Defining parameters
Level: | \( N \) | \(=\) | \( 120 = 2^{3} \cdot 3 \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 120.f (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(96\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(7\), \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(120, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 80 | 10 | 70 |
Cusp forms | 64 | 10 | 54 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(120, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
120.4.f.a | $2$ | $7.080$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(-20\) | \(0\) | \(q+3iq^{3}+(-10+5i)q^{5}-10iq^{7}+\cdots\) |
120.4.f.b | $2$ | $7.080$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(-4\) | \(0\) | \(q+3iq^{3}+(-2-11i)q^{5}-10iq^{7}+\cdots\) |
120.4.f.c | $2$ | $7.080$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(10\) | \(0\) | \(q+3iq^{3}+(5+10i)q^{5}+4iq^{7}-9q^{9}+\cdots\) |
120.4.f.d | $4$ | $7.080$ | \(\Q(i, \sqrt{129})\) | None | \(0\) | \(0\) | \(22\) | \(0\) | \(q-3\beta _{1}q^{3}+(6+5\beta _{1}+\beta _{3})q^{5}+(-\beta _{1}+\cdots)q^{7}+\cdots\) |
Decomposition of \(S_{4}^{\mathrm{old}}(120, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(120, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(10, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(15, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(30, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(60, [\chi])\)\(^{\oplus 2}\)