Properties

Label 120.4.a
Level $120$
Weight $4$
Character orbit 120.a
Rep. character $\chi_{120}(1,\cdot)$
Character field $\Q$
Dimension $6$
Newform subspaces $6$
Sturm bound $96$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 120 = 2^{3} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 120.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 6 \)
Sturm bound: \(96\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(7\), \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(120))\).

Total New Old
Modular forms 80 6 74
Cusp forms 64 6 58
Eisenstein series 16 0 16

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(5\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(12\)\(1\)\(11\)\(10\)\(1\)\(9\)\(2\)\(0\)\(2\)
\(+\)\(+\)\(-\)\(-\)\(9\)\(1\)\(8\)\(7\)\(1\)\(6\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(+\)\(-\)\(8\)\(0\)\(8\)\(6\)\(0\)\(6\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(-\)\(+\)\(11\)\(1\)\(10\)\(9\)\(1\)\(8\)\(2\)\(0\)\(2\)
\(-\)\(+\)\(+\)\(-\)\(10\)\(1\)\(9\)\(8\)\(1\)\(7\)\(2\)\(0\)\(2\)
\(-\)\(+\)\(-\)\(+\)\(9\)\(1\)\(8\)\(7\)\(1\)\(6\)\(2\)\(0\)\(2\)
\(-\)\(-\)\(+\)\(+\)\(10\)\(1\)\(9\)\(8\)\(1\)\(7\)\(2\)\(0\)\(2\)
\(-\)\(-\)\(-\)\(-\)\(11\)\(0\)\(11\)\(9\)\(0\)\(9\)\(2\)\(0\)\(2\)
Plus space\(+\)\(42\)\(4\)\(38\)\(34\)\(4\)\(30\)\(8\)\(0\)\(8\)
Minus space\(-\)\(38\)\(2\)\(36\)\(30\)\(2\)\(28\)\(8\)\(0\)\(8\)

Trace form

\( 6 q - 6 q^{3} + 36 q^{7} + 54 q^{9} + 28 q^{11} + 16 q^{13} + 8 q^{17} + 112 q^{19} + 60 q^{21} + 152 q^{23} + 150 q^{25} - 54 q^{27} - 280 q^{29} + 8 q^{31} + 132 q^{33} - 260 q^{35} + 568 q^{37} + 432 q^{39}+ \cdots + 252 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(120))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 5
120.4.a.a 120.a 1.a $1$ $7.080$ \(\Q\) None 120.4.a.a \(0\) \(-3\) \(-5\) \(4\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-3q^{3}-5q^{5}+4q^{7}+9q^{9}+72q^{11}+\cdots\)
120.4.a.b 120.a 1.a $1$ $7.080$ \(\Q\) None 120.4.a.b \(0\) \(-3\) \(-5\) \(20\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-3q^{3}-5q^{5}+20q^{7}+9q^{9}-56q^{11}+\cdots\)
120.4.a.c 120.a 1.a $1$ $7.080$ \(\Q\) None 120.4.a.c \(0\) \(-3\) \(5\) \(-16\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-3q^{3}+5q^{5}-2^{4}q^{7}+9q^{9}-28q^{11}+\cdots\)
120.4.a.d 120.a 1.a $1$ $7.080$ \(\Q\) None 120.4.a.d \(0\) \(-3\) \(5\) \(0\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-3q^{3}+5q^{5}+9q^{9}+4q^{11}+54q^{13}+\cdots\)
120.4.a.e 120.a 1.a $1$ $7.080$ \(\Q\) None 120.4.a.e \(0\) \(3\) \(-5\) \(20\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+3q^{3}-5q^{5}+20q^{7}+9q^{9}+2^{4}q^{11}+\cdots\)
120.4.a.f 120.a 1.a $1$ $7.080$ \(\Q\) None 120.4.a.f \(0\) \(3\) \(5\) \(8\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+3q^{3}+5q^{5}+8q^{7}+9q^{9}+20q^{11}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(120))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_0(120)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(10))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(12))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(40))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(60))\)\(^{\oplus 2}\)