Defining parameters
Level: | \( N \) | \(=\) | \( 120 = 2^{3} \cdot 3 \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 120.s (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 20 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 0 \) | ||
Sturm bound: | \(48\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(120, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 64 | 0 | 64 |
Cusp forms | 32 | 0 | 32 |
Eisenstein series | 32 | 0 | 32 |
Decomposition of \(S_{2}^{\mathrm{old}}(120, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(120, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(60, [\chi])\)\(^{\oplus 2}\)