Properties

Label 120.4.f.d.49.3
Level $120$
Weight $4$
Character 120.49
Analytic conductor $7.080$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [120,4,Mod(49,120)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(120, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("120.49");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 120 = 2^{3} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 120.f (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.08022920069\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{129})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 65x^{2} + 1024 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 49.3
Root \(-5.17891i\) of defining polynomial
Character \(\chi\) \(=\) 120.49
Dual form 120.4.f.d.49.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.00000i q^{3} +(-0.178908 - 11.1789i) q^{5} +35.0735i q^{7} -9.00000 q^{9} +O(q^{10})\) \(q+3.00000i q^{3} +(-0.178908 - 11.1789i) q^{5} +35.0735i q^{7} -9.00000 q^{9} +25.6422 q^{11} +37.6422i q^{13} +(33.5367 - 0.536725i) q^{15} +95.7891i q^{17} -50.8625 q^{19} -105.220 q^{21} +110.863i q^{23} +(-124.936 + 4.00000i) q^{25} -27.0000i q^{27} +54.5047 q^{29} +198.441 q^{31} +76.9265i q^{33} +(392.083 - 6.27493i) q^{35} -266.945i q^{37} -112.927 q^{39} +103.853 q^{41} +108.000i q^{43} +(1.61018 + 100.610i) q^{45} -597.009i q^{47} -887.147 q^{49} -287.367 q^{51} -305.642i q^{53} +(-4.58760 - 286.652i) q^{55} -152.588i q^{57} +223.533 q^{59} +485.450 q^{61} -315.661i q^{63} +(420.799 - 6.73450i) q^{65} +876.166i q^{67} -332.588 q^{69} +585.597 q^{71} -1137.60i q^{73} +(-12.0000 - 374.808i) q^{75} +899.360i q^{77} -685.009 q^{79} +81.0000 q^{81} +305.725i q^{83} +(1070.82 - 17.1375i) q^{85} +163.514i q^{87} -887.175 q^{89} -1320.24 q^{91} +595.322i q^{93} +(9.09973 + 568.588i) q^{95} +556.550i q^{97} -230.780 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 22 q^{5} - 36 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 22 q^{5} - 36 q^{9} + 148 q^{11} + 66 q^{15} + 160 q^{19} - 12 q^{21} - 100 q^{29} - 24 q^{31} + 796 q^{35} - 588 q^{39} + 688 q^{41} - 198 q^{45} - 3276 q^{49} - 468 q^{51} + 1072 q^{55} - 1332 q^{59} + 488 q^{61} + 820 q^{65} - 240 q^{69} + 616 q^{71} - 48 q^{75} - 2104 q^{79} + 324 q^{81} + 2148 q^{85} - 1368 q^{89} + 1352 q^{91} + 2944 q^{95} - 1332 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/120\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(41\) \(61\) \(97\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.00000i 0.577350i
\(4\) 0 0
\(5\) −0.178908 11.1789i −0.0160020 0.999872i
\(6\) 0 0
\(7\) 35.0735i 1.89379i 0.321545 + 0.946894i \(0.395798\pi\)
−0.321545 + 0.946894i \(0.604202\pi\)
\(8\) 0 0
\(9\) −9.00000 −0.333333
\(10\) 0 0
\(11\) 25.6422 0.702855 0.351428 0.936215i \(-0.385696\pi\)
0.351428 + 0.936215i \(0.385696\pi\)
\(12\) 0 0
\(13\) 37.6422i 0.803082i 0.915841 + 0.401541i \(0.131525\pi\)
−0.915841 + 0.401541i \(0.868475\pi\)
\(14\) 0 0
\(15\) 33.5367 0.536725i 0.577276 0.00923879i
\(16\) 0 0
\(17\) 95.7891i 1.36660i 0.730136 + 0.683302i \(0.239457\pi\)
−0.730136 + 0.683302i \(0.760543\pi\)
\(18\) 0 0
\(19\) −50.8625 −0.614140 −0.307070 0.951687i \(-0.599349\pi\)
−0.307070 + 0.951687i \(0.599349\pi\)
\(20\) 0 0
\(21\) −105.220 −1.09338
\(22\) 0 0
\(23\) 110.863i 1.00506i 0.864559 + 0.502531i \(0.167598\pi\)
−0.864559 + 0.502531i \(0.832402\pi\)
\(24\) 0 0
\(25\) −124.936 + 4.00000i −0.999488 + 0.0320000i
\(26\) 0 0
\(27\) 27.0000i 0.192450i
\(28\) 0 0
\(29\) 54.5047 0.349009 0.174505 0.984656i \(-0.444168\pi\)
0.174505 + 0.984656i \(0.444168\pi\)
\(30\) 0 0
\(31\) 198.441 1.14971 0.574855 0.818255i \(-0.305059\pi\)
0.574855 + 0.818255i \(0.305059\pi\)
\(32\) 0 0
\(33\) 76.9265i 0.405794i
\(34\) 0 0
\(35\) 392.083 6.27493i 1.89355 0.0303045i
\(36\) 0 0
\(37\) 266.945i 1.18610i −0.805167 0.593048i \(-0.797924\pi\)
0.805167 0.593048i \(-0.202076\pi\)
\(38\) 0 0
\(39\) −112.927 −0.463659
\(40\) 0 0
\(41\) 103.853 0.395589 0.197794 0.980244i \(-0.436622\pi\)
0.197794 + 0.980244i \(0.436622\pi\)
\(42\) 0 0
\(43\) 108.000i 0.383020i 0.981491 + 0.191510i \(0.0613384\pi\)
−0.981491 + 0.191510i \(0.938662\pi\)
\(44\) 0 0
\(45\) 1.61018 + 100.610i 0.00533402 + 0.333291i
\(46\) 0 0
\(47\) 597.009i 1.85283i −0.376510 0.926413i \(-0.622876\pi\)
0.376510 0.926413i \(-0.377124\pi\)
\(48\) 0 0
\(49\) −887.147 −2.58643
\(50\) 0 0
\(51\) −287.367 −0.789009
\(52\) 0 0
\(53\) 305.642i 0.792136i −0.918221 0.396068i \(-0.870375\pi\)
0.918221 0.396068i \(-0.129625\pi\)
\(54\) 0 0
\(55\) −4.58760 286.652i −0.0112471 0.702765i
\(56\) 0 0
\(57\) 152.588i 0.354574i
\(58\) 0 0
\(59\) 223.533 0.493246 0.246623 0.969111i \(-0.420679\pi\)
0.246623 + 0.969111i \(0.420679\pi\)
\(60\) 0 0
\(61\) 485.450 1.01894 0.509471 0.860488i \(-0.329841\pi\)
0.509471 + 0.860488i \(0.329841\pi\)
\(62\) 0 0
\(63\) 315.661i 0.631263i
\(64\) 0 0
\(65\) 420.799 6.73450i 0.802979 0.0128510i
\(66\) 0 0
\(67\) 876.166i 1.59762i 0.601582 + 0.798811i \(0.294537\pi\)
−0.601582 + 0.798811i \(0.705463\pi\)
\(68\) 0 0
\(69\) −332.588 −0.580273
\(70\) 0 0
\(71\) 585.597 0.978839 0.489420 0.872048i \(-0.337209\pi\)
0.489420 + 0.872048i \(0.337209\pi\)
\(72\) 0 0
\(73\) 1137.60i 1.82391i −0.410287 0.911957i \(-0.634571\pi\)
0.410287 0.911957i \(-0.365429\pi\)
\(74\) 0 0
\(75\) −12.0000 374.808i −0.0184752 0.577055i
\(76\) 0 0
\(77\) 899.360i 1.33106i
\(78\) 0 0
\(79\) −685.009 −0.975564 −0.487782 0.872965i \(-0.662194\pi\)
−0.487782 + 0.872965i \(0.662194\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) 305.725i 0.404309i 0.979354 + 0.202155i \(0.0647944\pi\)
−0.979354 + 0.202155i \(0.935206\pi\)
\(84\) 0 0
\(85\) 1070.82 17.1375i 1.36643 0.0218685i
\(86\) 0 0
\(87\) 163.514i 0.201501i
\(88\) 0 0
\(89\) −887.175 −1.05663 −0.528317 0.849047i \(-0.677177\pi\)
−0.528317 + 0.849047i \(0.677177\pi\)
\(90\) 0 0
\(91\) −1320.24 −1.52087
\(92\) 0 0
\(93\) 595.322i 0.663785i
\(94\) 0 0
\(95\) 9.09973 + 568.588i 0.00982750 + 0.614062i
\(96\) 0 0
\(97\) 556.550i 0.582568i 0.956637 + 0.291284i \(0.0940824\pi\)
−0.956637 + 0.291284i \(0.905918\pi\)
\(98\) 0 0
\(99\) −230.780 −0.234285
\(100\) 0 0
\(101\) 1591.09 1.56752 0.783760 0.621063i \(-0.213299\pi\)
0.783760 + 0.621063i \(0.213299\pi\)
\(102\) 0 0
\(103\) 1350.95i 1.29236i 0.763187 + 0.646178i \(0.223634\pi\)
−0.763187 + 0.646178i \(0.776366\pi\)
\(104\) 0 0
\(105\) 18.8248 + 1176.25i 0.0174963 + 1.09324i
\(106\) 0 0
\(107\) 1333.51i 1.20481i −0.798190 0.602406i \(-0.794209\pi\)
0.798190 0.602406i \(-0.205791\pi\)
\(108\) 0 0
\(109\) 609.910 0.535952 0.267976 0.963426i \(-0.413645\pi\)
0.267976 + 0.963426i \(0.413645\pi\)
\(110\) 0 0
\(111\) 800.836 0.684793
\(112\) 0 0
\(113\) 241.808i 0.201304i 0.994922 + 0.100652i \(0.0320929\pi\)
−0.994922 + 0.100652i \(0.967907\pi\)
\(114\) 0 0
\(115\) 1239.32 19.8342i 1.00493 0.0160831i
\(116\) 0 0
\(117\) 338.780i 0.267694i
\(118\) 0 0
\(119\) −3359.65 −2.58806
\(120\) 0 0
\(121\) −673.478 −0.505994
\(122\) 0 0
\(123\) 311.559i 0.228393i
\(124\) 0 0
\(125\) 67.0677 + 1395.93i 0.0479898 + 0.998848i
\(126\) 0 0
\(127\) 1045.94i 0.730802i 0.930850 + 0.365401i \(0.119068\pi\)
−0.930850 + 0.365401i \(0.880932\pi\)
\(128\) 0 0
\(129\) −324.000 −0.221137
\(130\) 0 0
\(131\) −886.524 −0.591267 −0.295633 0.955301i \(-0.595531\pi\)
−0.295633 + 0.955301i \(0.595531\pi\)
\(132\) 0 0
\(133\) 1783.92i 1.16305i
\(134\) 0 0
\(135\) −301.831 + 4.83053i −0.192425 + 0.00307960i
\(136\) 0 0
\(137\) 160.723i 0.100230i 0.998743 + 0.0501150i \(0.0159588\pi\)
−0.998743 + 0.0501150i \(0.984041\pi\)
\(138\) 0 0
\(139\) 57.2655 0.0349439 0.0174719 0.999847i \(-0.494438\pi\)
0.0174719 + 0.999847i \(0.494438\pi\)
\(140\) 0 0
\(141\) 1791.03 1.06973
\(142\) 0 0
\(143\) 965.228i 0.564450i
\(144\) 0 0
\(145\) −9.75135 609.303i −0.00558487 0.348965i
\(146\) 0 0
\(147\) 2661.44i 1.49328i
\(148\) 0 0
\(149\) 1105.15 0.607633 0.303817 0.952731i \(-0.401739\pi\)
0.303817 + 0.952731i \(0.401739\pi\)
\(150\) 0 0
\(151\) 2289.63 1.23396 0.616980 0.786979i \(-0.288356\pi\)
0.616980 + 0.786979i \(0.288356\pi\)
\(152\) 0 0
\(153\) 862.102i 0.455535i
\(154\) 0 0
\(155\) −35.5027 2218.35i −0.0183977 1.14956i
\(156\) 0 0
\(157\) 161.514i 0.0821034i 0.999157 + 0.0410517i \(0.0130708\pi\)
−0.999157 + 0.0410517i \(0.986929\pi\)
\(158\) 0 0
\(159\) 916.927 0.457340
\(160\) 0 0
\(161\) −3888.33 −1.90338
\(162\) 0 0
\(163\) 1594.15i 0.766032i 0.923742 + 0.383016i \(0.125115\pi\)
−0.923742 + 0.383016i \(0.874885\pi\)
\(164\) 0 0
\(165\) 859.955 13.7628i 0.405742 0.00649353i
\(166\) 0 0
\(167\) 1017.39i 0.471427i −0.971823 0.235713i \(-0.924257\pi\)
0.971823 0.235713i \(-0.0757427\pi\)
\(168\) 0 0
\(169\) 780.066 0.355060
\(170\) 0 0
\(171\) 457.763 0.204713
\(172\) 0 0
\(173\) 2444.49i 1.07428i −0.843492 0.537142i \(-0.819504\pi\)
0.843492 0.537142i \(-0.180496\pi\)
\(174\) 0 0
\(175\) −140.294 4381.94i −0.0606012 1.89282i
\(176\) 0 0
\(177\) 670.599i 0.284776i
\(178\) 0 0
\(179\) −222.780 −0.0930242 −0.0465121 0.998918i \(-0.514811\pi\)
−0.0465121 + 0.998918i \(0.514811\pi\)
\(180\) 0 0
\(181\) −100.034 −0.0410798 −0.0205399 0.999789i \(-0.506539\pi\)
−0.0205399 + 0.999789i \(0.506539\pi\)
\(182\) 0 0
\(183\) 1456.35i 0.588287i
\(184\) 0 0
\(185\) −2984.16 + 47.7588i −1.18594 + 0.0189800i
\(186\) 0 0
\(187\) 2456.24i 0.960525i
\(188\) 0 0
\(189\) 946.983 0.364460
\(190\) 0 0
\(191\) 702.403 0.266095 0.133047 0.991110i \(-0.457524\pi\)
0.133047 + 0.991110i \(0.457524\pi\)
\(192\) 0 0
\(193\) 4126.63i 1.53907i −0.638602 0.769537i \(-0.720487\pi\)
0.638602 0.769537i \(-0.279513\pi\)
\(194\) 0 0
\(195\) 20.2035 + 1262.40i 0.00741950 + 0.463600i
\(196\) 0 0
\(197\) 3104.45i 1.12276i −0.827559 0.561378i \(-0.810271\pi\)
0.827559 0.561378i \(-0.189729\pi\)
\(198\) 0 0
\(199\) 367.616 0.130953 0.0654764 0.997854i \(-0.479143\pi\)
0.0654764 + 0.997854i \(0.479143\pi\)
\(200\) 0 0
\(201\) −2628.50 −0.922388
\(202\) 0 0
\(203\) 1911.67i 0.660950i
\(204\) 0 0
\(205\) −18.5802 1160.96i −0.00633023 0.395538i
\(206\) 0 0
\(207\) 997.763i 0.335021i
\(208\) 0 0
\(209\) −1304.23 −0.431652
\(210\) 0 0
\(211\) 2594.85 0.846619 0.423310 0.905985i \(-0.360868\pi\)
0.423310 + 0.905985i \(0.360868\pi\)
\(212\) 0 0
\(213\) 1756.79i 0.565133i
\(214\) 0 0
\(215\) 1207.32 19.3221i 0.382971 0.00612910i
\(216\) 0 0
\(217\) 6960.00i 2.17731i
\(218\) 0 0
\(219\) 3412.79 1.05304
\(220\) 0 0
\(221\) −3605.71 −1.09749
\(222\) 0 0
\(223\) 1834.41i 0.550857i −0.961321 0.275429i \(-0.911180\pi\)
0.961321 0.275429i \(-0.0888198\pi\)
\(224\) 0 0
\(225\) 1124.42 36.0000i 0.333163 0.0106667i
\(226\) 0 0
\(227\) 175.811i 0.0514053i −0.999670 0.0257027i \(-0.991818\pi\)
0.999670 0.0257027i \(-0.00818231\pi\)
\(228\) 0 0
\(229\) −1622.35 −0.468158 −0.234079 0.972218i \(-0.575207\pi\)
−0.234079 + 0.972218i \(0.575207\pi\)
\(230\) 0 0
\(231\) −2698.08 −0.768487
\(232\) 0 0
\(233\) 3965.65i 1.11501i 0.830172 + 0.557507i \(0.188242\pi\)
−0.830172 + 0.557507i \(0.811758\pi\)
\(234\) 0 0
\(235\) −6673.91 + 106.810i −1.85259 + 0.0296490i
\(236\) 0 0
\(237\) 2055.03i 0.563242i
\(238\) 0 0
\(239\) 6323.25 1.71137 0.855685 0.517497i \(-0.173136\pi\)
0.855685 + 0.517497i \(0.173136\pi\)
\(240\) 0 0
\(241\) 3407.51 0.910775 0.455388 0.890293i \(-0.349501\pi\)
0.455388 + 0.890293i \(0.349501\pi\)
\(242\) 0 0
\(243\) 243.000i 0.0641500i
\(244\) 0 0
\(245\) 158.718 + 9917.33i 0.0413882 + 2.58610i
\(246\) 0 0
\(247\) 1914.58i 0.493205i
\(248\) 0 0
\(249\) −917.175 −0.233428
\(250\) 0 0
\(251\) 1345.81 0.338433 0.169216 0.985579i \(-0.445876\pi\)
0.169216 + 0.985579i \(0.445876\pi\)
\(252\) 0 0
\(253\) 2842.76i 0.706414i
\(254\) 0 0
\(255\) 51.4124 + 3212.45i 0.0126258 + 0.788908i
\(256\) 0 0
\(257\) 4697.19i 1.14009i −0.821614 0.570044i \(-0.806926\pi\)
0.821614 0.570044i \(-0.193074\pi\)
\(258\) 0 0
\(259\) 9362.70 2.24621
\(260\) 0 0
\(261\) −490.542 −0.116336
\(262\) 0 0
\(263\) 4700.66i 1.10211i 0.834468 + 0.551056i \(0.185775\pi\)
−0.834468 + 0.551056i \(0.814225\pi\)
\(264\) 0 0
\(265\) −3416.75 + 54.6819i −0.792034 + 0.0126758i
\(266\) 0 0
\(267\) 2661.53i 0.610048i
\(268\) 0 0
\(269\) 7962.67 1.80481 0.902403 0.430894i \(-0.141802\pi\)
0.902403 + 0.430894i \(0.141802\pi\)
\(270\) 0 0
\(271\) −6122.73 −1.37243 −0.686217 0.727397i \(-0.740730\pi\)
−0.686217 + 0.727397i \(0.740730\pi\)
\(272\) 0 0
\(273\) 3960.72i 0.878073i
\(274\) 0 0
\(275\) −3203.63 + 102.569i −0.702495 + 0.0224914i
\(276\) 0 0
\(277\) 8417.57i 1.82586i 0.408117 + 0.912930i \(0.366186\pi\)
−0.408117 + 0.912930i \(0.633814\pi\)
\(278\) 0 0
\(279\) −1785.97 −0.383237
\(280\) 0 0
\(281\) 3030.99 0.643466 0.321733 0.946830i \(-0.395735\pi\)
0.321733 + 0.946830i \(0.395735\pi\)
\(282\) 0 0
\(283\) 2890.81i 0.607211i 0.952798 + 0.303606i \(0.0981905\pi\)
−0.952798 + 0.303606i \(0.901809\pi\)
\(284\) 0 0
\(285\) −1705.76 + 27.2992i −0.354529 + 0.00567391i
\(286\) 0 0
\(287\) 3642.49i 0.749161i
\(288\) 0 0
\(289\) −4262.55 −0.867606
\(290\) 0 0
\(291\) −1669.65 −0.336346
\(292\) 0 0
\(293\) 8966.75i 1.78786i −0.448206 0.893930i \(-0.647937\pi\)
0.448206 0.893930i \(-0.352063\pi\)
\(294\) 0 0
\(295\) −39.9919 2498.86i −0.00789295 0.493183i
\(296\) 0 0
\(297\) 692.339i 0.135265i
\(298\) 0 0
\(299\) −4173.11 −0.807147
\(300\) 0 0
\(301\) −3787.93 −0.725358
\(302\) 0 0
\(303\) 4773.28i 0.905009i
\(304\) 0 0
\(305\) −86.8511 5426.80i −0.0163052 1.01881i
\(306\) 0 0
\(307\) 3298.42i 0.613194i 0.951839 + 0.306597i \(0.0991904\pi\)
−0.951839 + 0.306597i \(0.900810\pi\)
\(308\) 0 0
\(309\) −4052.84 −0.746142
\(310\) 0 0
\(311\) −3394.92 −0.618998 −0.309499 0.950900i \(-0.600161\pi\)
−0.309499 + 0.950900i \(0.600161\pi\)
\(312\) 0 0
\(313\) 5946.95i 1.07393i −0.843603 0.536967i \(-0.819570\pi\)
0.843603 0.536967i \(-0.180430\pi\)
\(314\) 0 0
\(315\) −3528.75 + 56.4744i −0.631182 + 0.0101015i
\(316\) 0 0
\(317\) 2520.83i 0.446637i −0.974746 0.223318i \(-0.928311\pi\)
0.974746 0.223318i \(-0.0716889\pi\)
\(318\) 0 0
\(319\) 1397.62 0.245303
\(320\) 0 0
\(321\) 4000.52 0.695599
\(322\) 0 0
\(323\) 4872.08i 0.839286i
\(324\) 0 0
\(325\) −150.569 4702.86i −0.0256986 0.802671i
\(326\) 0 0
\(327\) 1829.73i 0.309432i
\(328\) 0 0
\(329\) 20939.2 3.50886
\(330\) 0 0
\(331\) −4586.86 −0.761682 −0.380841 0.924641i \(-0.624365\pi\)
−0.380841 + 0.924641i \(0.624365\pi\)
\(332\) 0 0
\(333\) 2402.51i 0.395365i
\(334\) 0 0
\(335\) 9794.58 156.753i 1.59742 0.0255652i
\(336\) 0 0
\(337\) 8582.12i 1.38723i 0.720344 + 0.693617i \(0.243984\pi\)
−0.720344 + 0.693617i \(0.756016\pi\)
\(338\) 0 0
\(339\) −725.424 −0.116223
\(340\) 0 0
\(341\) 5088.45 0.808080
\(342\) 0 0
\(343\) 19085.1i 3.00437i
\(344\) 0 0
\(345\) 59.5027 + 3717.97i 0.00928556 + 0.580199i
\(346\) 0 0
\(347\) 2539.38i 0.392857i −0.980518 0.196428i \(-0.937066\pi\)
0.980518 0.196428i \(-0.0629343\pi\)
\(348\) 0 0
\(349\) 9002.82 1.38083 0.690415 0.723413i \(-0.257428\pi\)
0.690415 + 0.723413i \(0.257428\pi\)
\(350\) 0 0
\(351\) 1016.34 0.154553
\(352\) 0 0
\(353\) 3928.08i 0.592267i 0.955146 + 0.296134i \(0.0956974\pi\)
−0.955146 + 0.296134i \(0.904303\pi\)
\(354\) 0 0
\(355\) −104.768 6546.34i −0.0156634 0.978714i
\(356\) 0 0
\(357\) 10079.0i 1.49422i
\(358\) 0 0
\(359\) −10001.7 −1.47039 −0.735197 0.677854i \(-0.762910\pi\)
−0.735197 + 0.677854i \(0.762910\pi\)
\(360\) 0 0
\(361\) −4272.00 −0.622832
\(362\) 0 0
\(363\) 2020.44i 0.292136i
\(364\) 0 0
\(365\) −12717.1 + 203.526i −1.82368 + 0.0291863i
\(366\) 0 0
\(367\) 5967.79i 0.848818i −0.905471 0.424409i \(-0.860482\pi\)
0.905471 0.424409i \(-0.139518\pi\)
\(368\) 0 0
\(369\) −934.678 −0.131863
\(370\) 0 0
\(371\) 10719.9 1.50014
\(372\) 0 0
\(373\) 6931.55i 0.962204i 0.876665 + 0.481102i \(0.159763\pi\)
−0.876665 + 0.481102i \(0.840237\pi\)
\(374\) 0 0
\(375\) −4187.80 + 201.203i −0.576685 + 0.0277069i
\(376\) 0 0
\(377\) 2051.68i 0.280283i
\(378\) 0 0
\(379\) −9711.70 −1.31624 −0.658122 0.752911i \(-0.728649\pi\)
−0.658122 + 0.752911i \(0.728649\pi\)
\(380\) 0 0
\(381\) −3137.81 −0.421929
\(382\) 0 0
\(383\) 5664.84i 0.755769i 0.925853 + 0.377885i \(0.123348\pi\)
−0.925853 + 0.377885i \(0.876652\pi\)
\(384\) 0 0
\(385\) 10053.9 160.903i 1.33089 0.0212997i
\(386\) 0 0
\(387\) 972.000i 0.127673i
\(388\) 0 0
\(389\) −8918.17 −1.16239 −0.581195 0.813765i \(-0.697414\pi\)
−0.581195 + 0.813765i \(0.697414\pi\)
\(390\) 0 0
\(391\) −10619.4 −1.37352
\(392\) 0 0
\(393\) 2659.57i 0.341368i
\(394\) 0 0
\(395\) 122.554 + 7657.66i 0.0156110 + 0.975439i
\(396\) 0 0
\(397\) 12849.9i 1.62448i −0.583321 0.812242i \(-0.698247\pi\)
0.583321 0.812242i \(-0.301753\pi\)
\(398\) 0 0
\(399\) 5351.77 0.671488
\(400\) 0 0
\(401\) 3563.08 0.443721 0.221860 0.975078i \(-0.428787\pi\)
0.221860 + 0.975078i \(0.428787\pi\)
\(402\) 0 0
\(403\) 7469.74i 0.923311i
\(404\) 0 0
\(405\) −14.4916 905.492i −0.00177801 0.111097i
\(406\) 0 0
\(407\) 6845.06i 0.833654i
\(408\) 0 0
\(409\) 2026.69 0.245020 0.122510 0.992467i \(-0.460906\pi\)
0.122510 + 0.992467i \(0.460906\pi\)
\(410\) 0 0
\(411\) −482.169 −0.0578678
\(412\) 0 0
\(413\) 7840.07i 0.934104i
\(414\) 0 0
\(415\) 3417.67 54.6968i 0.404258 0.00646978i
\(416\) 0 0
\(417\) 171.796i 0.0201748i
\(418\) 0 0
\(419\) 1670.39 0.194759 0.0973793 0.995247i \(-0.468954\pi\)
0.0973793 + 0.995247i \(0.468954\pi\)
\(420\) 0 0
\(421\) 6079.66 0.703812 0.351906 0.936035i \(-0.385534\pi\)
0.351906 + 0.936035i \(0.385534\pi\)
\(422\) 0 0
\(423\) 5373.08i 0.617608i
\(424\) 0 0
\(425\) −383.156 11967.5i −0.0437313 1.36590i
\(426\) 0 0
\(427\) 17026.4i 1.92966i
\(428\) 0 0
\(429\) −2895.68 −0.325886
\(430\) 0 0
\(431\) 1719.37 0.192155 0.0960777 0.995374i \(-0.469370\pi\)
0.0960777 + 0.995374i \(0.469370\pi\)
\(432\) 0 0
\(433\) 12024.9i 1.33459i 0.744792 + 0.667296i \(0.232549\pi\)
−0.744792 + 0.667296i \(0.767451\pi\)
\(434\) 0 0
\(435\) 1827.91 29.2540i 0.201475 0.00322442i
\(436\) 0 0
\(437\) 5638.75i 0.617249i
\(438\) 0 0
\(439\) 7542.97 0.820060 0.410030 0.912072i \(-0.365518\pi\)
0.410030 + 0.912072i \(0.365518\pi\)
\(440\) 0 0
\(441\) 7984.32 0.862145
\(442\) 0 0
\(443\) 4578.13i 0.491001i −0.969396 0.245501i \(-0.921048\pi\)
0.969396 0.245501i \(-0.0789524\pi\)
\(444\) 0 0
\(445\) 158.723 + 9917.65i 0.0169083 + 1.05650i
\(446\) 0 0
\(447\) 3315.45i 0.350817i
\(448\) 0 0
\(449\) −6875.21 −0.722630 −0.361315 0.932444i \(-0.617672\pi\)
−0.361315 + 0.932444i \(0.617672\pi\)
\(450\) 0 0
\(451\) 2663.02 0.278042
\(452\) 0 0
\(453\) 6868.90i 0.712427i
\(454\) 0 0
\(455\) 236.202 + 14758.9i 0.0243370 + 1.52067i
\(456\) 0 0
\(457\) 7351.97i 0.752540i 0.926510 + 0.376270i \(0.122793\pi\)
−0.926510 + 0.376270i \(0.877207\pi\)
\(458\) 0 0
\(459\) 2586.31 0.263003
\(460\) 0 0
\(461\) −15614.5 −1.57752 −0.788762 0.614698i \(-0.789278\pi\)
−0.788762 + 0.614698i \(0.789278\pi\)
\(462\) 0 0
\(463\) 1684.73i 0.169106i −0.996419 0.0845530i \(-0.973054\pi\)
0.996419 0.0845530i \(-0.0269462\pi\)
\(464\) 0 0
\(465\) 6655.05 106.508i 0.663700 0.0106219i
\(466\) 0 0
\(467\) 10235.2i 1.01420i −0.861888 0.507099i \(-0.830718\pi\)
0.861888 0.507099i \(-0.169282\pi\)
\(468\) 0 0
\(469\) −30730.2 −3.02556
\(470\) 0 0
\(471\) −484.542 −0.0474024
\(472\) 0 0
\(473\) 2769.36i 0.269207i
\(474\) 0 0
\(475\) 6354.56 203.450i 0.613826 0.0196525i
\(476\) 0 0
\(477\) 2750.78i 0.264045i
\(478\) 0 0
\(479\) −12247.2 −1.16825 −0.584123 0.811665i \(-0.698561\pi\)
−0.584123 + 0.811665i \(0.698561\pi\)
\(480\) 0 0
\(481\) 10048.4 0.952532
\(482\) 0 0
\(483\) 11665.0i 1.09891i
\(484\) 0 0
\(485\) 6221.62 99.5714i 0.582493 0.00932228i
\(486\) 0 0
\(487\) 7895.91i 0.734698i 0.930083 + 0.367349i \(0.119735\pi\)
−0.930083 + 0.367349i \(0.880265\pi\)
\(488\) 0 0
\(489\) −4782.44 −0.442269
\(490\) 0 0
\(491\) −7625.48 −0.700882 −0.350441 0.936585i \(-0.613968\pi\)
−0.350441 + 0.936585i \(0.613968\pi\)
\(492\) 0 0
\(493\) 5220.96i 0.476958i
\(494\) 0 0
\(495\) 41.2884 + 2579.86i 0.00374904 + 0.234255i
\(496\) 0 0
\(497\) 20538.9i 1.85371i
\(498\) 0 0
\(499\) 8655.23 0.776476 0.388238 0.921559i \(-0.373084\pi\)
0.388238 + 0.921559i \(0.373084\pi\)
\(500\) 0 0
\(501\) 3052.18 0.272178
\(502\) 0 0
\(503\) 118.441i 0.0104990i 0.999986 + 0.00524951i \(0.00167098\pi\)
−0.999986 + 0.00524951i \(0.998329\pi\)
\(504\) 0 0
\(505\) −284.660 17786.7i −0.0250835 1.56732i
\(506\) 0 0
\(507\) 2340.20i 0.204994i
\(508\) 0 0
\(509\) −5359.43 −0.466704 −0.233352 0.972392i \(-0.574970\pi\)
−0.233352 + 0.972392i \(0.574970\pi\)
\(510\) 0 0
\(511\) 39899.5 3.45411
\(512\) 0 0
\(513\) 1373.29i 0.118191i
\(514\) 0 0
\(515\) 15102.1 241.695i 1.29219 0.0206803i
\(516\) 0 0
\(517\) 15308.6i 1.30227i
\(518\) 0 0
\(519\) 7333.47 0.620238
\(520\) 0 0
\(521\) −10862.4 −0.913414 −0.456707 0.889617i \(-0.650971\pi\)
−0.456707 + 0.889617i \(0.650971\pi\)
\(522\) 0 0
\(523\) 9553.39i 0.798740i −0.916790 0.399370i \(-0.869229\pi\)
0.916790 0.399370i \(-0.130771\pi\)
\(524\) 0 0
\(525\) 13145.8 420.881i 1.09282 0.0349881i
\(526\) 0 0
\(527\) 19008.5i 1.57120i
\(528\) 0 0
\(529\) −123.501 −0.0101505
\(530\) 0 0
\(531\) −2011.80 −0.164415
\(532\) 0 0
\(533\) 3909.26i 0.317690i
\(534\) 0 0
\(535\) −14907.1 + 238.575i −1.20466 + 0.0192795i
\(536\) 0 0
\(537\) 668.339i 0.0537076i
\(538\) 0 0
\(539\) −22748.4 −1.81789
\(540\) 0 0
\(541\) −6132.47 −0.487348 −0.243674 0.969857i \(-0.578353\pi\)
−0.243674 + 0.969857i \(0.578353\pi\)
\(542\) 0 0
\(543\) 300.101i 0.0237174i
\(544\) 0 0
\(545\) −109.118 6818.12i −0.00857633 0.535883i
\(546\) 0 0
\(547\) 2853.85i 0.223075i 0.993760 + 0.111537i \(0.0355775\pi\)
−0.993760 + 0.111537i \(0.964422\pi\)
\(548\) 0 0
\(549\) −4369.05 −0.339648
\(550\) 0 0
\(551\) −2772.25 −0.214341
\(552\) 0 0
\(553\) 24025.6i 1.84751i
\(554\) 0 0
\(555\) −143.276 8952.48i −0.0109581 0.684705i
\(556\) 0 0
\(557\) 5192.60i 0.395005i −0.980302 0.197502i \(-0.936717\pi\)
0.980302 0.197502i \(-0.0632830\pi\)
\(558\) 0 0
\(559\) −4065.36 −0.307596
\(560\) 0 0
\(561\) −7368.72 −0.554559
\(562\) 0 0
\(563\) 10907.2i 0.816492i −0.912872 0.408246i \(-0.866141\pi\)
0.912872 0.408246i \(-0.133859\pi\)
\(564\) 0 0
\(565\) 2703.15 43.2615i 0.201278 0.00322128i
\(566\) 0 0
\(567\) 2840.95i 0.210421i
\(568\) 0 0
\(569\) 155.257 0.0114389 0.00571945 0.999984i \(-0.498179\pi\)
0.00571945 + 0.999984i \(0.498179\pi\)
\(570\) 0 0
\(571\) −4925.15 −0.360965 −0.180483 0.983578i \(-0.557766\pi\)
−0.180483 + 0.983578i \(0.557766\pi\)
\(572\) 0 0
\(573\) 2107.21i 0.153630i
\(574\) 0 0
\(575\) −443.450 13850.7i −0.0321620 1.00455i
\(576\) 0 0
\(577\) 5292.05i 0.381822i −0.981607 0.190911i \(-0.938856\pi\)
0.981607 0.190911i \(-0.0611441\pi\)
\(578\) 0 0
\(579\) 12379.9 0.888585
\(580\) 0 0
\(581\) −10722.8 −0.765677
\(582\) 0 0
\(583\) 7837.33i 0.556757i
\(584\) 0 0
\(585\) −3787.19 + 60.6105i −0.267660 + 0.00428365i
\(586\) 0 0
\(587\) 19658.5i 1.38227i −0.722727 0.691134i \(-0.757112\pi\)
0.722727 0.691134i \(-0.242888\pi\)
\(588\) 0 0
\(589\) −10093.2 −0.706083
\(590\) 0 0
\(591\) 9313.36 0.648224
\(592\) 0 0
\(593\) 6578.08i 0.455530i −0.973716 0.227765i \(-0.926858\pi\)
0.973716 0.227765i \(-0.0731418\pi\)
\(594\) 0 0
\(595\) 601.070 + 37557.3i 0.0414142 + 2.58773i
\(596\) 0 0
\(597\) 1102.85i 0.0756056i
\(598\) 0 0
\(599\) −16915.9 −1.15386 −0.576931 0.816793i \(-0.695750\pi\)
−0.576931 + 0.816793i \(0.695750\pi\)
\(600\) 0 0
\(601\) 19801.4 1.34395 0.671977 0.740572i \(-0.265445\pi\)
0.671977 + 0.740572i \(0.265445\pi\)
\(602\) 0 0
\(603\) 7885.49i 0.532541i
\(604\) 0 0
\(605\) 120.491 + 7528.75i 0.00809695 + 0.505930i
\(606\) 0 0
\(607\) 22498.4i 1.50442i −0.658926 0.752208i \(-0.728989\pi\)
0.658926 0.752208i \(-0.271011\pi\)
\(608\) 0 0
\(609\) −5735.01 −0.381600
\(610\) 0 0
\(611\) 22472.7 1.48797
\(612\) 0 0
\(613\) 23829.3i 1.57008i 0.619446 + 0.785039i \(0.287357\pi\)
−0.619446 + 0.785039i \(0.712643\pi\)
\(614\) 0 0
\(615\) 3482.89 55.7406i 0.228364 0.00365476i
\(616\) 0 0
\(617\) 4277.52i 0.279103i −0.990215 0.139551i \(-0.955434\pi\)
0.990215 0.139551i \(-0.0445660\pi\)
\(618\) 0 0
\(619\) −4995.99 −0.324404 −0.162202 0.986758i \(-0.551860\pi\)
−0.162202 + 0.986758i \(0.551860\pi\)
\(620\) 0 0
\(621\) 2993.29 0.193424
\(622\) 0 0
\(623\) 31116.3i 2.00104i
\(624\) 0 0
\(625\) 15593.0 999.488i 0.997952 0.0639672i
\(626\) 0 0
\(627\) 3912.68i 0.249214i
\(628\) 0 0
\(629\) 25570.5 1.62092
\(630\) 0 0
\(631\) −11328.0 −0.714675 −0.357337 0.933975i \(-0.616315\pi\)
−0.357337 + 0.933975i \(0.616315\pi\)
\(632\) 0 0
\(633\) 7784.54i 0.488796i
\(634\) 0 0
\(635\) 11692.4 187.127i 0.730708 0.0116943i
\(636\) 0 0
\(637\) 33394.1i 2.07712i
\(638\) 0 0
\(639\) −5270.37 −0.326280
\(640\) 0 0
\(641\) 5955.35 0.366961 0.183481 0.983023i \(-0.441264\pi\)
0.183481 + 0.983023i \(0.441264\pi\)
\(642\) 0 0
\(643\) 15727.7i 0.964605i 0.876005 + 0.482302i \(0.160199\pi\)
−0.876005 + 0.482302i \(0.839801\pi\)
\(644\) 0 0
\(645\) 57.9663 + 3621.97i 0.00353864 + 0.221108i
\(646\) 0 0
\(647\) 9582.24i 0.582252i 0.956685 + 0.291126i \(0.0940298\pi\)
−0.956685 + 0.291126i \(0.905970\pi\)
\(648\) 0 0
\(649\) 5731.87 0.346681
\(650\) 0 0
\(651\) −20880.0 −1.25707
\(652\) 0 0
\(653\) 8313.70i 0.498224i 0.968475 + 0.249112i \(0.0801388\pi\)
−0.968475 + 0.249112i \(0.919861\pi\)
\(654\) 0 0
\(655\) 158.606 + 9910.37i 0.00946148 + 0.591191i
\(656\) 0 0
\(657\) 10238.4i 0.607971i
\(658\) 0 0
\(659\) −15095.5 −0.892317 −0.446158 0.894954i \(-0.647208\pi\)
−0.446158 + 0.894954i \(0.647208\pi\)
\(660\) 0 0
\(661\) 8266.98 0.486457 0.243229 0.969969i \(-0.421793\pi\)
0.243229 + 0.969969i \(0.421793\pi\)
\(662\) 0 0
\(663\) 10817.1i 0.633639i
\(664\) 0 0
\(665\) −19942.3 + 319.159i −1.16290 + 0.0186112i
\(666\) 0 0
\(667\) 6042.53i 0.350776i
\(668\) 0 0
\(669\) 5503.23 0.318038
\(670\) 0 0
\(671\) 12448.0 0.716170
\(672\) 0 0
\(673\) 11186.7i 0.640735i 0.947293 + 0.320367i \(0.103806\pi\)
−0.947293 + 0.320367i \(0.896194\pi\)
\(674\) 0 0
\(675\) 108.000 + 3373.27i 0.00615840 + 0.192352i
\(676\) 0 0
\(677\) 7675.84i 0.435756i −0.975976 0.217878i \(-0.930087\pi\)
0.975976 0.217878i \(-0.0699134\pi\)
\(678\) 0 0
\(679\) −19520.1 −1.10326
\(680\) 0 0
\(681\) 527.434 0.0296789
\(682\) 0 0
\(683\) 10550.9i 0.591099i 0.955327 + 0.295549i \(0.0955027\pi\)
−0.955327 + 0.295549i \(0.904497\pi\)
\(684\) 0 0
\(685\) 1796.71 28.7547i 0.100217 0.00160388i
\(686\) 0 0
\(687\) 4867.06i 0.270291i
\(688\) 0 0
\(689\) 11505.0 0.636150
\(690\) 0 0
\(691\) −26950.9 −1.48373 −0.741867 0.670547i \(-0.766060\pi\)
−0.741867 + 0.670547i \(0.766060\pi\)
\(692\) 0 0
\(693\) 8094.24i 0.443686i
\(694\) 0 0
\(695\) −10.2453 640.166i −0.000559173 0.0349394i
\(696\) 0 0
\(697\) 9947.99i 0.540613i
\(698\) 0 0
\(699\) −11897.0 −0.643754
\(700\) 0 0
\(701\) 12791.6 0.689204 0.344602 0.938749i \(-0.388014\pi\)
0.344602 + 0.938749i \(0.388014\pi\)
\(702\) 0 0
\(703\) 13577.5i 0.728429i
\(704\) 0 0
\(705\) −320.430 20021.7i −0.0171179 1.06959i
\(706\) 0 0
\(707\) 55805.1i 2.96855i
\(708\) 0 0
\(709\) 16238.3 0.860142 0.430071 0.902795i \(-0.358489\pi\)
0.430071 + 0.902795i \(0.358489\pi\)
\(710\) 0 0
\(711\) 6165.08 0.325188
\(712\) 0 0
\(713\) 21999.6i 1.15553i
\(714\) 0 0
\(715\) 10790.2 172.687i 0.564378 0.00903236i
\(716\) 0 0
\(717\) 18969.8i 0.988060i
\(718\) 0 0
\(719\) 24285.8 1.25968 0.629839 0.776726i \(-0.283121\pi\)
0.629839 + 0.776726i \(0.283121\pi\)
\(720\) 0 0
\(721\) −47382.3 −2.44745
\(722\) 0 0
\(723\) 10222.5i 0.525836i
\(724\) 0 0
\(725\) −6809.60 + 218.019i −0.348831 + 0.0111683i
\(726\) 0 0
\(727\) 4466.82i 0.227875i −0.993488 0.113937i \(-0.963654\pi\)
0.993488 0.113937i \(-0.0363464\pi\)
\(728\) 0 0
\(729\) −729.000 −0.0370370
\(730\) 0 0
\(731\) −10345.2 −0.523436
\(732\) 0 0
\(733\) 30802.1i 1.55212i −0.630661 0.776059i \(-0.717216\pi\)
0.630661 0.776059i \(-0.282784\pi\)
\(734\) 0 0
\(735\) −29752.0 + 476.154i −1.49309 + 0.0238955i
\(736\) 0 0
\(737\) 22466.8i 1.12290i
\(738\) 0 0
\(739\) 12920.5 0.643151 0.321576 0.946884i \(-0.395788\pi\)
0.321576 + 0.946884i \(0.395788\pi\)
\(740\) 0 0
\(741\) 5743.73 0.284752
\(742\) 0 0
\(743\) 2571.29i 0.126960i 0.997983 + 0.0634802i \(0.0202200\pi\)
−0.997983 + 0.0634802i \(0.979780\pi\)
\(744\) 0 0
\(745\) −197.720 12354.4i −0.00972337 0.607555i
\(746\) 0 0
\(747\) 2751.53i 0.134770i
\(748\) 0 0
\(749\) 46770.7 2.28166
\(750\) 0 0
\(751\) −13427.4 −0.652426 −0.326213 0.945296i \(-0.605773\pi\)
−0.326213 + 0.945296i \(0.605773\pi\)
\(752\) 0 0
\(753\) 4037.42i 0.195394i
\(754\) 0 0
\(755\) −409.635 25595.6i −0.0197459 1.23380i
\(756\) 0 0
\(757\) 7103.66i 0.341066i −0.985352 0.170533i \(-0.945451\pi\)
0.985352 0.170533i \(-0.0545489\pi\)
\(758\) 0 0
\(759\) −8528.27 −0.407848
\(760\) 0 0
\(761\) 19205.2 0.914831 0.457416 0.889253i \(-0.348775\pi\)
0.457416 + 0.889253i \(0.348775\pi\)
\(762\) 0 0
\(763\) 21391.6i 1.01498i
\(764\) 0 0
\(765\) −9637.36 + 154.237i −0.455476 + 0.00728949i
\(766\) 0 0
\(767\) 8414.27i 0.396117i
\(768\) 0 0
\(769\) −19508.1 −0.914799 −0.457399 0.889261i \(-0.651219\pi\)
−0.457399 + 0.889261i \(0.651219\pi\)
\(770\) 0 0
\(771\) 14091.6 0.658230
\(772\) 0 0
\(773\) 38852.5i 1.80780i 0.427746 + 0.903899i \(0.359308\pi\)
−0.427746 + 0.903899i \(0.640692\pi\)
\(774\) 0 0
\(775\) −24792.4 + 793.763i −1.14912 + 0.0367907i
\(776\) 0 0
\(777\) 28088.1i 1.29685i
\(778\) 0 0
\(779\) −5282.23 −0.242947
\(780\) 0 0
\(781\) 15016.0 0.687982
\(782\) 0 0
\(783\) 1471.63i 0.0671669i
\(784\) 0 0
\(785\) 1805.55 28.8962i 0.0820929 0.00131382i
\(786\) 0 0
\(787\) 24851.1i 1.12560i −0.826594 0.562799i \(-0.809725\pi\)
0.826594 0.562799i \(-0.190275\pi\)
\(788\) 0 0
\(789\) −14102.0 −0.636304
\(790\) 0 0
\(791\) −8481.04 −0.381228