Defining parameters
Level: | \( N \) | \(=\) | \( 120 = 2^{3} \cdot 3 \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 120.k (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 8 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(96\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(120, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 76 | 24 | 52 |
Cusp forms | 68 | 24 | 44 |
Eisenstein series | 8 | 0 | 8 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(120, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
120.4.k.a | $2$ | $7.080$ | \(\Q(\sqrt{-1}) \) | None | \(-4\) | \(0\) | \(0\) | \(52\) | \(q+(-2+2i)q^{2}+3iq^{3}-8iq^{4}+5iq^{5}+\cdots\) |
120.4.k.b | $8$ | $7.080$ | 8.0.\(\cdots\).4 | None | \(2\) | \(0\) | \(0\) | \(-80\) | \(q-\beta _{5}q^{2}+3\beta _{2}q^{3}+(-3+3\beta _{2}-\beta _{3}+\cdots)q^{4}+\cdots\) |
120.4.k.c | $14$ | $7.080$ | \(\mathbb{Q}[x]/(x^{14} - \cdots)\) | None | \(-2\) | \(0\) | \(0\) | \(-28\) | \(q+\beta _{7}q^{2}+3\beta _{3}q^{3}-\beta _{2}q^{4}-5\beta _{3}q^{5}+\cdots\) |
Decomposition of \(S_{4}^{\mathrm{old}}(120, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(120, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(8, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(24, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 2}\)