Properties

Label 120.4.d
Level $120$
Weight $4$
Character orbit 120.d
Rep. character $\chi_{120}(109,\cdot)$
Character field $\Q$
Dimension $36$
Newform subspaces $2$
Sturm bound $96$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 120 = 2^{3} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 120.d (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 40 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(96\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(13\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(120, [\chi])\).

Total New Old
Modular forms 76 36 40
Cusp forms 68 36 32
Eisenstein series 8 0 8

Trace form

\( 36 q - 6 q^{4} - 6 q^{6} + 324 q^{9} + O(q^{10}) \) \( 36 q - 6 q^{4} - 6 q^{6} + 324 q^{9} + 42 q^{10} - 28 q^{14} + 194 q^{16} + 364 q^{20} - 114 q^{24} + 44 q^{25} - 164 q^{26} + 36 q^{30} + 480 q^{31} - 8 q^{34} - 54 q^{36} + 624 q^{39} - 810 q^{40} - 472 q^{41} - 2180 q^{44} + 228 q^{46} - 1764 q^{49} + 864 q^{50} - 54 q^{54} - 144 q^{55} - 2188 q^{56} + 402 q^{60} + 3330 q^{64} + 696 q^{65} + 588 q^{66} - 1024 q^{70} - 224 q^{71} - 4452 q^{74} + 2604 q^{76} - 4576 q^{79} - 1644 q^{80} + 2916 q^{81} - 2292 q^{84} - 3400 q^{86} - 440 q^{89} + 378 q^{90} + 7332 q^{94} + 2624 q^{95} - 666 q^{96} + O(q^{100}) \)

Decomposition of \(S_{4}^{\mathrm{new}}(120, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
120.4.d.a 120.d 40.f $18$ $7.080$ \(\mathbb{Q}[x]/(x^{18} - \cdots)\) None 120.4.d.a \(-1\) \(54\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{3}q^{2}+3q^{3}+\beta _{2}q^{4}+\beta _{10}q^{5}+\cdots\)
120.4.d.b 120.d 40.f $18$ $7.080$ \(\mathbb{Q}[x]/(x^{18} - \cdots)\) None 120.4.d.a \(1\) \(-54\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{5}q^{2}-3q^{3}-\beta _{7}q^{4}+\beta _{11}q^{5}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(120, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(120, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 2}\)