Properties

Label 120.4.a.b
Level $120$
Weight $4$
Character orbit 120.a
Self dual yes
Analytic conductor $7.080$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [120,4,Mod(1,120)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(120, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("120.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 120 = 2^{3} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 120.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(7.08022920069\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 3 q^{3} - 5 q^{5} + 20 q^{7} + 9 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - 3 q^{3} - 5 q^{5} + 20 q^{7} + 9 q^{9} - 56 q^{11} - 86 q^{13} + 15 q^{15} - 106 q^{17} + 4 q^{19} - 60 q^{21} + 136 q^{23} + 25 q^{25} - 27 q^{27} - 206 q^{29} - 152 q^{31} + 168 q^{33} - 100 q^{35} + 282 q^{37} + 258 q^{39} - 246 q^{41} + 412 q^{43} - 45 q^{45} + 40 q^{47} + 57 q^{49} + 318 q^{51} - 126 q^{53} + 280 q^{55} - 12 q^{57} + 56 q^{59} - 2 q^{61} + 180 q^{63} + 430 q^{65} - 388 q^{67} - 408 q^{69} - 672 q^{71} + 1170 q^{73} - 75 q^{75} - 1120 q^{77} + 408 q^{79} + 81 q^{81} + 668 q^{83} + 530 q^{85} + 618 q^{87} + 66 q^{89} - 1720 q^{91} + 456 q^{93} - 20 q^{95} - 926 q^{97} - 504 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 −3.00000 0 −5.00000 0 20.0000 0 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 120.4.a.b 1
3.b odd 2 1 360.4.a.n 1
4.b odd 2 1 240.4.a.g 1
5.b even 2 1 600.4.a.i 1
5.c odd 4 2 600.4.f.a 2
8.b even 2 1 960.4.a.bj 1
8.d odd 2 1 960.4.a.k 1
12.b even 2 1 720.4.a.q 1
15.d odd 2 1 1800.4.a.f 1
15.e even 4 2 1800.4.f.v 2
20.d odd 2 1 1200.4.a.p 1
20.e even 4 2 1200.4.f.t 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
120.4.a.b 1 1.a even 1 1 trivial
240.4.a.g 1 4.b odd 2 1
360.4.a.n 1 3.b odd 2 1
600.4.a.i 1 5.b even 2 1
600.4.f.a 2 5.c odd 4 2
720.4.a.q 1 12.b even 2 1
960.4.a.k 1 8.d odd 2 1
960.4.a.bj 1 8.b even 2 1
1200.4.a.p 1 20.d odd 2 1
1200.4.f.t 2 20.e even 4 2
1800.4.a.f 1 15.d odd 2 1
1800.4.f.v 2 15.e even 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(120))\):

\( T_{7} - 20 \) Copy content Toggle raw display
\( T_{11} + 56 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T + 3 \) Copy content Toggle raw display
$5$ \( T + 5 \) Copy content Toggle raw display
$7$ \( T - 20 \) Copy content Toggle raw display
$11$ \( T + 56 \) Copy content Toggle raw display
$13$ \( T + 86 \) Copy content Toggle raw display
$17$ \( T + 106 \) Copy content Toggle raw display
$19$ \( T - 4 \) Copy content Toggle raw display
$23$ \( T - 136 \) Copy content Toggle raw display
$29$ \( T + 206 \) Copy content Toggle raw display
$31$ \( T + 152 \) Copy content Toggle raw display
$37$ \( T - 282 \) Copy content Toggle raw display
$41$ \( T + 246 \) Copy content Toggle raw display
$43$ \( T - 412 \) Copy content Toggle raw display
$47$ \( T - 40 \) Copy content Toggle raw display
$53$ \( T + 126 \) Copy content Toggle raw display
$59$ \( T - 56 \) Copy content Toggle raw display
$61$ \( T + 2 \) Copy content Toggle raw display
$67$ \( T + 388 \) Copy content Toggle raw display
$71$ \( T + 672 \) Copy content Toggle raw display
$73$ \( T - 1170 \) Copy content Toggle raw display
$79$ \( T - 408 \) Copy content Toggle raw display
$83$ \( T - 668 \) Copy content Toggle raw display
$89$ \( T - 66 \) Copy content Toggle raw display
$97$ \( T + 926 \) Copy content Toggle raw display
show more
show less