Newspace parameters
Level: | \( N \) | \(=\) | \( 120 = 2^{3} \cdot 3 \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 120.m (of order \(2\), degree \(1\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(0.958204824255\) |
Analytic rank: | \(0\) |
Dimension: | \(16\) |
Coefficient field: | \(\mathbb{Q}[x]/(x^{16} + \cdots)\) |
Defining polynomial: |
\( x^{16} + 24x^{14} + 192x^{12} + 672x^{10} + 1092x^{8} + 880x^{6} + 352x^{4} + 64x^{2} + 4 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{5}]\) |
Coefficient ring index: | \( 2^{13} \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{16} + 24x^{14} + 192x^{12} + 672x^{10} + 1092x^{8} + 880x^{6} + 352x^{4} + 64x^{2} + 4 \)
:
\(\beta_{1}\) | \(=\) |
\( ( 3\nu^{13} + 69\nu^{11} + 506\nu^{9} + 1488\nu^{7} + 1638\nu^{5} + 594\nu^{3} + 44\nu ) / 8 \)
|
\(\beta_{2}\) | \(=\) |
\( ( - 7 \nu^{14} + 3 \nu^{13} - 164 \nu^{12} + 69 \nu^{11} - 1250 \nu^{10} + 506 \nu^{9} - 3984 \nu^{8} + 1488 \nu^{7} - 5334 \nu^{6} + 1638 \nu^{5} - 3024 \nu^{4} + 594 \nu^{3} - 596 \nu^{2} + \cdots - 16 ) / 16 \)
|
\(\beta_{3}\) | \(=\) |
\( ( 7 \nu^{14} + 3 \nu^{13} + 164 \nu^{12} + 69 \nu^{11} + 1250 \nu^{10} + 506 \nu^{9} + 3984 \nu^{8} + 1488 \nu^{7} + 5334 \nu^{6} + 1638 \nu^{5} + 3024 \nu^{4} + 594 \nu^{3} + 596 \nu^{2} + 28 \nu + 16 ) / 16 \)
|
\(\beta_{4}\) | \(=\) |
\( ( 5 \nu^{15} - 20 \nu^{14} + 107 \nu^{13} - 474 \nu^{12} + 657 \nu^{11} - 3698 \nu^{10} + 1074 \nu^{9} - 12334 \nu^{8} - 1686 \nu^{7} - 18152 \nu^{6} - 4770 \nu^{5} - 12164 \nu^{4} - 3014 \nu^{3} + \cdots - 300 ) / 16 \)
|
\(\beta_{5}\) | \(=\) |
\( ( - 5 \nu^{15} - 20 \nu^{14} - 107 \nu^{13} - 474 \nu^{12} - 657 \nu^{11} - 3698 \nu^{10} - 1074 \nu^{9} - 12334 \nu^{8} + 1686 \nu^{7} - 18152 \nu^{6} + 4770 \nu^{5} - 12164 \nu^{4} + \cdots - 300 ) / 16 \)
|
\(\beta_{6}\) | \(=\) |
\( ( 8 \nu^{15} - 3 \nu^{14} + 190 \nu^{13} - 70 \nu^{12} + 1487 \nu^{11} - 530 \nu^{10} + 4970 \nu^{9} - 1674 \nu^{8} + 7248 \nu^{7} - 2198 \nu^{6} + 4556 \nu^{5} - 1156 \nu^{4} + 1086 \nu^{3} - 180 \nu^{2} + \cdots - 20 ) / 16 \)
|
\(\beta_{7}\) | \(=\) |
\( ( - 19 \nu^{15} + 6 \nu^{14} - 448 \nu^{13} + 138 \nu^{12} - 3460 \nu^{11} + 1012 \nu^{10} - 11326 \nu^{9} + 2976 \nu^{8} - 16094 \nu^{7} + 3276 \nu^{6} - 10328 \nu^{5} + 1188 \nu^{4} + \cdots + 16 ) / 16 \)
|
\(\beta_{8}\) | \(=\) |
\( ( 19 \nu^{15} + 6 \nu^{14} + 454 \nu^{13} + 138 \nu^{12} + 3598 \nu^{11} + 1012 \nu^{10} + 12338 \nu^{9} + 2976 \nu^{8} + 19070 \nu^{7} + 3276 \nu^{6} + 13604 \nu^{5} + 1188 \nu^{4} + 4092 \nu^{3} + \cdots + 16 ) / 16 \)
|
\(\beta_{9}\) | \(=\) |
\( ( 11\nu^{15} + 261\nu^{13} + 2042\nu^{11} + 6862\nu^{9} + 10334\nu^{7} + 7410\nu^{5} + 2412\nu^{3} + 252\nu ) / 8 \)
|
\(\beta_{10}\) | \(=\) |
\( ( 11 \nu^{15} + 12 \nu^{14} + 258 \nu^{13} + 282 \nu^{12} + 1971 \nu^{11} + 2164 \nu^{10} + 6311 \nu^{9} + 7004 \nu^{8} + 8530 \nu^{7} + 9752 \nu^{6} + 4916 \nu^{5} + 6092 \nu^{4} + 1046 \nu^{3} + \cdots + 136 ) / 8 \)
|
\(\beta_{11}\) | \(=\) |
\( ( 11 \nu^{15} - 12 \nu^{14} + 258 \nu^{13} - 282 \nu^{12} + 1971 \nu^{11} - 2164 \nu^{10} + 6311 \nu^{9} - 7004 \nu^{8} + 8530 \nu^{7} - 9752 \nu^{6} + 4916 \nu^{5} - 6092 \nu^{4} + 1046 \nu^{3} + \cdots - 136 ) / 8 \)
|
\(\beta_{12}\) | \(=\) |
\( ( - 38 \nu^{15} + \nu^{14} - 896 \nu^{13} + 20 \nu^{12} - 6921 \nu^{11} + 100 \nu^{10} - 22674 \nu^{9} - 4 \nu^{8} - 32332 \nu^{7} - 918 \nu^{6} - 20960 \nu^{5} - 1440 \nu^{4} - 5842 \nu^{3} + \cdots - 72 ) / 16 \)
|
\(\beta_{13}\) | \(=\) |
\( ( - 38 \nu^{15} - \nu^{14} - 896 \nu^{13} - 20 \nu^{12} - 6921 \nu^{11} - 100 \nu^{10} - 22674 \nu^{9} + 4 \nu^{8} - 32332 \nu^{7} + 918 \nu^{6} - 20960 \nu^{5} + 1440 \nu^{4} - 5842 \nu^{3} + \cdots + 72 ) / 16 \)
|
\(\beta_{14}\) | \(=\) |
\( ( 38 \nu^{15} + 15 \nu^{14} + 891 \nu^{13} + 352 \nu^{12} + 6803 \nu^{11} + 2692 \nu^{10} + 21762 \nu^{9} + 8638 \nu^{8} + 29356 \nu^{7} + 11726 \nu^{6} + 16838 \nu^{5} + 6808 \nu^{4} + 3518 \nu^{3} + \cdots + 76 ) / 16 \)
|
\(\beta_{15}\) | \(=\) |
\( ( 38 \nu^{15} - 15 \nu^{14} + 891 \nu^{13} - 352 \nu^{12} + 6803 \nu^{11} - 2692 \nu^{10} + 21762 \nu^{9} - 8638 \nu^{8} + 29356 \nu^{7} - 11726 \nu^{6} + 16838 \nu^{5} - 6808 \nu^{4} + 3518 \nu^{3} + \cdots - 76 ) / 16 \)
|
\(\nu\) | \(=\) |
\( ( -\beta_{3} - \beta_{2} + \beta_1 ) / 2 \)
|
\(\nu^{2}\) | \(=\) |
\( ( \beta_{15} - \beta_{14} + \beta_{13} - \beta_{12} - \beta_{9} + 2\beta_{8} - 2\beta_{6} - 2\beta_{2} - 6 ) / 2 \)
|
\(\nu^{3}\) | \(=\) |
\( ( - 3 \beta_{15} - 3 \beta_{14} + 2 \beta_{11} + 2 \beta_{10} + 2 \beta_{9} + 2 \beta_{8} - 2 \beta_{7} - 2 \beta_{5} + 2 \beta_{4} + 9 \beta_{3} + 9 \beta_{2} - 8 \beta_1 ) / 2 \)
|
\(\nu^{4}\) | \(=\) |
\( ( - 8 \beta_{15} + 8 \beta_{14} - 20 \beta_{13} + 20 \beta_{12} + 5 \beta_{11} - 5 \beta_{10} + 12 \beta_{9} - 22 \beta_{8} + 2 \beta_{7} + 24 \beta_{6} - 8 \beta_{5} - 8 \beta_{4} - 2 \beta_{3} + 22 \beta_{2} + 48 ) / 2 \)
|
\(\nu^{5}\) | \(=\) |
\( ( 40 \beta_{15} + 40 \beta_{14} - 10 \beta_{13} - 10 \beta_{12} - 31 \beta_{11} - 31 \beta_{10} - 44 \beta_{9} - 31 \beta_{8} + 31 \beta_{7} + 29 \beta_{5} - 29 \beta_{4} - 95 \beta_{3} - 95 \beta_{2} + 83 \beta_1 ) / 2 \)
|
\(\nu^{6}\) | \(=\) |
\( 37 \beta_{15} - 37 \beta_{14} + 140 \beta_{13} - 140 \beta_{12} - 42 \beta_{11} + 42 \beta_{10} - 72 \beta_{9} + 129 \beta_{8} - 15 \beta_{7} - 144 \beta_{6} + 67 \beta_{5} + 67 \beta_{4} + 10 \beta_{3} - 124 \beta_{2} - 252 \)
|
\(\nu^{7}\) | \(=\) |
\( ( - 497 \beta_{15} - 497 \beta_{14} + 175 \beta_{13} + 175 \beta_{12} + 404 \beta_{11} + 404 \beta_{10} + 631 \beta_{9} + 413 \beta_{8} - 413 \beta_{7} - 372 \beta_{5} + 372 \beta_{4} + 1091 \beta_{3} + 1091 \beta_{2} - 956 \beta_1 ) / 2 \)
|
\(\nu^{8}\) | \(=\) |
\( - 396 \beta_{15} + 396 \beta_{14} - 1792 \beta_{13} + 1792 \beta_{12} + 564 \beta_{11} - 564 \beta_{10} + 876 \beta_{9} - 1556 \beta_{8} + 196 \beta_{7} + 1752 \beta_{6} - 900 \beta_{5} - 900 \beta_{4} - 104 \beta_{3} + \cdots + 2910 \)
|
\(\nu^{9}\) | \(=\) |
\( 3054 \beta_{15} + 3054 \beta_{14} - 1194 \beta_{13} - 1194 \beta_{12} - 2520 \beta_{11} - 2520 \beta_{10} - 4074 \beta_{9} - 2610 \beta_{8} + 2610 \beta_{7} + 2316 \beta_{5} - 2316 \beta_{4} - 6517 \beta_{3} + \cdots + 5723 \beta_1 \)
|
\(\nu^{10}\) | \(=\) |
\( 4587 \beta_{15} - 4587 \beta_{14} + 22287 \beta_{13} - 22287 \beta_{12} - 7128 \beta_{11} + 7128 \beta_{10} - 10707 \beta_{9} + 18950 \beta_{8} - 2464 \beta_{7} - 21414 \beta_{6} + 11376 \beta_{5} + \cdots - 34858 \)
|
\(\nu^{11}\) | \(=\) |
\( - 37433 \beta_{15} - 37433 \beta_{14} + 15180 \beta_{13} + 15180 \beta_{12} + 31030 \beta_{11} + 31030 \beta_{10} + 50850 \beta_{9} + 32346 \beta_{8} - 32346 \beta_{7} - 28542 \beta_{5} + \cdots - 69508 \beta_1 \)
|
\(\nu^{12}\) | \(=\) |
\( - 54976 \beta_{15} + 54976 \beta_{14} - 274428 \beta_{13} + 274428 \beta_{12} + 88283 \beta_{11} - 88283 \beta_{10} + 131044 \beta_{9} - 231582 \beta_{8} + 30506 \beta_{7} + 262088 \beta_{6} + \cdots + 423384 \)
|
\(\nu^{13}\) | \(=\) |
\( 458484 \beta_{15} + 458484 \beta_{14} - 188422 \beta_{13} - 188422 \beta_{12} - 380577 \beta_{11} - 380577 \beta_{10} - 627076 \beta_{9} - 397897 \beta_{8} + 397897 \beta_{7} + 350371 \beta_{5} + \cdots + 848621 \beta_1 \)
|
\(\nu^{14}\) | \(=\) |
\( 667774 \beta_{15} - 667774 \beta_{14} + 3367136 \beta_{13} - 3367136 \beta_{12} - 1085560 \beta_{11} + 1085560 \beta_{10} - 1604464 \beta_{9} + 2833662 \beta_{8} - 375266 \beta_{7} + \cdots - 5168936 \)
|
\(\nu^{15}\) | \(=\) |
\( - 5614479 \beta_{15} - 5614479 \beta_{14} + 2318785 \beta_{13} + 2318785 \beta_{12} + 4662232 \beta_{11} + 4662232 \beta_{10} + 7698833 \beta_{9} + 4880807 \beta_{8} + \cdots - 10380392 \beta_1 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/120\mathbb{Z}\right)^\times\).
\(n\) | \(31\) | \(41\) | \(61\) | \(97\) |
\(\chi(n)\) | \(-1\) | \(-1\) | \(-1\) | \(-1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
59.1 |
|
−1.30656 | − | 0.541196i | 0.541196 | − | 1.64533i | 1.41421 | + | 1.41421i | 1.25928 | + | 1.84776i | −1.59755 | + | 1.85683i | 3.29066 | −1.08239 | − | 2.61313i | −2.41421 | − | 1.78089i | −0.645329 | − | 3.09573i | ||||||||||||||||||||||||||||||||||||||||||||||||||
59.2 | −1.30656 | − | 0.541196i | 0.541196 | + | 1.64533i | 1.41421 | + | 1.41421i | −1.25928 | + | 1.84776i | 0.183339 | − | 2.44262i | −3.29066 | −1.08239 | − | 2.61313i | −2.41421 | + | 1.78089i | 2.64533 | − | 1.73270i | |||||||||||||||||||||||||||||||||||||||||||||||||||
59.3 | −1.30656 | + | 0.541196i | 0.541196 | − | 1.64533i | 1.41421 | − | 1.41421i | −1.25928 | − | 1.84776i | 0.183339 | + | 2.44262i | −3.29066 | −1.08239 | + | 2.61313i | −2.41421 | − | 1.78089i | 2.64533 | + | 1.73270i | |||||||||||||||||||||||||||||||||||||||||||||||||||
59.4 | −1.30656 | + | 0.541196i | 0.541196 | + | 1.64533i | 1.41421 | − | 1.41421i | 1.25928 | − | 1.84776i | −1.59755 | − | 1.85683i | 3.29066 | −1.08239 | + | 2.61313i | −2.41421 | + | 1.78089i | −0.645329 | + | 3.09573i | |||||||||||||||||||||||||||||||||||||||||||||||||||
59.5 | −0.541196 | − | 1.30656i | −1.30656 | − | 1.13705i | −1.41421 | + | 1.41421i | −2.10100 | + | 0.765367i | −0.778527 | + | 2.32248i | −2.27411 | 2.61313 | + | 1.08239i | 0.414214 | + | 2.97127i | 2.13705 | + | 2.33088i | |||||||||||||||||||||||||||||||||||||||||||||||||||
59.6 | −0.541196 | − | 1.30656i | −1.30656 | + | 1.13705i | −1.41421 | + | 1.41421i | 2.10100 | + | 0.765367i | 2.19274 | + | 1.09174i | 2.27411 | 2.61313 | + | 1.08239i | 0.414214 | − | 2.97127i | −0.137055 | − | 3.15931i | |||||||||||||||||||||||||||||||||||||||||||||||||||
59.7 | −0.541196 | + | 1.30656i | −1.30656 | − | 1.13705i | −1.41421 | − | 1.41421i | 2.10100 | − | 0.765367i | 2.19274 | − | 1.09174i | 2.27411 | 2.61313 | − | 1.08239i | 0.414214 | + | 2.97127i | −0.137055 | + | 3.15931i | |||||||||||||||||||||||||||||||||||||||||||||||||||
59.8 | −0.541196 | + | 1.30656i | −1.30656 | + | 1.13705i | −1.41421 | − | 1.41421i | −2.10100 | − | 0.765367i | −0.778527 | − | 2.32248i | −2.27411 | 2.61313 | − | 1.08239i | 0.414214 | − | 2.97127i | 2.13705 | − | 2.33088i | |||||||||||||||||||||||||||||||||||||||||||||||||||
59.9 | 0.541196 | − | 1.30656i | 1.30656 | − | 1.13705i | −1.41421 | − | 1.41421i | −2.10100 | + | 0.765367i | −0.778527 | − | 2.32248i | 2.27411 | −2.61313 | + | 1.08239i | 0.414214 | − | 2.97127i | −0.137055 | + | 3.15931i | |||||||||||||||||||||||||||||||||||||||||||||||||||
59.10 | 0.541196 | − | 1.30656i | 1.30656 | + | 1.13705i | −1.41421 | − | 1.41421i | 2.10100 | + | 0.765367i | 2.19274 | − | 1.09174i | −2.27411 | −2.61313 | + | 1.08239i | 0.414214 | + | 2.97127i | 2.13705 | − | 2.33088i | |||||||||||||||||||||||||||||||||||||||||||||||||||
59.11 | 0.541196 | + | 1.30656i | 1.30656 | − | 1.13705i | −1.41421 | + | 1.41421i | 2.10100 | − | 0.765367i | 2.19274 | + | 1.09174i | −2.27411 | −2.61313 | − | 1.08239i | 0.414214 | − | 2.97127i | 2.13705 | + | 2.33088i | |||||||||||||||||||||||||||||||||||||||||||||||||||
59.12 | 0.541196 | + | 1.30656i | 1.30656 | + | 1.13705i | −1.41421 | + | 1.41421i | −2.10100 | − | 0.765367i | −0.778527 | + | 2.32248i | 2.27411 | −2.61313 | − | 1.08239i | 0.414214 | + | 2.97127i | −0.137055 | − | 3.15931i | |||||||||||||||||||||||||||||||||||||||||||||||||||
59.13 | 1.30656 | − | 0.541196i | −0.541196 | − | 1.64533i | 1.41421 | − | 1.41421i | 1.25928 | + | 1.84776i | −1.59755 | − | 1.85683i | −3.29066 | 1.08239 | − | 2.61313i | −2.41421 | + | 1.78089i | 2.64533 | + | 1.73270i | |||||||||||||||||||||||||||||||||||||||||||||||||||
59.14 | 1.30656 | − | 0.541196i | −0.541196 | + | 1.64533i | 1.41421 | − | 1.41421i | −1.25928 | + | 1.84776i | 0.183339 | + | 2.44262i | 3.29066 | 1.08239 | − | 2.61313i | −2.41421 | − | 1.78089i | −0.645329 | + | 3.09573i | |||||||||||||||||||||||||||||||||||||||||||||||||||
59.15 | 1.30656 | + | 0.541196i | −0.541196 | − | 1.64533i | 1.41421 | + | 1.41421i | −1.25928 | − | 1.84776i | 0.183339 | − | 2.44262i | 3.29066 | 1.08239 | + | 2.61313i | −2.41421 | + | 1.78089i | −0.645329 | − | 3.09573i | |||||||||||||||||||||||||||||||||||||||||||||||||||
59.16 | 1.30656 | + | 0.541196i | −0.541196 | + | 1.64533i | 1.41421 | + | 1.41421i | 1.25928 | − | 1.84776i | −1.59755 | + | 1.85683i | −3.29066 | 1.08239 | + | 2.61313i | −2.41421 | − | 1.78089i | 2.64533 | − | 1.73270i | |||||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
5.b | even | 2 | 1 | inner |
8.d | odd | 2 | 1 | inner |
15.d | odd | 2 | 1 | inner |
24.f | even | 2 | 1 | inner |
40.e | odd | 2 | 1 | inner |
120.m | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 120.2.m.b | ✓ | 16 |
3.b | odd | 2 | 1 | inner | 120.2.m.b | ✓ | 16 |
4.b | odd | 2 | 1 | 480.2.m.b | 16 | ||
5.b | even | 2 | 1 | inner | 120.2.m.b | ✓ | 16 |
5.c | odd | 4 | 2 | 600.2.b.i | 16 | ||
8.b | even | 2 | 1 | 480.2.m.b | 16 | ||
8.d | odd | 2 | 1 | inner | 120.2.m.b | ✓ | 16 |
12.b | even | 2 | 1 | 480.2.m.b | 16 | ||
15.d | odd | 2 | 1 | inner | 120.2.m.b | ✓ | 16 |
15.e | even | 4 | 2 | 600.2.b.i | 16 | ||
20.d | odd | 2 | 1 | 480.2.m.b | 16 | ||
20.e | even | 4 | 2 | 2400.2.b.i | 16 | ||
24.f | even | 2 | 1 | inner | 120.2.m.b | ✓ | 16 |
24.h | odd | 2 | 1 | 480.2.m.b | 16 | ||
40.e | odd | 2 | 1 | inner | 120.2.m.b | ✓ | 16 |
40.f | even | 2 | 1 | 480.2.m.b | 16 | ||
40.i | odd | 4 | 2 | 2400.2.b.i | 16 | ||
40.k | even | 4 | 2 | 600.2.b.i | 16 | ||
60.h | even | 2 | 1 | 480.2.m.b | 16 | ||
60.l | odd | 4 | 2 | 2400.2.b.i | 16 | ||
120.i | odd | 2 | 1 | 480.2.m.b | 16 | ||
120.m | even | 2 | 1 | inner | 120.2.m.b | ✓ | 16 |
120.q | odd | 4 | 2 | 600.2.b.i | 16 | ||
120.w | even | 4 | 2 | 2400.2.b.i | 16 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
120.2.m.b | ✓ | 16 | 1.a | even | 1 | 1 | trivial |
120.2.m.b | ✓ | 16 | 3.b | odd | 2 | 1 | inner |
120.2.m.b | ✓ | 16 | 5.b | even | 2 | 1 | inner |
120.2.m.b | ✓ | 16 | 8.d | odd | 2 | 1 | inner |
120.2.m.b | ✓ | 16 | 15.d | odd | 2 | 1 | inner |
120.2.m.b | ✓ | 16 | 24.f | even | 2 | 1 | inner |
120.2.m.b | ✓ | 16 | 40.e | odd | 2 | 1 | inner |
120.2.m.b | ✓ | 16 | 120.m | even | 2 | 1 | inner |
480.2.m.b | 16 | 4.b | odd | 2 | 1 | ||
480.2.m.b | 16 | 8.b | even | 2 | 1 | ||
480.2.m.b | 16 | 12.b | even | 2 | 1 | ||
480.2.m.b | 16 | 20.d | odd | 2 | 1 | ||
480.2.m.b | 16 | 24.h | odd | 2 | 1 | ||
480.2.m.b | 16 | 40.f | even | 2 | 1 | ||
480.2.m.b | 16 | 60.h | even | 2 | 1 | ||
480.2.m.b | 16 | 120.i | odd | 2 | 1 | ||
600.2.b.i | 16 | 5.c | odd | 4 | 2 | ||
600.2.b.i | 16 | 15.e | even | 4 | 2 | ||
600.2.b.i | 16 | 40.k | even | 4 | 2 | ||
600.2.b.i | 16 | 120.q | odd | 4 | 2 | ||
2400.2.b.i | 16 | 20.e | even | 4 | 2 | ||
2400.2.b.i | 16 | 40.i | odd | 4 | 2 | ||
2400.2.b.i | 16 | 60.l | odd | 4 | 2 | ||
2400.2.b.i | 16 | 120.w | even | 4 | 2 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{7}^{4} - 16T_{7}^{2} + 56 \)
acting on \(S_{2}^{\mathrm{new}}(120, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( (T^{8} + 16)^{2} \)
$3$
\( (T^{8} + 4 T^{6} + 14 T^{4} + 36 T^{2} + \cdots + 81)^{2} \)
$5$
\( (T^{8} - 4 T^{6} + 22 T^{4} - 100 T^{2} + \cdots + 625)^{2} \)
$7$
\( (T^{4} - 16 T^{2} + 56)^{4} \)
$11$
\( (T^{4} + 24 T^{2} + 112)^{4} \)
$13$
\( (T^{4} - 32 T^{2} + 224)^{4} \)
$17$
\( (T^{4} - 16 T^{2} + 32)^{4} \)
$19$
\( (T^{2} + 4 T - 4)^{8} \)
$23$
\( (T^{4} + 8 T^{2} + 8)^{4} \)
$29$
\( (T^{4} - 40 T^{2} + 112)^{4} \)
$31$
\( (T^{4} + 48 T^{2} + 64)^{4} \)
$37$
\( (T^{4} - 64 T^{2} + 224)^{4} \)
$41$
\( (T^{4} + 80 T^{2} + 448)^{4} \)
$43$
\( (T^{4} + 112 T^{2} + 2744)^{4} \)
$47$
\( (T^{4} + 8 T^{2} + 8)^{4} \)
$53$
\( (T^{4} + 144 T^{2} + 2592)^{4} \)
$59$
\( (T^{4} + 24 T^{2} + 112)^{4} \)
$61$
\( (T^{2} + 72)^{8} \)
$67$
\( (T^{4} + 16 T^{2} + 56)^{4} \)
$71$
\( (T^{4} - 192 T^{2} + 7168)^{4} \)
$73$
\( (T^{4} + 64 T^{2} + 896)^{4} \)
$79$
\( (T^{4} + 272 T^{2} + 64)^{4} \)
$83$
\( (T^{4} - 136 T^{2} + 4232)^{4} \)
$89$
\( (T^{4} + 96 T^{2} + 1792)^{4} \)
$97$
\( (T^{4} + 128 T^{2} + 896)^{4} \)
show more
show less