Defining parameters
Level: | \( N \) | \(=\) | \( 120 = 2^{3} \cdot 3 \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 120.d (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 40 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(96\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(13\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(120, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 76 | 36 | 40 |
Cusp forms | 68 | 36 | 32 |
Eisenstein series | 8 | 0 | 8 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(120, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
120.4.d.a | $18$ | $7.080$ | \(\mathbb{Q}[x]/(x^{18} - \cdots)\) | None | \(-1\) | \(54\) | \(0\) | \(0\) | \(q+\beta _{3}q^{2}+3q^{3}+\beta _{2}q^{4}+\beta _{10}q^{5}+\cdots\) |
120.4.d.b | $18$ | $7.080$ | \(\mathbb{Q}[x]/(x^{18} - \cdots)\) | None | \(1\) | \(-54\) | \(0\) | \(0\) | \(q+\beta _{5}q^{2}-3q^{3}-\beta _{7}q^{4}+\beta _{11}q^{5}+\cdots\) |
Decomposition of \(S_{4}^{\mathrm{old}}(120, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(120, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 2}\)