Defining parameters
Level: | \( N \) | \(=\) | \( 120 = 2^{3} \cdot 3 \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 120.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 6 \) | ||
Sturm bound: | \(96\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(7\), \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(120))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 80 | 6 | 74 |
Cusp forms | 64 | 6 | 58 |
Eisenstein series | 16 | 0 | 16 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(5\) | Fricke | Dim |
---|---|---|---|---|
\(+\) | \(+\) | \(+\) | \(+\) | \(1\) |
\(+\) | \(+\) | \(-\) | \(-\) | \(1\) |
\(+\) | \(-\) | \(-\) | \(+\) | \(1\) |
\(-\) | \(+\) | \(+\) | \(-\) | \(1\) |
\(-\) | \(+\) | \(-\) | \(+\) | \(1\) |
\(-\) | \(-\) | \(+\) | \(+\) | \(1\) |
Plus space | \(+\) | \(4\) | ||
Minus space | \(-\) | \(2\) |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(120))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 3 | 5 | |||||||
120.4.a.a | $1$ | $7.080$ | \(\Q\) | None | \(0\) | \(-3\) | \(-5\) | \(4\) | $+$ | $+$ | $+$ | \(q-3q^{3}-5q^{5}+4q^{7}+9q^{9}+72q^{11}+\cdots\) | |
120.4.a.b | $1$ | $7.080$ | \(\Q\) | None | \(0\) | \(-3\) | \(-5\) | \(20\) | $-$ | $+$ | $+$ | \(q-3q^{3}-5q^{5}+20q^{7}+9q^{9}-56q^{11}+\cdots\) | |
120.4.a.c | $1$ | $7.080$ | \(\Q\) | None | \(0\) | \(-3\) | \(5\) | \(-16\) | $+$ | $+$ | $-$ | \(q-3q^{3}+5q^{5}-2^{4}q^{7}+9q^{9}-28q^{11}+\cdots\) | |
120.4.a.d | $1$ | $7.080$ | \(\Q\) | None | \(0\) | \(-3\) | \(5\) | \(0\) | $-$ | $+$ | $-$ | \(q-3q^{3}+5q^{5}+9q^{9}+4q^{11}+54q^{13}+\cdots\) | |
120.4.a.e | $1$ | $7.080$ | \(\Q\) | None | \(0\) | \(3\) | \(-5\) | \(20\) | $-$ | $-$ | $+$ | \(q+3q^{3}-5q^{5}+20q^{7}+9q^{9}+2^{4}q^{11}+\cdots\) | |
120.4.a.f | $1$ | $7.080$ | \(\Q\) | None | \(0\) | \(3\) | \(5\) | \(8\) | $+$ | $-$ | $-$ | \(q+3q^{3}+5q^{5}+8q^{7}+9q^{9}+20q^{11}+\cdots\) |
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(120))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(120)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(10))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(12))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(40))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(60))\)\(^{\oplus 2}\)