Properties

Label 120.4.f
Level $120$
Weight $4$
Character orbit 120.f
Rep. character $\chi_{120}(49,\cdot)$
Character field $\Q$
Dimension $10$
Newform subspaces $4$
Sturm bound $96$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 120 = 2^{3} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 120.f (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(96\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(7\), \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(120, [\chi])\).

Total New Old
Modular forms 80 10 70
Cusp forms 64 10 54
Eisenstein series 16 0 16

Trace form

\( 10 q + 8 q^{5} - 90 q^{9} + O(q^{10}) \) \( 10 q + 8 q^{5} - 90 q^{9} - 28 q^{11} + 42 q^{15} + 160 q^{19} + 84 q^{21} - 234 q^{25} - 296 q^{29} - 384 q^{31} + 596 q^{35} + 12 q^{39} + 1028 q^{41} - 72 q^{45} - 1650 q^{49} - 612 q^{51} + 1768 q^{55} + 108 q^{59} + 1796 q^{61} - 964 q^{65} - 552 q^{69} - 1000 q^{71} - 312 q^{75} - 1552 q^{79} + 810 q^{81} + 252 q^{85} + 132 q^{89} - 1096 q^{91} + 4160 q^{95} + 252 q^{99} + O(q^{100}) \)

Decomposition of \(S_{4}^{\mathrm{new}}(120, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
120.4.f.a 120.f 5.b $2$ $7.080$ \(\Q(\sqrt{-1}) \) None 120.4.f.a \(0\) \(0\) \(-20\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+3iq^{3}+(-10+5i)q^{5}-10iq^{7}+\cdots\)
120.4.f.b 120.f 5.b $2$ $7.080$ \(\Q(\sqrt{-1}) \) None 120.4.f.b \(0\) \(0\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+3iq^{3}+(-2-11i)q^{5}-10iq^{7}+\cdots\)
120.4.f.c 120.f 5.b $2$ $7.080$ \(\Q(\sqrt{-1}) \) None 120.4.f.c \(0\) \(0\) \(10\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+3iq^{3}+(5+10i)q^{5}+4iq^{7}-9q^{9}+\cdots\)
120.4.f.d 120.f 5.b $4$ $7.080$ \(\Q(i, \sqrt{129})\) None 120.4.f.d \(0\) \(0\) \(22\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-3\beta _{1}q^{3}+(6+5\beta _{1}+\beta _{3})q^{5}+(-\beta _{1}+\cdots)q^{7}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(120, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(120, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(10, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(15, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(30, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(60, [\chi])\)\(^{\oplus 2}\)