2} \) Copy content Toggle raw display
$11$ \( T^{8} + \cdots + 62236278784 \) Copy content Toggle raw display
$13$ \( T^{8} + \cdots + 38353305600 \) Copy content Toggle raw display
$17$ \( (T^{4} + 108 T^{3} + \cdots - 61632)^{2} \) Copy content Toggle raw display
$19$ \( T^{8} + \cdots + 31548801716224 \) Copy content Toggle raw display
$23$ \( (T^{4} + 16 T^{3} + \cdots + 7277888)^{2} \) Copy content Toggle raw display
$29$ \( T^{8} + \cdots + 29\!\cdots\!64 \) Copy content Toggle raw display
$31$ \( (T^{4} + 68 T^{3} + \cdots - 140627840)^{2} \) Copy content Toggle raw display
$37$ \( T^{8} + \cdots + 82\!\cdots\!84 \) Copy content Toggle raw display
$41$ \( (T^{4} - 88 T^{3} + \cdots - 3143107120)^{2} \) Copy content Toggle raw display
$43$ \( T^{8} + \cdots + 70\!\cdots\!16 \) Copy content Toggle raw display
$47$ \( (T^{4} + 424 T^{3} + \cdots - 10676481472)^{2} \) Copy content Toggle raw display
$53$ \( T^{8} + \cdots + 21\!\cdots\!00 \) Copy content Toggle raw display
$59$ \( T^{8} + \cdots + 11\!\cdots\!44 \) Copy content Toggle raw display
$61$ \( T^{8} + \cdots + 33\!\cdots\!64 \) Copy content Toggle raw display
$67$ \( T^{8} + \cdots + 90\!\cdots\!64 \) Copy content Toggle raw display
$71$ \( (T^{4} - 1544 T^{3} + \cdots - 11209493248)^{2} \) Copy content Toggle raw display
$73$ \( (T^{4} + 248 T^{3} + \cdots + 112584267280)^{2} \) Copy content Toggle raw display
$79$ \( (T^{4} + 1028 T^{3} + \cdots - 443106379136)^{2} \) Copy content Toggle raw display
$83$ \( T^{8} + \cdots + 47\!\cdots\!00 \) Copy content Toggle raw display
$89$ \( (T^{4} - 1736 T^{3} + \cdots - 68323863856)^{2} \) Copy content Toggle raw display
$97$ \( (T^{4} + \cdots - 1040188142960)^{2} \) Copy content Toggle raw display
show more
show less