# Properties

 Label 120.2.w.c.53.16 Level $120$ Weight $2$ Character 120.53 Analytic conductor $0.958$ Analytic rank $0$ Dimension $32$ CM no Inner twists $8$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$120 = 2^{3} \cdot 3 \cdot 5$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 120.w (of order $$4$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$0.958204824255$$ Analytic rank: $$0$$ Dimension: $$32$$ Relative dimension: $$16$$ over $$\Q(i)$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

## Embedding invariants

 Embedding label 53.16 Character $$\chi$$ $$=$$ 120.53 Dual form 120.2.w.c.77.16

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(1.41107 + 0.0941764i) q^{2} +(-1.68122 - 0.416519i) q^{3} +(1.98226 + 0.265780i) q^{4} +(1.62104 - 1.54020i) q^{5} +(-2.33310 - 0.746071i) q^{6} +(-0.361989 + 0.361989i) q^{7} +(2.77209 + 0.561717i) q^{8} +(2.65302 + 1.40052i) q^{9} +O(q^{10})$$ $$q+(1.41107 + 0.0941764i) q^{2} +(-1.68122 - 0.416519i) q^{3} +(1.98226 + 0.265780i) q^{4} +(1.62104 - 1.54020i) q^{5} +(-2.33310 - 0.746071i) q^{6} +(-0.361989 + 0.361989i) q^{7} +(2.77209 + 0.561717i) q^{8} +(2.65302 + 1.40052i) q^{9} +(2.43246 - 2.02068i) q^{10} -2.63380 q^{11} +(-3.22192 - 1.27249i) q^{12} +(-3.49376 + 3.49376i) q^{13} +(-0.544885 + 0.476703i) q^{14} +(-3.36685 + 1.91423i) q^{15} +(3.85872 + 1.05369i) q^{16} +(-3.61339 - 3.61339i) q^{17} +(3.61172 + 2.22609i) q^{18} +0.672266 q^{19} +(3.62268 - 2.62225i) q^{20} +(0.759360 - 0.457809i) q^{21} +(-3.71648 - 0.248041i) q^{22} +(-4.31851 + 4.31851i) q^{23} +(-4.42653 - 2.09900i) q^{24} +(0.255538 - 4.99347i) q^{25} +(-5.25899 + 4.60093i) q^{26} +(-3.87698 - 3.45963i) q^{27} +(-0.813767 + 0.621348i) q^{28} +4.76080i q^{29} +(-4.93116 + 2.38405i) q^{30} +3.73793 q^{31} +(5.34571 + 1.85024i) q^{32} +(4.42800 + 1.09703i) q^{33} +(-4.75847 - 5.43906i) q^{34} +(-0.0292613 + 1.14434i) q^{35} +(4.88676 + 3.48132i) q^{36} +(2.82150 + 2.82150i) q^{37} +(0.948617 + 0.0633116i) q^{38} +(7.32901 - 4.41857i) q^{39} +(5.35882 - 3.35902i) q^{40} -4.10027i q^{41} +(1.11463 - 0.574489i) q^{42} +(7.57996 - 7.57996i) q^{43} +(-5.22087 - 0.700010i) q^{44} +(6.45775 - 1.81590i) q^{45} +(-6.50044 + 5.68704i) q^{46} +(-0.987537 - 0.987537i) q^{47} +(-6.04849 - 3.37872i) q^{48} +6.73793i q^{49} +(0.830850 - 7.02209i) q^{50} +(4.56987 + 7.57996i) q^{51} +(-7.85412 + 5.99698i) q^{52} +(-0.646149 - 0.646149i) q^{53} +(-5.14489 - 5.24691i) q^{54} +(-4.26949 + 4.05659i) q^{55} +(-1.20680 + 0.800131i) q^{56} +(-1.13023 - 0.280012i) q^{57} +(-0.448355 + 6.71784i) q^{58} -4.92247i q^{59} +(-7.18275 + 2.89967i) q^{60} -6.07190i q^{61} +(5.27449 + 0.352025i) q^{62} +(-1.46734 + 0.453392i) q^{63} +(7.36895 + 3.11426i) q^{64} +(-0.282417 + 11.0446i) q^{65} +(6.14492 + 1.96500i) q^{66} +(0.349085 + 0.349085i) q^{67} +(-6.20232 - 8.12305i) q^{68} +(9.05912 - 5.46164i) q^{69} +(-0.149059 + 1.61199i) q^{70} -8.63702i q^{71} +(6.56772 + 5.37262i) q^{72} +(-11.3261 - 11.3261i) q^{73} +(3.71562 + 4.24706i) q^{74} +(-2.50949 + 8.28869i) q^{75} +(1.33261 + 0.178675i) q^{76} +(0.953406 - 0.953406i) q^{77} +(10.7579 - 5.54472i) q^{78} +4.07707i q^{79} +(7.87804 - 4.23515i) q^{80} +(5.07707 + 7.43124i) q^{81} +(0.386149 - 5.78579i) q^{82} +(8.53893 + 8.53893i) q^{83} +(1.62693 - 0.705675i) q^{84} +(-11.4228 - 0.292087i) q^{85} +(11.4097 - 9.98203i) q^{86} +(1.98296 - 8.00397i) q^{87} +(-7.30111 - 1.47945i) q^{88} +6.58584 q^{89} +(9.28338 - 1.95420i) q^{90} -2.52941i q^{91} +(-9.70819 + 7.41264i) q^{92} +(-6.28429 - 1.55692i) q^{93} +(-1.30049 - 1.48649i) q^{94} +(1.08977 - 1.03543i) q^{95} +(-8.21668 - 5.33725i) q^{96} +(-0.660859 + 0.660859i) q^{97} +(-0.634554 + 9.50772i) q^{98} +(-6.98752 - 3.68869i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$32 q - 4 q^{6}+O(q^{10})$$ 32 * q - 4 * q^6 $$32 q - 4 q^{6} + 4 q^{10} - 8 q^{12} - 28 q^{15} + 28 q^{16} - 20 q^{18} - 52 q^{22} - 8 q^{25} + 12 q^{28} - 32 q^{30} - 32 q^{31} + 8 q^{33} - 20 q^{36} + 24 q^{40} + 16 q^{42} + 24 q^{46} + 44 q^{48} + 8 q^{52} + 8 q^{55} - 16 q^{57} + 28 q^{58} + 56 q^{60} + 48 q^{63} + 16 q^{66} + 20 q^{70} + 32 q^{72} - 64 q^{73} - 88 q^{76} + 64 q^{78} + 48 q^{81} + 64 q^{82} - 8 q^{87} - 52 q^{88} + 84 q^{90} - 52 q^{96} + 16 q^{97}+O(q^{100})$$ 32 * q - 4 * q^6 + 4 * q^10 - 8 * q^12 - 28 * q^15 + 28 * q^16 - 20 * q^18 - 52 * q^22 - 8 * q^25 + 12 * q^28 - 32 * q^30 - 32 * q^31 + 8 * q^33 - 20 * q^36 + 24 * q^40 + 16 * q^42 + 24 * q^46 + 44 * q^48 + 8 * q^52 + 8 * q^55 - 16 * q^57 + 28 * q^58 + 56 * q^60 + 48 * q^63 + 16 * q^66 + 20 * q^70 + 32 * q^72 - 64 * q^73 - 88 * q^76 + 64 * q^78 + 48 * q^81 + 64 * q^82 - 8 * q^87 - 52 * q^88 + 84 * q^90 - 52 * q^96 + 16 * q^97

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/120\mathbb{Z}\right)^\times$$.

 $$n$$ $$31$$ $$41$$ $$61$$ $$97$$ $$\chi(n)$$ $$1$$ $$-1$$ $$-1$$ $$e\left(\frac{3}{4}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 1.41107 + 0.0941764i 0.997780 + 0.0665928i
$$3$$ −1.68122 0.416519i −0.970655 0.240477i
$$4$$ 1.98226 + 0.265780i 0.991131 + 0.132890i
$$5$$ 1.62104 1.54020i 0.724951 0.688801i
$$6$$ −2.33310 0.746071i −0.952486 0.304582i
$$7$$ −0.361989 + 0.361989i −0.136819 + 0.136819i −0.772199 0.635380i $$-0.780843\pi$$
0.635380 + 0.772199i $$0.280843\pi$$
$$8$$ 2.77209 + 0.561717i 0.980081 + 0.198597i
$$9$$ 2.65302 + 1.40052i 0.884341 + 0.466841i
$$10$$ 2.43246 2.02068i 0.769211 0.638995i
$$11$$ −2.63380 −0.794119 −0.397060 0.917793i $$-0.629969\pi$$
−0.397060 + 0.917793i $$0.629969\pi$$
$$12$$ −3.22192 1.27249i −0.930089 0.367335i
$$13$$ −3.49376 + 3.49376i −0.968995 + 0.968995i −0.999534 0.0305386i $$-0.990278\pi$$
0.0305386 + 0.999534i $$0.490278\pi$$
$$14$$ −0.544885 + 0.476703i −0.145627 + 0.127404i
$$15$$ −3.36685 + 1.91423i −0.869318 + 0.494253i
$$16$$ 3.85872 + 1.05369i 0.964681 + 0.263423i
$$17$$ −3.61339 3.61339i −0.876376 0.876376i 0.116782 0.993158i $$-0.462742\pi$$
−0.993158 + 0.116782i $$0.962742\pi$$
$$18$$ 3.61172 + 2.22609i 0.851290 + 0.524696i
$$19$$ 0.672266 0.154228 0.0771142 0.997022i $$-0.475429\pi$$
0.0771142 + 0.997022i $$0.475429\pi$$
$$20$$ 3.62268 2.62225i 0.810056 0.586353i
$$21$$ 0.759360 0.457809i 0.165706 0.0999022i
$$22$$ −3.71648 0.248041i −0.792357 0.0528826i
$$23$$ −4.31851 + 4.31851i −0.900472 + 0.900472i −0.995477 0.0950052i $$-0.969713\pi$$
0.0950052 + 0.995477i $$0.469713\pi$$
$$24$$ −4.42653 2.09900i −0.903562 0.428457i
$$25$$ 0.255538 4.99347i 0.0511076 0.998693i
$$26$$ −5.25899 + 4.60093i −1.03137 + 0.902316i
$$27$$ −3.87698 3.45963i −0.746125 0.665806i
$$28$$ −0.813767 + 0.621348i −0.153787 + 0.117424i
$$29$$ 4.76080i 0.884058i 0.897001 + 0.442029i $$0.145741\pi$$
−0.897001 + 0.442029i $$0.854259\pi$$
$$30$$ −4.93116 + 2.38405i −0.900302 + 0.435266i
$$31$$ 3.73793 0.671352 0.335676 0.941978i $$-0.391035\pi$$
0.335676 + 0.941978i $$0.391035\pi$$
$$32$$ 5.34571 + 1.85024i 0.944997 + 0.327079i
$$33$$ 4.42800 + 1.09703i 0.770816 + 0.190968i
$$34$$ −4.75847 5.43906i −0.816070 0.932791i
$$35$$ −0.0292613 + 1.14434i −0.00494606 + 0.193428i
$$36$$ 4.88676 + 3.48132i 0.814459 + 0.580221i
$$37$$ 2.82150 + 2.82150i 0.463851 + 0.463851i 0.899915 0.436064i $$-0.143628\pi$$
−0.436064 + 0.899915i $$0.643628\pi$$
$$38$$ 0.948617 + 0.0633116i 0.153886 + 0.0102705i
$$39$$ 7.32901 4.41857i 1.17358 0.707538i
$$40$$ 5.35882 3.35902i 0.847305 0.531107i
$$41$$ 4.10027i 0.640355i −0.947358 0.320177i $$-0.896257\pi$$
0.947358 0.320177i $$-0.103743\pi$$
$$42$$ 1.11463 0.574489i 0.171991 0.0886456i
$$43$$ 7.57996 7.57996i 1.15593 1.15593i 0.170591 0.985342i $$-0.445432\pi$$
0.985342 0.170591i $$-0.0545678\pi$$
$$44$$ −5.22087 0.700010i −0.787076 0.105530i
$$45$$ 6.45775 1.81590i 0.962664 0.270698i
$$46$$ −6.50044 + 5.68704i −0.958438 + 0.838508i
$$47$$ −0.987537 0.987537i −0.144047 0.144047i 0.631406 0.775453i $$-0.282478\pi$$
−0.775453 + 0.631406i $$0.782478\pi$$
$$48$$ −6.04849 3.37872i −0.873025 0.487676i
$$49$$ 6.73793i 0.962561i
$$50$$ 0.830850 7.02209i 0.117500 0.993073i
$$51$$ 4.56987 + 7.57996i 0.639910 + 1.06141i
$$52$$ −7.85412 + 5.99698i −1.08917 + 0.831631i
$$53$$ −0.646149 0.646149i −0.0887554 0.0887554i 0.661335 0.750091i $$-0.269990\pi$$
−0.750091 + 0.661335i $$0.769990\pi$$
$$54$$ −5.14489 5.24691i −0.700131 0.714014i
$$55$$ −4.26949 + 4.05659i −0.575698 + 0.546990i
$$56$$ −1.20680 + 0.800131i −0.161266 + 0.106922i
$$57$$ −1.13023 0.280012i −0.149702 0.0370884i
$$58$$ −0.448355 + 6.71784i −0.0588719 + 0.882096i
$$59$$ 4.92247i 0.640851i −0.947274 0.320425i $$-0.896174\pi$$
0.947274 0.320425i $$-0.103826\pi$$
$$60$$ −7.18275 + 2.89967i −0.927289 + 0.374346i
$$61$$ 6.07190i 0.777428i −0.921359 0.388714i $$-0.872919\pi$$
0.921359 0.388714i $$-0.127081\pi$$
$$62$$ 5.27449 + 0.352025i 0.669861 + 0.0447072i
$$63$$ −1.46734 + 0.453392i −0.184868 + 0.0571220i
$$64$$ 7.36895 + 3.11426i 0.921118 + 0.389283i
$$65$$ −0.282417 + 11.0446i −0.0350295 + 1.36992i
$$66$$ 6.14492 + 1.96500i 0.756388 + 0.241875i
$$67$$ 0.349085 + 0.349085i 0.0426476 + 0.0426476i 0.728109 0.685461i $$-0.240399\pi$$
−0.685461 + 0.728109i $$0.740399\pi$$
$$68$$ −6.20232 8.12305i −0.752141 0.985064i
$$69$$ 9.05912 5.46164i 1.09059 0.657504i
$$70$$ −0.149059 + 1.61199i −0.0178160 + 0.192669i
$$71$$ 8.63702i 1.02503i −0.858680 0.512513i $$-0.828715\pi$$
0.858680 0.512513i $$-0.171285\pi$$
$$72$$ 6.56772 + 5.37262i 0.774013 + 0.633170i
$$73$$ −11.3261 11.3261i −1.32562 1.32562i −0.909152 0.416465i $$-0.863269\pi$$
−0.416465 0.909152i $$-0.636731\pi$$
$$74$$ 3.71562 + 4.24706i 0.431932 + 0.493711i
$$75$$ −2.50949 + 8.28869i −0.289771 + 0.957096i
$$76$$ 1.33261 + 0.178675i 0.152860 + 0.0204954i
$$77$$ 0.953406 0.953406i 0.108651 0.108651i
$$78$$ 10.7579 5.54472i 1.21809 0.627816i
$$79$$ 4.07707i 0.458706i 0.973343 + 0.229353i $$0.0736610\pi$$
−0.973343 + 0.229353i $$0.926339\pi$$
$$80$$ 7.87804 4.23515i 0.880792 0.473504i
$$81$$ 5.07707 + 7.43124i 0.564119 + 0.825694i
$$82$$ 0.386149 5.78579i 0.0426430 0.638933i
$$83$$ 8.53893 + 8.53893i 0.937270 + 0.937270i 0.998145 0.0608758i $$-0.0193894\pi$$
−0.0608758 + 0.998145i $$0.519389\pi$$
$$84$$ 1.62693 0.705675i 0.177512 0.0769955i
$$85$$ −11.4228 0.292087i −1.23898 0.0316813i
$$86$$ 11.4097 9.98203i 1.23034 1.07639i
$$87$$ 1.98296 8.00397i 0.212596 0.858115i
$$88$$ −7.30111 1.47945i −0.778301 0.157710i
$$89$$ 6.58584 0.698097 0.349049 0.937105i $$-0.386505\pi$$
0.349049 + 0.937105i $$0.386505\pi$$
$$90$$ 9.28338 1.95420i 0.978554 0.205990i
$$91$$ 2.52941i 0.265154i
$$92$$ −9.70819 + 7.41264i −1.01215 + 0.772822i
$$93$$ −6.28429 1.55692i −0.651651 0.161445i
$$94$$ −1.30049 1.48649i −0.134135 0.153320i
$$95$$ 1.08977 1.03543i 0.111808 0.106233i
$$96$$ −8.21668 5.33725i −0.838611 0.544731i
$$97$$ −0.660859 + 0.660859i −0.0671001 + 0.0671001i −0.739860 0.672760i $$-0.765108\pi$$
0.672760 + 0.739860i $$0.265108\pi$$
$$98$$ −0.634554 + 9.50772i −0.0640996 + 0.960424i
$$99$$ −6.98752 3.68869i −0.702272 0.370728i
$$100$$ 1.83371 9.83044i 0.183371 0.983044i
$$101$$ −3.46850 −0.345129 −0.172564 0.984998i $$-0.555205\pi$$
−0.172564 + 0.984998i $$0.555205\pi$$
$$102$$ 5.73457 + 11.1263i 0.567807 + 1.10166i
$$103$$ 8.68806 + 8.68806i 0.856060 + 0.856060i 0.990871 0.134811i $$-0.0430428\pi$$
−0.134811 + 0.990871i $$0.543043\pi$$
$$104$$ −11.6475 + 7.72251i −1.14213 + 0.757254i
$$105$$ 0.525833 1.91170i 0.0513160 0.186563i
$$106$$ −0.850913 0.972617i −0.0826480 0.0944689i
$$107$$ 3.10967 3.10967i 0.300623 0.300623i −0.540634 0.841258i $$-0.681816\pi$$
0.841258 + 0.540634i $$0.181816\pi$$
$$108$$ −6.76569 7.88831i −0.651029 0.759053i
$$109$$ −4.14320 −0.396846 −0.198423 0.980116i $$-0.563582\pi$$
−0.198423 + 0.980116i $$0.563582\pi$$
$$110$$ −6.40660 + 5.32206i −0.610845 + 0.507438i
$$111$$ −3.56836 5.91877i −0.338693 0.561785i
$$112$$ −1.77824 + 1.01539i −0.168028 + 0.0959455i
$$113$$ −4.38269 + 4.38269i −0.412289 + 0.412289i −0.882535 0.470247i $$-0.844165\pi$$
0.470247 + 0.882535i $$0.344165\pi$$
$$114$$ −1.56847 0.501558i −0.146900 0.0469752i
$$115$$ −0.349085 + 13.6519i −0.0325524 + 1.27304i
$$116$$ −1.26532 + 9.43715i −0.117482 + 0.876217i
$$117$$ −14.1621 + 4.37594i −1.30929 + 0.404555i
$$118$$ 0.463580 6.94597i 0.0426760 0.639428i
$$119$$ 2.61602 0.239810
$$120$$ −10.4085 + 3.41521i −0.950160 + 0.311764i
$$121$$ −4.06312 −0.369374
$$122$$ 0.571830 8.56791i 0.0517711 0.775702i
$$123$$ −1.70784 + 6.89347i −0.153991 + 0.621563i
$$124$$ 7.40955 + 0.993466i 0.665397 + 0.0892159i
$$125$$ −7.27672 8.48819i −0.650850 0.759206i
$$126$$ −2.11323 + 0.501580i −0.188261 + 0.0446843i
$$127$$ 9.88701 9.88701i 0.877331 0.877331i −0.115927 0.993258i $$-0.536984\pi$$
0.993258 + 0.115927i $$0.0369839\pi$$
$$128$$ 10.1048 + 5.08843i 0.893150 + 0.449758i
$$129$$ −15.9008 + 9.58641i −1.39999 + 0.844036i
$$130$$ −1.43866 + 15.5582i −0.126178 + 1.36454i
$$131$$ −8.79462 −0.768389 −0.384195 0.923252i $$-0.625521\pi$$
−0.384195 + 0.923252i $$0.625521\pi$$
$$132$$ 8.48588 + 3.35147i 0.738601 + 0.291708i
$$133$$ −0.243353 + 0.243353i −0.0211014 + 0.0211014i
$$134$$ 0.459710 + 0.525461i 0.0397129 + 0.0453929i
$$135$$ −11.6133 + 0.363150i −0.999511 + 0.0312550i
$$136$$ −7.98693 12.0463i −0.684874 1.03297i
$$137$$ 1.48819 + 1.48819i 0.127145 + 0.127145i 0.767816 0.640671i $$-0.221344\pi$$
−0.640671 + 0.767816i $$0.721344\pi$$
$$138$$ 13.2975 6.85362i 1.13195 0.583419i
$$139$$ −13.3028 −1.12833 −0.564164 0.825663i $$-0.690801\pi$$
−0.564164 + 0.825663i $$0.690801\pi$$
$$140$$ −0.362145 + 2.26060i −0.0306068 + 0.191055i
$$141$$ 1.24894 + 2.07160i 0.105180 + 0.174460i
$$142$$ 0.813404 12.1875i 0.0682593 1.02275i
$$143$$ 9.20185 9.20185i 0.769498 0.769498i
$$144$$ 8.76156 + 8.19970i 0.730130 + 0.683308i
$$145$$ 7.33261 + 7.71744i 0.608940 + 0.640899i
$$146$$ −14.9153 17.0486i −1.23440 1.41095i
$$147$$ 2.80648 11.3280i 0.231474 0.934314i
$$148$$ 4.84305 + 6.34284i 0.398096 + 0.521378i
$$149$$ 5.22462i 0.428018i 0.976832 + 0.214009i $$0.0686522\pi$$
−0.976832 + 0.214009i $$0.931348\pi$$
$$150$$ −4.32168 + 11.4596i −0.352864 + 0.935675i
$$151$$ −11.8511 −0.964429 −0.482214 0.876053i $$-0.660167\pi$$
−0.482214 + 0.876053i $$0.660167\pi$$
$$152$$ 1.86358 + 0.377623i 0.151156 + 0.0306293i
$$153$$ −4.52577 14.6470i −0.365887 1.18414i
$$154$$ 1.43511 1.25554i 0.115645 0.101174i
$$155$$ 6.05933 5.75717i 0.486697 0.462427i
$$156$$ 15.7024 6.81087i 1.25720 0.545306i
$$157$$ 13.9522 + 13.9522i 1.11351 + 1.11351i 0.992673 + 0.120836i $$0.0385574\pi$$
0.120836 + 0.992673i $$0.461443\pi$$
$$158$$ −0.383964 + 5.75305i −0.0305465 + 0.457688i
$$159$$ 0.817188 + 1.35546i 0.0648072 + 0.107495i
$$160$$ 11.5154 5.23418i 0.910368 0.413799i
$$161$$ 3.12651i 0.246403i
$$162$$ 6.46427 + 10.9642i 0.507881 + 0.861427i
$$163$$ 6.66434 6.66434i 0.521992 0.521992i −0.396181 0.918172i $$-0.629665\pi$$
0.918172 + 0.396181i $$0.129665\pi$$
$$164$$ 1.08977 8.12781i 0.0850967 0.634675i
$$165$$ 8.86761 5.04170i 0.690342 0.392496i
$$166$$ 11.2449 + 12.8532i 0.872774 + 0.997604i
$$167$$ 15.6456 + 15.6456i 1.21069 + 1.21069i 0.970800 + 0.239890i $$0.0771113\pi$$
0.239890 + 0.970800i $$0.422889\pi$$
$$168$$ 2.36217 0.842542i 0.182246 0.0650035i
$$169$$ 11.4127i 0.877903i
$$170$$ −16.0909 1.48792i −1.23412 0.114118i
$$171$$ 1.78354 + 0.941524i 0.136390 + 0.0720001i
$$172$$ 17.0401 13.0109i 1.29929 0.992069i
$$173$$ −6.40332 6.40332i −0.486836 0.486836i 0.420471 0.907306i $$-0.361865\pi$$
−0.907306 + 0.420471i $$0.861865\pi$$
$$174$$ 3.55189 11.1074i 0.269268 0.842053i
$$175$$ 1.71508 + 1.90008i 0.129648 + 0.143633i
$$176$$ −10.1631 2.77521i −0.766071 0.209189i
$$177$$ −2.05030 + 8.27577i −0.154110 + 0.622045i
$$178$$ 9.29311 + 0.620231i 0.696548 + 0.0464882i
$$179$$ 0.582525i 0.0435399i −0.999763 0.0217700i $$-0.993070\pi$$
0.999763 0.0217700i $$-0.00693014\pi$$
$$180$$ 13.2836 1.88324i 0.990099 0.140369i
$$181$$ 3.71429i 0.276081i −0.990427 0.138040i $$-0.955920\pi$$
0.990427 0.138040i $$-0.0440804\pi$$
$$182$$ 0.238211 3.56918i 0.0176573 0.264565i
$$183$$ −2.52906 + 10.2082i −0.186954 + 0.754614i
$$184$$ −14.3971 + 9.54551i −1.06137 + 0.703704i
$$185$$ 8.91944 + 0.228075i 0.655770 + 0.0167684i
$$186$$ −8.72098 2.78876i −0.639453 0.204482i
$$187$$ 9.51693 + 9.51693i 0.695947 + 0.695947i
$$188$$ −1.69509 2.22002i −0.123627 0.161912i
$$189$$ 2.65577 0.151077i 0.193179 0.0109892i
$$190$$ 1.63526 1.35843i 0.118634 0.0985511i
$$191$$ 22.4496i 1.62440i 0.583380 + 0.812199i $$0.301730\pi$$
−0.583380 + 0.812199i $$0.698270\pi$$
$$192$$ −11.0917 8.30507i −0.800474 0.599367i
$$193$$ 8.01395 + 8.01395i 0.576857 + 0.576857i 0.934036 0.357179i $$-0.116261\pi$$
−0.357179 + 0.934036i $$0.616261\pi$$
$$194$$ −0.994759 + 0.870284i −0.0714195 + 0.0624828i
$$195$$ 5.07511 18.4509i 0.363436 1.32129i
$$196$$ −1.79081 + 13.3563i −0.127915 + 0.954024i
$$197$$ 1.49806 1.49806i 0.106733 0.106733i −0.651724 0.758456i $$-0.725954\pi$$
0.758456 + 0.651724i $$0.225954\pi$$
$$198$$ −9.51253 5.86308i −0.676026 0.416671i
$$199$$ 12.6160i 0.894328i −0.894452 0.447164i $$-0.852434\pi$$
0.894452 0.447164i $$-0.147566\pi$$
$$200$$ 3.51329 13.6988i 0.248427 0.968651i
$$201$$ −0.441490 0.732291i −0.0311403 0.0516519i
$$202$$ −4.89431 0.326651i −0.344363 0.0229831i
$$203$$ −1.72336 1.72336i −0.120956 0.120956i
$$204$$ 7.04407 + 16.2400i 0.493184 + 1.13703i
$$205$$ −6.31526 6.64670i −0.441077 0.464226i
$$206$$ 11.4413 + 13.0777i 0.797152 + 0.911167i
$$207$$ −17.5053 + 5.40893i −1.21670 + 0.375947i
$$208$$ −17.1628 + 9.80011i −1.19003 + 0.679515i
$$209$$ −1.77061 −0.122476
$$210$$ 0.922026 2.64803i 0.0636258 0.182731i
$$211$$ 14.0010i 0.963865i −0.876208 0.481933i $$-0.839935\pi$$
0.876208 0.481933i $$-0.160065\pi$$
$$212$$ −1.10910 1.45257i −0.0761736 0.0997630i
$$213$$ −3.59748 + 14.5208i −0.246496 + 0.994946i
$$214$$ 4.68083 4.09512i 0.319975 0.279937i
$$215$$ 0.612724 23.9621i 0.0417874 1.63420i
$$216$$ −8.80400 11.7682i −0.599036 0.800722i
$$217$$ −1.35309 + 1.35309i −0.0918537 + 0.0918537i
$$218$$ −5.84636 0.390192i −0.395965 0.0264271i
$$219$$ 14.3241 + 23.7592i 0.967935 + 1.60550i
$$220$$ −9.54140 + 6.90647i −0.643281 + 0.465634i
$$221$$ 25.2486 1.69841
$$222$$ −4.47781 8.68788i −0.300531 0.583092i
$$223$$ −2.56530 2.56530i −0.171785 0.171785i 0.615978 0.787763i $$-0.288761\pi$$
−0.787763 + 0.615978i $$0.788761\pi$$
$$224$$ −2.60486 + 1.26532i −0.174044 + 0.0845431i
$$225$$ 7.67141 12.8899i 0.511428 0.859326i
$$226$$ −6.59704 + 5.77155i −0.438829 + 0.383918i
$$227$$ −13.3645 + 13.3645i −0.887032 + 0.887032i −0.994237 0.107205i $$-0.965810\pi$$
0.107205 + 0.994237i $$0.465810\pi$$
$$228$$ −2.16599 0.855448i −0.143446 0.0566534i
$$229$$ 15.7606 1.04149 0.520746 0.853712i $$-0.325654\pi$$
0.520746 + 0.853712i $$0.325654\pi$$
$$230$$ −1.77827 + 19.2309i −0.117256 + 1.26805i
$$231$$ −2.00000 + 1.20578i −0.131590 + 0.0793343i
$$232$$ −2.67422 + 13.1974i −0.175571 + 0.866449i
$$233$$ 13.0197 13.0197i 0.852949 0.852949i −0.137546 0.990495i $$-0.543921\pi$$
0.990495 + 0.137546i $$0.0439215\pi$$
$$234$$ −20.3959 + 4.84103i −1.33332 + 0.316468i
$$235$$ −3.12185 0.0798273i −0.203647 0.00520736i
$$236$$ 1.30829 9.75762i 0.0851626 0.635167i
$$237$$ 1.69818 6.85446i 0.110308 0.445245i
$$238$$ 3.69139 + 0.246367i 0.239278 + 0.0159696i
$$239$$ −24.8336 −1.60635 −0.803177 0.595740i $$-0.796859\pi$$
−0.803177 + 0.595740i $$0.796859\pi$$
$$240$$ −15.0088 + 3.83888i −0.968812 + 0.247798i
$$241$$ 17.2991 1.11433 0.557165 0.830402i $$-0.311889\pi$$
0.557165 + 0.830402i $$0.311889\pi$$
$$242$$ −5.73336 0.382650i −0.368555 0.0245977i
$$243$$ −5.44043 14.6083i −0.349004 0.937121i
$$244$$ 1.61379 12.0361i 0.103312 0.770532i
$$245$$ 10.3778 + 10.9224i 0.663013 + 0.697810i
$$246$$ −3.05909 + 9.56636i −0.195041 + 0.609929i
$$247$$ −2.34874 + 2.34874i −0.149446 + 0.149446i
$$248$$ 10.3619 + 2.09966i 0.657979 + 0.133328i
$$249$$ −10.7992 17.9125i −0.684373 1.13516i
$$250$$ −9.46861 12.6628i −0.598847 0.800863i
$$251$$ −1.05032 −0.0662958 −0.0331479 0.999450i $$-0.510553\pi$$
−0.0331479 + 0.999450i $$0.510553\pi$$
$$252$$ −3.02916 + 0.508751i −0.190819 + 0.0320483i
$$253$$ 11.3741 11.3741i 0.715082 0.715082i
$$254$$ 14.8824 13.0202i 0.933807 0.816959i
$$255$$ 19.0826 + 5.24888i 1.19500 + 0.328698i
$$256$$ 13.7795 + 8.13180i 0.861217 + 0.508237i
$$257$$ −2.20315 2.20315i −0.137429 0.137429i 0.635046 0.772474i $$-0.280981\pi$$
−0.772474 + 0.635046i $$0.780981\pi$$
$$258$$ −23.3400 + 12.0297i −1.45309 + 0.748934i
$$259$$ −2.04270 −0.126927
$$260$$ −3.49527 + 21.8183i −0.216767 + 1.35311i
$$261$$ −6.66761 + 12.6305i −0.412715 + 0.781809i
$$262$$ −12.4099 0.828245i −0.766683 0.0511692i
$$263$$ −7.49936 + 7.49936i −0.462430 + 0.462430i −0.899451 0.437021i $$-0.856034\pi$$
0.437021 + 0.899451i $$0.356034\pi$$
$$264$$ 11.6586 + 5.52834i 0.717536 + 0.340246i
$$265$$ −2.04264 0.0522313i −0.125478 0.00320854i
$$266$$ −0.366307 + 0.320471i −0.0224597 + 0.0196493i
$$267$$ −11.0723 2.74313i −0.677611 0.167877i
$$268$$ 0.599199 + 0.784759i 0.0366019 + 0.0479368i
$$269$$ 21.1993i 1.29254i 0.763108 + 0.646271i $$0.223673\pi$$
−0.763108 + 0.646271i $$0.776327\pi$$
$$270$$ −16.4214 0.581264i −0.999374 0.0353746i
$$271$$ −14.6748 −0.891431 −0.445716 0.895175i $$-0.647051\pi$$
−0.445716 + 0.895175i $$0.647051\pi$$
$$272$$ −10.1357 17.7505i −0.614565 1.07628i
$$273$$ −1.05355 + 4.25250i −0.0637636 + 0.257373i
$$274$$ 1.95980 + 2.24010i 0.118396 + 0.135330i
$$275$$ −0.673036 + 13.1518i −0.0405856 + 0.793082i
$$276$$ 19.4091 8.41866i 1.16829 0.506744i
$$277$$ −8.79593 8.79593i −0.528496 0.528496i 0.391628 0.920124i $$-0.371912\pi$$
−0.920124 + 0.391628i $$0.871912\pi$$
$$278$$ −18.7712 1.25281i −1.12582 0.0751384i
$$279$$ 9.91681 + 5.23506i 0.593704 + 0.313415i
$$280$$ −0.723909 + 3.15577i −0.0432618 + 0.188593i
$$281$$ 0.490821i 0.0292799i 0.999893 + 0.0146399i $$0.00466021\pi$$
−0.999893 + 0.0146399i $$0.995340\pi$$
$$282$$ 1.56726 + 3.04080i 0.0933287 + 0.181077i
$$283$$ −9.43710 + 9.43710i −0.560978 + 0.560978i −0.929585 0.368608i $$-0.879835\pi$$
0.368608 + 0.929585i $$0.379835\pi$$
$$284$$ 2.29555 17.1208i 0.136216 1.01593i
$$285$$ −2.26342 + 1.28687i −0.134073 + 0.0762278i
$$286$$ 13.8511 12.1179i 0.819033 0.716547i
$$287$$ 1.48425 + 1.48425i 0.0876127 + 0.0876127i
$$288$$ 11.5910 + 12.3955i 0.683006 + 0.730413i
$$289$$ 9.11317i 0.536069i
$$290$$ 9.62005 + 11.5804i 0.564909 + 0.680027i
$$291$$ 1.38631 0.835791i 0.0812671 0.0489950i
$$292$$ −19.4410 25.4615i −1.13770 1.49002i
$$293$$ −4.01316 4.01316i −0.234451 0.234451i 0.580096 0.814548i $$-0.303015\pi$$
−0.814548 + 0.580096i $$0.803015\pi$$
$$294$$ 5.02697 15.7203i 0.293179 0.916826i
$$295$$ −7.58161 7.97952i −0.441418 0.464585i
$$296$$ 6.23655 + 9.40632i 0.362492 + 0.546731i
$$297$$ 10.2112 + 9.11195i 0.592512 + 0.528729i
$$298$$ −0.492036 + 7.37233i −0.0285029 + 0.427068i
$$299$$ 30.1757i 1.74510i
$$300$$ −7.17744 + 15.7634i −0.414389 + 0.910100i
$$301$$ 5.48773i 0.316307i
$$302$$ −16.7228 1.11609i −0.962288 0.0642240i
$$303$$ 5.83132 + 1.44470i 0.335001 + 0.0829957i
$$304$$ 2.59409 + 0.708360i 0.148781 + 0.0406272i
$$305$$ −9.35198 9.84280i −0.535493 0.563597i
$$306$$ −5.00679 21.0943i −0.286219 1.20588i
$$307$$ −8.00887 8.00887i −0.457091 0.457091i 0.440609 0.897699i $$-0.354763\pi$$
−0.897699 + 0.440609i $$0.854763\pi$$
$$308$$ 2.14330 1.63650i 0.122126 0.0932485i
$$309$$ −10.9878 18.2253i −0.625076 1.03680i
$$310$$ 9.09235 7.55315i 0.516411 0.428990i
$$311$$ 12.8874i 0.730778i 0.930855 + 0.365389i $$0.119064\pi$$
−0.930855 + 0.365389i $$0.880936\pi$$
$$312$$ 22.7987 8.13185i 1.29072 0.460375i
$$313$$ 12.2991 + 12.2991i 0.695184 + 0.695184i 0.963368 0.268184i $$-0.0864235\pi$$
−0.268184 + 0.963368i $$0.586424\pi$$
$$314$$ 18.3736 + 21.0016i 1.03688 + 1.18519i
$$315$$ −1.68030 + 2.99497i −0.0946742 + 0.168747i
$$316$$ −1.08360 + 8.08182i −0.0609574 + 0.454638i
$$317$$ 9.24176 9.24176i 0.519069 0.519069i −0.398221 0.917290i $$-0.630372\pi$$
0.917290 + 0.398221i $$0.130372\pi$$
$$318$$ 1.02546 + 1.98961i 0.0575050 + 0.111572i
$$319$$ 12.5390i 0.702048i
$$320$$ 16.7420 6.30135i 0.935904 0.352256i
$$321$$ −6.52329 + 3.93281i −0.364094 + 0.219508i
$$322$$ 0.294443 4.41174i 0.0164087 0.245856i
$$323$$ −2.42916 2.42916i −0.135162 0.135162i
$$324$$ 8.08900 + 16.0801i 0.449389 + 0.893336i
$$325$$ 16.5532 + 18.3388i 0.918206 + 1.01725i
$$326$$ 10.0315 8.77626i 0.555594 0.486072i
$$327$$ 6.96564 + 1.72572i 0.385201 + 0.0954326i
$$328$$ 2.30319 11.3663i 0.127173 0.627600i
$$329$$ 0.714956 0.0394168
$$330$$ 12.9877 6.27910i 0.714947 0.345653i
$$331$$ 22.2355i 1.22218i 0.791563 + 0.611088i $$0.209268\pi$$
−0.791563 + 0.611088i $$0.790732\pi$$
$$332$$ 14.6569 + 19.1959i 0.804403 + 1.05351i
$$333$$ 3.53392 + 11.4371i 0.193658 + 0.626747i
$$334$$ 20.6036 + 23.5505i 1.12738 + 1.28863i
$$335$$ 1.10354 + 0.0282182i 0.0602931 + 0.00154173i
$$336$$ 3.41255 0.966428i 0.186170 0.0527230i
$$337$$ −8.98693 + 8.98693i −0.489549 + 0.489549i −0.908164 0.418615i $$-0.862516\pi$$
0.418615 + 0.908164i $$0.362516\pi$$
$$338$$ 1.07481 16.1042i 0.0584620 0.875954i
$$339$$ 9.19375 5.54280i 0.499336 0.301044i
$$340$$ −22.5654 3.61495i −1.22378 0.196048i
$$341$$ −9.84494 −0.533133
$$342$$ 2.42803 + 1.49653i 0.131293 + 0.0809229i
$$343$$ −4.97298 4.97298i −0.268516 0.268516i
$$344$$ 25.2701 16.7545i 1.36247 0.903343i
$$345$$ 6.27315 22.8064i 0.337735 1.22786i
$$346$$ −8.43252 9.63861i −0.453335 0.518175i
$$347$$ 9.25494 9.25494i 0.496831 0.496831i −0.413619 0.910450i $$-0.635735\pi$$
0.910450 + 0.413619i $$0.135735\pi$$
$$348$$ 6.05805 15.3389i 0.324745 0.822253i
$$349$$ −17.5919 −0.941671 −0.470835 0.882221i $$-0.656047\pi$$
−0.470835 + 0.882221i $$0.656047\pi$$
$$350$$ 2.24116 + 2.84268i 0.119795 + 0.151948i
$$351$$ 25.6324 1.45813i 1.36815 0.0778292i
$$352$$ −14.0795 4.87314i −0.750440 0.259739i
$$353$$ −12.9654 + 12.9654i −0.690077 + 0.690077i −0.962249 0.272172i $$-0.912258\pi$$
0.272172 + 0.962249i $$0.412258\pi$$
$$354$$ −3.67251 + 11.4846i −0.195192 + 0.610402i
$$355$$ −13.3028 14.0010i −0.706038 0.743093i
$$356$$ 13.0549 + 1.75038i 0.691906 + 0.0927701i
$$357$$ −4.39811 1.08962i −0.232773 0.0576689i
$$358$$ 0.0548601 0.821985i 0.00289945 0.0434433i
$$359$$ −16.5244 −0.872125 −0.436063 0.899916i $$-0.643627\pi$$
−0.436063 + 0.899916i $$0.643627\pi$$
$$360$$ 18.9215 1.40639i 0.997249 0.0741235i
$$361$$ −18.5481 −0.976214
$$362$$ 0.349798 5.24113i 0.0183850 0.275468i
$$363$$ 6.83101 + 1.69237i 0.358535 + 0.0888262i
$$364$$ 0.672266 5.01395i 0.0352363 0.262802i
$$365$$ −35.8045 0.915540i −1.87409 0.0479215i
$$366$$ −4.53007 + 14.1664i −0.236791 + 0.740489i
$$367$$ −24.4900 + 24.4900i −1.27837 + 1.27837i −0.336786 + 0.941581i $$0.609340\pi$$
−0.941581 + 0.336786i $$0.890660\pi$$
$$368$$ −21.2143 + 12.1136i −1.10587 + 0.631463i
$$369$$ 5.74253 10.8781i 0.298944 0.566292i
$$370$$ 12.5645 + 1.16183i 0.653198 + 0.0604007i
$$371$$ 0.467798 0.0242869
$$372$$ −12.0433 4.75646i −0.624417 0.246611i
$$373$$ −0.406084 + 0.406084i −0.0210262 + 0.0210262i −0.717542 0.696516i $$-0.754733\pi$$
0.696516 + 0.717542i $$0.254733\pi$$
$$374$$ 12.5328 + 14.3254i 0.648057 + 0.740747i
$$375$$ 8.69830 + 17.3014i 0.449178 + 0.893442i
$$376$$ −2.18282 3.29226i −0.112571 0.169785i
$$377$$ −16.6331 16.6331i −0.856648 0.856648i
$$378$$ 3.76172 + 0.0369302i 0.193482 + 0.00189948i
$$379$$ −5.73108 −0.294386 −0.147193 0.989108i $$-0.547024\pi$$
−0.147193 + 0.989108i $$0.547024\pi$$
$$380$$ 2.43540 1.76285i 0.124934 0.0904322i
$$381$$ −20.7404 + 12.5041i −1.06256 + 0.640607i
$$382$$ −2.11423 + 31.6781i −0.108173 + 1.62079i
$$383$$ 17.2603 17.2603i 0.881958 0.881958i −0.111775 0.993734i $$-0.535654\pi$$
0.993734 + 0.111775i $$0.0356537\pi$$
$$384$$ −14.8691 12.7637i −0.758784 0.651342i
$$385$$ 0.0770683 3.01395i 0.00392776 0.153605i
$$386$$ 10.5536 + 12.0630i 0.537162 + 0.613991i
$$387$$ 30.7257 9.49390i 1.56188 0.482602i
$$388$$ −1.48564 + 1.13435i −0.0754219 + 0.0575880i
$$389$$ 27.9300i 1.41611i −0.706159 0.708053i $$-0.749574\pi$$
0.706159 0.708053i $$-0.250426\pi$$
$$390$$ 8.89899 25.5576i 0.450618 1.29416i
$$391$$ 31.2089 1.57830
$$392$$ −3.78481 + 18.6781i −0.191162 + 0.943388i
$$393$$ 14.7857 + 3.66313i 0.745841 + 0.184780i
$$394$$ 2.25496 1.97280i 0.113603 0.0993881i
$$395$$ 6.27952 + 6.60909i 0.315957 + 0.332539i
$$396$$ −12.8707 9.16910i −0.646778 0.460764i
$$397$$ −3.16232 3.16232i −0.158712 0.158712i 0.623284 0.781996i $$-0.285798\pi$$
−0.781996 + 0.623284i $$0.785798\pi$$
$$398$$ 1.18813 17.8022i 0.0595558 0.892342i
$$399$$ 0.510492 0.307770i 0.0255566 0.0154077i
$$400$$ 6.24762 18.9991i 0.312381 0.949957i
$$401$$ 11.2530i 0.561950i 0.959715 + 0.280975i $$0.0906578\pi$$
−0.959715 + 0.280975i $$0.909342\pi$$
$$402$$ −0.554010 1.07490i −0.0276315 0.0536109i
$$403$$ −13.0594 + 13.0594i −0.650536 + 0.650536i
$$404$$ −6.87548 0.921858i −0.342068 0.0458641i
$$405$$ 19.6758 + 4.22661i 0.977697 + 0.210022i
$$406$$ −2.26949 2.59409i −0.112633 0.128742i
$$407$$ −7.43124 7.43124i −0.368353 0.368353i
$$408$$ 8.41028 + 23.5793i 0.416371 + 1.16735i
$$409$$ 5.05965i 0.250183i 0.992145 + 0.125092i $$0.0399225\pi$$
−0.992145 + 0.125092i $$0.960077\pi$$
$$410$$ −8.28533 9.97374i −0.409184 0.492568i
$$411$$ −1.88212 3.12185i −0.0928384 0.153989i
$$412$$ 14.9129 + 19.5311i 0.734706 + 0.962229i
$$413$$ 1.78188 + 1.78188i 0.0876806 + 0.0876806i
$$414$$ −25.2106 + 5.98382i −1.23904 + 0.294089i
$$415$$ 26.9937 + 0.690242i 1.32507 + 0.0338826i
$$416$$ −25.1409 + 12.2124i −1.23264 + 0.598760i
$$417$$ 22.3649 + 5.54086i 1.09522 + 0.271337i
$$418$$ −2.49846 0.166750i −0.122204 0.00815600i
$$419$$ 25.1822i 1.23023i 0.788436 + 0.615116i $$0.210891\pi$$
−0.788436 + 0.615116i $$0.789109\pi$$
$$420$$ 1.55043 3.64973i 0.0756532 0.178089i
$$421$$ 31.5091i 1.53566i −0.640654 0.767830i $$-0.721336\pi$$
0.640654 0.767830i $$-0.278664\pi$$
$$422$$ 1.31856 19.7564i 0.0641865 0.961726i
$$423$$ −1.23689 4.00303i −0.0601397 0.194634i
$$424$$ −1.42823 2.15414i −0.0693610 0.104614i
$$425$$ −18.9667 + 17.1200i −0.920020 + 0.830441i
$$426$$ −6.44383 + 20.1511i −0.312205 + 0.976323i
$$427$$ 2.19796 + 2.19796i 0.106367 + 0.106367i
$$428$$ 6.99067 5.33769i 0.337907 0.258007i
$$429$$ −19.3031 + 11.6376i −0.931963 + 0.561870i
$$430$$ 3.12126 33.7546i 0.150521 1.62779i
$$431$$ 13.6082i 0.655482i −0.944768 0.327741i $$-0.893713\pi$$
0.944768 0.327741i $$-0.106287\pi$$
$$432$$ −11.3148 17.4349i −0.544384 0.838836i
$$433$$ 2.81500 + 2.81500i 0.135280 + 0.135280i 0.771504 0.636224i $$-0.219505\pi$$
−0.636224 + 0.771504i $$0.719505\pi$$
$$434$$ −2.03674 + 1.78188i −0.0977666 + 0.0855330i
$$435$$ −9.11329 16.0289i −0.436949 0.768528i
$$436$$ −8.21290 1.10118i −0.393327 0.0527369i
$$437$$ −2.90319 + 2.90319i −0.138878 + 0.138878i
$$438$$ 17.9749 + 34.8750i 0.858872 + 1.66639i
$$439$$ 5.56599i 0.265650i 0.991139 + 0.132825i $$0.0424049\pi$$
−0.991139 + 0.132825i $$0.957595\pi$$
$$440$$ −14.1140 + 8.84697i −0.672861 + 0.421763i
$$441$$ −9.43663 + 17.8759i −0.449363 + 0.851232i
$$442$$ 35.6277 + 2.37783i 1.69464 + 0.113102i
$$443$$ −3.53450 3.53450i −0.167929 0.167929i 0.618139 0.786069i $$-0.287887\pi$$
−0.786069 + 0.618139i $$0.787887\pi$$
$$444$$ −5.50033 12.6809i −0.261034 0.601811i
$$445$$ 10.6759 10.1435i 0.506086 0.480850i
$$446$$ −3.37823 3.86141i −0.159964 0.182843i
$$447$$ 2.17616 8.78376i 0.102929 0.415458i
$$448$$ −3.79481 + 1.54015i −0.179288 + 0.0727653i
$$449$$ 21.1895 0.999995 0.499998 0.866027i $$-0.333334\pi$$
0.499998 + 0.866027i $$0.333334\pi$$
$$450$$ 12.0389 17.4661i 0.567517 0.823361i
$$451$$ 10.7993i 0.508518i
$$452$$ −9.85246 + 7.52280i −0.463421 + 0.353843i
$$453$$ 19.9243 + 4.93621i 0.936127 + 0.231923i
$$454$$ −20.1169 + 17.5997i −0.944133 + 0.825993i
$$455$$ −3.89581 4.10027i −0.182638 0.192224i
$$456$$ −2.97581 1.41109i −0.139355 0.0660802i
$$457$$ 16.8790 16.8790i 0.789566 0.789566i −0.191857 0.981423i $$-0.561451\pi$$
0.981423 + 0.191857i $$0.0614509\pi$$
$$458$$ 22.2394 + 1.48428i 1.03918 + 0.0693558i
$$459$$ 1.50806 + 26.5100i 0.0703901 + 1.23738i
$$460$$ −4.32037 + 26.9688i −0.201438 + 1.25743i
$$461$$ 3.58886 0.167150 0.0835749 0.996502i $$-0.473366\pi$$
0.0835749 + 0.996502i $$0.473366\pi$$
$$462$$ −2.93570 + 1.51309i −0.136581 + 0.0703952i
$$463$$ −26.4996 26.4996i −1.23154 1.23154i −0.963372 0.268168i $$-0.913582\pi$$
−0.268168 0.963372i $$-0.586418\pi$$
$$464$$ −5.01641 + 18.3706i −0.232881 + 0.852834i
$$465$$ −12.5851 + 7.15527i −0.583618 + 0.331818i
$$466$$ 19.5979 17.1456i 0.907856 0.794256i
$$467$$ −21.1839 + 21.1839i −0.980274 + 0.980274i −0.999809 0.0195348i $$-0.993781\pi$$
0.0195348 + 0.999809i $$0.493781\pi$$
$$468$$ −29.2361 + 4.91024i −1.35144 + 0.226976i
$$469$$ −0.252730 −0.0116700
$$470$$ −4.39764 0.406647i −0.202848 0.0187572i
$$471$$ −17.6454 29.2682i −0.813058 1.34861i
$$472$$ 2.76504 13.6455i 0.127271 0.628086i
$$473$$ −19.9641 + 19.9641i −0.917949 + 0.917949i
$$474$$ 3.04178 9.51223i 0.139714 0.436911i
$$475$$ 0.171790 3.35694i 0.00788225 0.154027i
$$476$$ 5.18563 + 0.695284i 0.237683 + 0.0318683i
$$477$$ −0.809302 2.61920i −0.0370554 0.119925i
$$478$$ −35.0421 2.33874i −1.60279 0.106972i
$$479$$ 2.58847 0.118270 0.0591350 0.998250i $$-0.481166\pi$$
0.0591350 + 0.998250i $$0.481166\pi$$
$$480$$ −21.5400 + 4.00347i −0.983163 + 0.182732i
$$481$$ −19.7153 −0.898939
$$482$$ 24.4103 + 1.62916i 1.11186 + 0.0742063i
$$483$$ −1.30225 + 5.25636i −0.0592545 + 0.239173i
$$484$$ −8.05417 1.07990i −0.366098 0.0490861i
$$485$$ −0.0534204 + 2.08914i −0.00242569 + 0.0948628i
$$486$$ −6.30110 21.1257i −0.285824 0.958282i
$$487$$ 8.29975 8.29975i 0.376098 0.376098i −0.493595 0.869692i $$-0.664317\pi$$
0.869692 + 0.493595i $$0.164317\pi$$
$$488$$ 3.41069 16.8319i 0.154395 0.761942i
$$489$$ −13.9801 + 8.42842i −0.632201 + 0.381146i
$$490$$ 13.6152 + 16.3897i 0.615072 + 0.740412i
$$491$$ 25.3703 1.14494 0.572472 0.819924i $$-0.305985\pi$$
0.572472 + 0.819924i $$0.305985\pi$$
$$492$$ −5.21753 + 13.2108i −0.235225 + 0.595587i
$$493$$ 17.2026 17.2026i 0.774767 0.774767i
$$494$$ −3.53544 + 3.09305i −0.159067 + 0.139163i
$$495$$ −17.0084 + 4.78270i −0.764470 + 0.214966i
$$496$$ 14.4236 + 3.93862i 0.647640 + 0.176849i
$$497$$ 3.12651 + 3.12651i 0.140243 + 0.140243i
$$498$$ −13.5516 26.2929i −0.607261 1.17821i
$$499$$ 28.6742 1.28363 0.641816 0.766859i $$-0.278181\pi$$
0.641816 + 0.766859i $$0.278181\pi$$
$$500$$ −12.1684 18.7598i −0.544186 0.838964i
$$501$$ −19.7870 32.8204i −0.884018 1.46631i
$$502$$ −1.48208 0.0989156i −0.0661486 0.00441482i
$$503$$ 5.46994 5.46994i 0.243893 0.243893i −0.574566 0.818458i $$-0.694829\pi$$
0.818458 + 0.574566i $$0.194829\pi$$
$$504$$ −4.32228 + 0.432611i −0.192529 + 0.0192700i
$$505$$ −5.62258 + 5.34220i −0.250201 + 0.237725i
$$506$$ 17.1208 14.9785i 0.761114 0.665875i
$$507$$ −4.75362 + 19.1874i −0.211116 + 0.852140i
$$508$$ 22.2264 16.9709i 0.986138 0.752961i
$$509$$ 21.6722i 0.960605i 0.877103 + 0.480303i $$0.159473\pi$$
−0.877103 + 0.480303i $$0.840527\pi$$
$$510$$ 26.4327 + 9.20370i 1.17046 + 0.407547i
$$511$$ 8.19983 0.362739
$$512$$ 18.6780 + 12.7723i 0.825460 + 0.564460i
$$513$$ −2.60636 2.32579i −0.115074 0.102686i
$$514$$ −2.90132 3.31629i −0.127972 0.146275i
$$515$$ 27.4651 + 0.702297i 1.21026 + 0.0309469i
$$516$$ −34.0674 + 14.7767i −1.49974 + 0.650506i
$$517$$ 2.60097 + 2.60097i 0.114391 + 0.114391i
$$518$$ −2.88240 0.192374i −0.126646 0.00845244i
$$519$$ 8.09831 + 13.4325i 0.355476 + 0.589622i
$$520$$ −6.98685 + 30.4581i −0.306394 + 1.33567i
$$521$$ 13.0236i 0.570576i −0.958442 0.285288i $$-0.907911\pi$$
0.958442 0.285288i $$-0.0920893\pi$$
$$522$$ −10.5980 + 17.1947i −0.463861 + 0.752590i
$$523$$ −1.57962 + 1.57962i −0.0690720 + 0.0690720i −0.740799 0.671727i $$-0.765553\pi$$
0.671727 + 0.740799i $$0.265553\pi$$
$$524$$ −17.4332 2.33743i −0.761574 0.102111i
$$525$$ −2.09201 3.90883i −0.0913028 0.170595i
$$526$$ −11.2884 + 9.87589i −0.492198 + 0.430609i
$$527$$ −13.5066 13.5066i −0.588356 0.588356i
$$528$$ 15.9305 + 8.89886i 0.693286 + 0.387273i
$$529$$ 14.2991i 0.621698i
$$530$$ −2.87739 0.266070i −0.124986 0.0115574i
$$531$$ 6.89403 13.0594i 0.299176 0.566731i
$$532$$ −0.547068 + 0.417711i −0.0237184 + 0.0181101i
$$533$$ 14.3254 + 14.3254i 0.620501 + 0.620501i
$$534$$ −15.3654 4.91350i −0.664928 0.212628i
$$535$$ 0.251369 9.83043i 0.0108676 0.425007i
$$536$$ 0.771608 + 1.16378i 0.0333284 + 0.0502678i
$$537$$ −0.242633 + 0.979354i −0.0104704 + 0.0422622i
$$538$$ −1.99647 + 29.9137i −0.0860740 + 1.28967i
$$539$$ 17.7463i 0.764388i
$$540$$ −23.1171 2.36671i −0.994800 0.101847i
$$541$$ 38.6062i 1.65981i 0.557903 + 0.829906i $$0.311606\pi$$
−0.557903 + 0.829906i $$0.688394\pi$$
$$542$$ −20.7072 1.38202i −0.889452 0.0593629i
$$543$$ −1.54707 + 6.24454i −0.0663912 + 0.267979i
$$544$$ −12.6305 26.0018i −0.541529 1.11482i
$$545$$ −6.71629 + 6.38137i −0.287694 + 0.273348i
$$546$$ −1.88712 + 5.90137i −0.0807612 + 0.252556i
$$547$$ 16.8276 + 16.8276i 0.719498 + 0.719498i 0.968502 0.249005i $$-0.0801034\pi$$
−0.249005 + 0.968502i $$0.580103\pi$$
$$548$$ 2.55446 + 3.34552i 0.109121 + 0.142914i
$$549$$ 8.50384 16.1089i 0.362935 0.687511i
$$550$$ −2.18829 + 18.4947i −0.0933090 + 0.788618i
$$551$$ 3.20052i 0.136347i
$$552$$ 28.1806 10.0515i 1.19945 0.427819i
$$553$$ −1.47586 1.47586i −0.0627597 0.0627597i
$$554$$ −11.5833 13.2401i −0.492129 0.562517i
$$555$$ −14.9006 4.09856i −0.632494 0.173974i
$$556$$ −26.3696 3.53561i −1.11832 0.149943i
$$557$$ 15.9467 15.9467i 0.675684 0.675684i −0.283337 0.959020i $$-0.591441\pi$$
0.959020 + 0.283337i $$0.0914414\pi$$
$$558$$ 13.5003 + 8.32098i 0.571515 + 0.352255i
$$559$$ 52.9651i 2.24019i
$$560$$ −1.31869 + 4.38484i −0.0557247 + 0.185294i
$$561$$ −12.0361 19.9641i −0.508165 0.842884i
$$562$$ −0.0462237 + 0.692584i −0.00194983 + 0.0292149i
$$563$$ −2.27954 2.27954i −0.0960712 0.0960712i 0.657438 0.753509i $$-0.271640\pi$$
−0.753509 + 0.657438i $$0.771640\pi$$
$$564$$ 1.92514 + 4.43839i 0.0810631 + 0.186890i
$$565$$ −0.354273 + 13.8547i −0.0149044 + 0.582874i
$$566$$ −14.2052 + 12.4277i −0.597089 + 0.522375i
$$567$$ −4.52787 0.852186i −0.190153 0.0357885i
$$568$$ 4.85156 23.9426i 0.203567 1.00461i
$$569$$ 38.0835 1.59654 0.798272 0.602297i $$-0.205748\pi$$
0.798272 + 0.602297i $$0.205748\pi$$
$$570$$ −3.31505 + 1.60271i −0.138852 + 0.0671303i
$$571$$ 39.4382i 1.65044i −0.564815 0.825218i $$-0.691052\pi$$
0.564815 0.825218i $$-0.308948\pi$$
$$572$$ 20.6861 15.7948i 0.864931 0.660414i
$$573$$ 9.35070 37.7429i 0.390631 1.57673i
$$574$$ 1.95461 + 2.23417i 0.0815839 + 0.0932526i
$$575$$ 20.4608 + 22.6679i 0.853274 + 0.945316i
$$576$$ 15.1884 + 18.5826i 0.632850 + 0.774275i
$$577$$ 15.6617 15.6617i 0.652007 0.652007i −0.301469 0.953476i $$-0.597477\pi$$
0.953476 + 0.301469i $$0.0974770\pi$$
$$578$$ −0.858246 + 12.8594i −0.0356983 + 0.534879i
$$579$$ −10.1353 16.8112i −0.421208 0.698650i
$$580$$ 12.4840 + 17.2469i 0.518370 + 0.716137i
$$581$$ −6.18200 −0.256473
$$582$$ 2.03490 1.04881i 0.0843494 0.0434744i
$$583$$ 1.70183 + 1.70183i 0.0704824 + 0.0704824i
$$584$$ −25.0348 37.7589i −1.03595 1.56248i
$$585$$ −16.2175 + 28.9061i −0.670512 + 1.19512i
$$586$$ −5.28492 6.04081i −0.218318 0.249544i
$$587$$ −8.03380 + 8.03380i −0.331590 + 0.331590i −0.853190 0.521600i $$-0.825335\pi$$
0.521600 + 0.853190i $$0.325335\pi$$
$$588$$ 8.57391 21.7091i 0.353582 0.895267i
$$589$$ 2.51288 0.103541
$$590$$ −9.94673 11.9737i −0.409501 0.492949i
$$591$$ −3.14255 + 1.89461i −0.129267 + 0.0779338i
$$592$$ 7.91438 + 13.8604i 0.325279 + 0.569657i
$$593$$ 15.7097 15.7097i 0.645122 0.645122i −0.306688 0.951810i $$-0.599221\pi$$
0.951810 + 0.306688i $$0.0992209\pi$$
$$594$$ 13.5506 + 13.8193i 0.555988 + 0.567013i
$$595$$ 4.24067 4.02920i 0.173850 0.165181i
$$596$$ −1.38860 + 10.3566i −0.0568793 + 0.424222i
$$597$$ −5.25482 + 21.2104i −0.215066 + 0.868083i
$$598$$ 2.84184 42.5801i 0.116211 1.74123i
$$599$$ 16.2242 0.662902 0.331451 0.943473i $$-0.392462\pi$$
0.331451 + 0.943473i $$0.392462\pi$$
$$600$$ −11.6124 + 21.5674i −0.474076 + 0.880484i
$$601$$ 30.2446 1.23370 0.616852 0.787079i $$-0.288408\pi$$
0.616852 + 0.787079i $$0.288408\pi$$
$$602$$ −0.516815 + 7.74359i −0.0210638 + 0.315605i
$$603$$ 0.437230 + 1.41503i 0.0178054 + 0.0576247i
$$604$$ −23.4920 3.14978i −0.955875 0.128163i
$$605$$ −6.58648 + 6.25804i −0.267778 + 0.254425i
$$606$$ 8.09238 + 2.58775i 0.328730 + 0.105120i
$$607$$ 26.6799 26.6799i 1.08290 1.08290i 0.0866645 0.996238i $$-0.472379\pi$$
0.996238 0.0866645i $$-0.0276208\pi$$
$$608$$ 3.59374 + 1.24385i 0.145745 + 0.0504448i
$$609$$ 2.17954 + 3.61516i 0.0883194 + 0.146494i
$$610$$ −12.2694 14.7697i −0.496772 0.598006i
$$611$$ 6.90044 0.279162
$$612$$ −5.07837 30.2371i −0.205281 1.22226i
$$613$$ −11.2416 + 11.2416i −0.454046 + 0.454046i −0.896695 0.442649i $$-0.854039\pi$$
0.442649 + 0.896695i $$0.354039\pi$$
$$614$$ −10.5469 12.0554i −0.425637 0.486515i
$$615$$ 7.84888 + 13.8050i 0.316497 + 0.556672i
$$616$$ 3.17847 2.10738i 0.128064 0.0849088i
$$617$$ 15.8402 + 15.8402i 0.637702 + 0.637702i 0.949988 0.312286i $$-0.101095\pi$$
−0.312286 + 0.949988i $$0.601095\pi$$
$$618$$ −13.7882 26.7521i −0.554645 1.07613i
$$619$$ 39.2267 1.57665 0.788327 0.615256i $$-0.210948\pi$$
0.788327 + 0.615256i $$0.210948\pi$$
$$620$$ 13.5413 9.80178i 0.543832 0.393649i
$$621$$ 31.6832 1.80234i 1.27140 0.0723254i
$$622$$ −1.21369 + 18.1851i −0.0486645 + 0.729156i
$$623$$ −2.38400 + 2.38400i −0.0955130 + 0.0955130i
$$624$$ 32.9364 9.32754i 1.31851 0.373401i
$$625$$ −24.8694 2.55204i −0.994776 0.102082i
$$626$$ 16.1966 + 18.5132i 0.647346 + 0.739935i
$$627$$ 2.97679 + 0.737493i 0.118882 + 0.0294526i
$$628$$ 23.9487 + 31.3652i 0.955658 + 1.25161i
$$629$$ 20.3903i 0.813016i
$$630$$ −2.65309 + 4.06788i −0.105701 + 0.162068i
$$631$$ 9.52029 0.378997 0.189498 0.981881i $$-0.439314\pi$$
0.189498 + 0.981881i $$0.439314\pi$$
$$632$$ −2.29016 + 11.3020i −0.0910977 + 0.449569i
$$633$$ −5.83166 + 23.5387i −0.231788 + 0.935580i
$$634$$ 13.9112 12.1705i 0.552483 0.483350i
$$635$$ 0.799214 31.2553i 0.0317158 1.24033i
$$636$$ 1.25963 + 2.90406i 0.0499475 + 0.115153i
$$637$$ −23.5407 23.5407i −0.932717 0.932717i
$$638$$ 1.18088 17.6934i 0.0467513 0.700489i
$$639$$ 12.0963 22.9142i 0.478524 0.906472i
$$640$$ 24.2176 7.31497i 0.957284 0.289150i
$$641$$ 42.2578i 1.66908i −0.550945 0.834541i $$-0.685733\pi$$
0.550945 0.834541i $$-0.314267\pi$$
$$642$$ −9.57522 + 4.93515i −0.377904 + 0.194775i
$$643$$ −15.1060 + 15.1060i −0.595722 + 0.595722i −0.939171 0.343449i $$-0.888405\pi$$
0.343449 + 0.939171i $$0.388405\pi$$
$$644$$ 0.830963 6.19756i 0.0327445 0.244218i
$$645$$ −11.0108 + 40.0304i −0.433550 + 1.57620i
$$646$$ −3.19895 3.65649i −0.125861 0.143863i
$$647$$ 11.1088 + 11.1088i 0.436732 + 0.436732i 0.890911 0.454178i $$-0.150067\pi$$
−0.454178 + 0.890911i $$0.650067\pi$$
$$648$$ 9.89982 + 23.4519i 0.388902 + 0.921279i
$$649$$ 12.9648i 0.508912i
$$650$$ 21.6307 + 27.4363i 0.848426 + 1.07614i
$$651$$ 2.83843 1.71126i 0.111247 0.0670695i
$$652$$ 14.9817 11.4392i 0.586729 0.447995i
$$653$$ −15.4673 15.4673i −0.605283 0.605283i 0.336426 0.941710i $$-0.390782\pi$$
−0.941710 + 0.336426i $$0.890782\pi$$
$$654$$ 9.66651 + 3.09112i 0.377991 + 0.120872i
$$655$$ −14.2564 + 13.5455i −0.557044 + 0.529267i
$$656$$ 4.32042 15.8218i 0.168684 0.617738i
$$657$$ −14.1859 45.9108i −0.553445 1.79115i
$$658$$ 1.00886 + 0.0673320i 0.0393293 + 0.00262487i
$$659$$ 5.93274i 0.231107i 0.993301 + 0.115553i $$0.0368641\pi$$
−0.993301 + 0.115553i $$0.963136\pi$$
$$660$$ 18.9179 7.63714i 0.736378 0.297275i
$$661$$ 28.1054i 1.09317i 0.837403 + 0.546586i $$0.184073\pi$$
−0.837403 + 0.546586i $$0.815927\pi$$
$$662$$ −2.09406 + 31.3760i −0.0813881 + 1.21946i
$$663$$ −42.4486 10.5165i −1.64857 0.408429i
$$664$$ 18.8742 + 28.4671i 0.732461 + 1.10474i
$$665$$ −0.0196714 + 0.769298i −0.000762823 + 0.0298321i
$$666$$ 3.90953 + 16.4714i 0.151491 + 0.638252i
$$667$$ −20.5596 20.5596i −0.796069 0.796069i
$$668$$ 26.8553 + 35.1719i 1.03906 + 1.36084i
$$669$$ 3.24434 + 5.38133i 0.125433 + 0.208054i
$$670$$ 1.55453 + 0.143746i 0.0600566 + 0.00555339i
$$671$$ 15.9922i 0.617370i
$$672$$ 4.90638 1.04232i 0.189268 0.0402084i
$$673$$ −15.2277 15.2277i −0.586986 0.586986i 0.349828 0.936814i $$-0.386240\pi$$
−0.936814 + 0.349828i $$0.886240\pi$$
$$674$$ −13.5276 + 11.8349i −0.521063 + 0.455862i
$$675$$ −18.2662 + 18.4755i −0.703068 + 0.711122i
$$676$$ 3.03327 22.6230i 0.116664 0.870116i
$$677$$ −28.2327 + 28.2327i −1.08507 + 1.08507i −0.0890415 + 0.996028i $$0.528380\pi$$
−0.996028 + 0.0890415i $$0.971620\pi$$
$$678$$ 13.4951 6.95547i 0.518275 0.267123i
$$679$$ 0.478448i 0.0183611i
$$680$$ −31.5010 7.22608i −1.20801 0.277108i
$$681$$ 28.0352 16.9021i 1.07431 0.647691i
$$682$$ −13.8919 0.927161i −0.531950 0.0355028i
$$683$$ −26.1080 26.1080i −0.998996 0.998996i 0.00100333 0.999999i $$-0.499681\pi$$
−0.999999 + 0.00100333i $$0.999681\pi$$
$$684$$ 3.28520 + 2.34037i 0.125613 + 0.0894865i
$$685$$ 4.70454 + 0.120298i 0.179751 + 0.00459634i
$$686$$ −6.54891 7.48559i −0.250039 0.285801i
$$687$$ −26.4971 6.56460i −1.01093 0.250455i
$$688$$ 37.2359 21.2620i 1.41961 0.810607i
$$689$$ 4.51498 0.172007
$$690$$ 10.9997 31.5908i 0.418752 1.20264i
$$691$$ 9.65683i 0.367363i 0.982986 + 0.183682i $$0.0588015\pi$$
−0.982986 + 0.183682i $$0.941198\pi$$
$$692$$ −10.9912 14.3949i −0.417822 0.547213i
$$693$$ 3.86468 1.19414i 0.146807 0.0453617i
$$694$$ 13.9310 12.1878i 0.528814 0.462643i
$$695$$ −21.5643 + 20.4890i −0.817982 + 0.777192i
$$696$$ 9.99292 21.0738i 0.378781 0.798802i
$$697$$ −14.8159 + 14.8159i −0.561191 + 0.561191i
$$698$$ −24.8234 1.65674i −0.939580 0.0627085i
$$699$$ −27.3120 + 16.4661i −1.03303 + 0.622804i
$$700$$ 2.89473 + 4.22230i 0.109411 + 0.159588i
$$701$$ 22.2509 0.840403 0.420202 0.907431i $$-0.361959\pi$$
0.420202 + 0.907431i $$0.361959\pi$$
$$702$$ 36.3065 + 0.356434i 1.37030 + 0.0134527i
$$703$$ 1.89679 + 1.89679i 0.0715390 + 0.0715390i
$$704$$ −19.4083 8.20233i −0.731478 0.309137i
$$705$$ 5.21527 + 1.43452i 0.196419 + 0.0540270i
$$706$$ −19.5161 + 17.0741i −0.734499 + 0.642591i
$$707$$ 1.25556 1.25556i 0.0472202 0.0472202i
$$708$$ −6.26377 + 15.8598i −0.235407 + 0.596048i
$$709$$ −22.1309 −0.831144 −0.415572 0.909560i $$-0.636419\pi$$
−0.415572 + 0.909560i $$0.636419\pi$$
$$710$$ −17.4527 21.0092i −0.654986 0.788461i
$$711$$ −5.71003 + 10.8166i −0.214143 + 0.405653i
$$712$$ 18.2565 + 3.69938i 0.684192 + 0.138640i
$$713$$ −16.1423 + 16.1423i −0.604533 + 0.604533i
$$714$$ −6.10344 1.95173i −0.228416 0.0730418i
$$715$$ 0.743829 29.0893i 0.0278176 1.08788i
$$716$$ 0.154823 1.15472i 0.00578602 0.0431538i
$$717$$ 41.7509 + 10.3437i 1.55922 + 0.386292i
$$718$$ −23.3172 1.55621i −0.870189 0.0580772i
$$719$$ −4.65932 −0.173763 −0.0868817 0.996219i $$-0.527690\pi$$
−0.0868817 + 0.996219i $$0.527690\pi$$
$$720$$ 26.8321 0.202570i 0.999972 0.00754934i
$$721$$ −6.28997 −0.234251
$$722$$ −26.1727 1.74679i −0.974047 0.0650088i
$$723$$ −29.0836 7.20539i −1.08163 0.267971i
$$724$$ 0.987182 7.36268i 0.0366883 0.273632i
$$725$$ 23.7729 + 1.21657i 0.882903 + 0.0451821i
$$726$$ 9.47968 + 3.03138i 0.351824 + 0.112505i
$$727$$ −28.8504 + 28.8504i −1.07000 + 1.07000i −0.0726443 + 0.997358i $$0.523144\pi$$
−0.997358 + 0.0726443i $$0.976856\pi$$
$$728$$ 1.42081 7.01174i 0.0526588 0.259872i
$$729$$ 3.06195 + 26.8258i 0.113406 + 0.993549i
$$730$$ −50.4366 4.66383i −1.86674 0.172616i
$$731$$ −54.7787 −2.02606
$$732$$ −7.72641 + 19.5632i −0.285576 + 0.723077i
$$733$$ −23.8359 + 23.8359i −0.880398 + 0.880398i −0.993575 0.113177i $$-0.963897\pi$$
0.113177 + 0.993575i $$0.463897\pi$$
$$734$$ −36.8636 + 32.2508i −1.36066 + 1.19040i
$$735$$ −12.8980 22.6856i −0.475749 0.836772i
$$736$$ −31.0758 + 15.0952i −1.14547 + 0.556418i
$$737$$ −0.919420 0.919420i −0.0338673 0.0338673i
$$738$$ 9.12759 14.8090i 0.335991 0.545128i
$$739$$ −29.6476 −1.09060 −0.545302 0.838240i $$-0.683585\pi$$
−0.545302 + 0.838240i $$0.683585\pi$$
$$740$$ 17.6200 + 2.82271i 0.647726 + 0.103765i
$$741$$ 4.92704 2.97046i 0.180999 0.109122i
$$742$$ 0.660098 + 0.0440556i 0.0242330 + 0.00161733i
$$743$$ 8.41878 8.41878i 0.308855 0.308855i −0.535610 0.844465i $$-0.679918\pi$$
0.844465 + 0.535610i $$0.179918\pi$$
$$744$$ −16.5461 7.84591i −0.606608 0.287645i
$$745$$ 8.04699 + 8.46932i 0.294819 + 0.310292i
$$746$$ −0.611258 + 0.534771i −0.0223797 + 0.0195793i
$$747$$ 10.6950 + 34.6130i 0.391310 + 1.26642i
$$748$$ 16.3356 + 21.3945i 0.597290 + 0.782259i
$$749$$ 2.25134i 0.0822620i
$$750$$ 10.6446 + 25.2328i 0.388685 + 0.921371i
$$751$$ −31.5577 −1.15156 −0.575778 0.817606i $$-0.695301\pi$$
−0.575778 + 0.817606i $$0.695301\pi$$
$$752$$ −2.77007 4.85119i −0.101014 0.176905i
$$753$$ 1.76583 + 0.437480i 0.0643503 + 0.0159426i
$$754$$ −21.9041 25.0370i −0.797700 0.911793i
$$755$$ −19.2111 + 18.2531i −0.699163 + 0.664299i
$$756$$ 5.30459 + 0.406377i 0.192926 + 0.0147798i
$$757$$ −25.5118 25.5118i −0.927244 0.927244i 0.0702832 0.997527i $$-0.477610\pi$$
−0.997527 + 0.0702832i $$0.977610\pi$$
$$758$$ −8.08698 0.539733i −0.293732 0.0196040i
$$759$$ −23.8599 + 14.3848i −0.866059 + 0.522137i
$$760$$ 3.60255 2.25815i 0.130678 0.0819118i
$$761$$ 2.30287i 0.0834789i −0.999129 0.0417394i $$-0.986710\pi$$
0.999129 0.0417394i $$-0.0132899\pi$$
$$762$$ −30.4439 + 15.6910i −1.10286 + 0.568426i
$$763$$ 1.49979 1.49979i 0.0542962 0.0542962i
$$764$$ −5.96666 + 44.5011i −0.215866 + 1.60999i
$$765$$ −29.8959 16.7728i −1.08089 0.606423i
$$766$$ 25.9810 22.7300i 0.938733 0.821269i
$$767$$ 17.1979 + 17.1979i 0.620981 + 0.620981i
$$768$$ −19.7793 19.4108i −0.713725 0.700426i
$$769$$ 46.5571i 1.67889i −0.543442 0.839447i $$-0.682879\pi$$
0.543442 0.839447i $$-0.317121\pi$$
$$770$$ 0.392592 4.24565i 0.0141480 0.153003i
$$771$$ 2.78633 + 4.62164i 0.100347 + 0.166444i
$$772$$ 13.7558 + 18.0157i 0.495082 + 0.648399i
$$773$$ 19.2506 + 19.2506i 0.692397 + 0.692397i 0.962759