Properties

Label 120.2.f.a.49.1
Level $120$
Weight $2$
Character 120.49
Analytic conductor $0.958$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 120 = 2^{3} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 120.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.958204824255\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Defining polynomial: \(x^{2} + 1\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 49.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 120.49
Dual form 120.2.f.a.49.2

$q$-expansion

\(f(q)\) \(=\) \(q-1.00000i q^{3} +(2.00000 + 1.00000i) q^{5} -2.00000i q^{7} -1.00000 q^{9} +O(q^{10})\) \(q-1.00000i q^{3} +(2.00000 + 1.00000i) q^{5} -2.00000i q^{7} -1.00000 q^{9} +2.00000 q^{11} -2.00000i q^{13} +(1.00000 - 2.00000i) q^{15} +6.00000i q^{17} -8.00000 q^{19} -2.00000 q^{21} +4.00000i q^{23} +(3.00000 + 4.00000i) q^{25} +1.00000i q^{27} -8.00000 q^{29} -2.00000i q^{33} +(2.00000 - 4.00000i) q^{35} -10.0000i q^{37} -2.00000 q^{39} +2.00000 q^{41} +12.0000i q^{43} +(-2.00000 - 1.00000i) q^{45} +3.00000 q^{49} +6.00000 q^{51} -10.0000i q^{53} +(4.00000 + 2.00000i) q^{55} +8.00000i q^{57} +6.00000 q^{59} +2.00000 q^{61} +2.00000i q^{63} +(2.00000 - 4.00000i) q^{65} -8.00000i q^{67} +4.00000 q^{69} -4.00000 q^{71} -4.00000i q^{73} +(4.00000 - 3.00000i) q^{75} -4.00000i q^{77} +8.00000 q^{79} +1.00000 q^{81} -4.00000i q^{83} +(-6.00000 + 12.0000i) q^{85} +8.00000i q^{87} -6.00000 q^{89} -4.00000 q^{91} +(-16.0000 - 8.00000i) q^{95} +8.00000i q^{97} -2.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + 4q^{5} - 2q^{9} + O(q^{10}) \) \( 2q + 4q^{5} - 2q^{9} + 4q^{11} + 2q^{15} - 16q^{19} - 4q^{21} + 6q^{25} - 16q^{29} + 4q^{35} - 4q^{39} + 4q^{41} - 4q^{45} + 6q^{49} + 12q^{51} + 8q^{55} + 12q^{59} + 4q^{61} + 4q^{65} + 8q^{69} - 8q^{71} + 8q^{75} + 16q^{79} + 2q^{81} - 12q^{85} - 12q^{89} - 8q^{91} - 32q^{95} - 4q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/120\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(41\) \(61\) \(97\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 0.577350i
\(4\) 0 0
\(5\) 2.00000 + 1.00000i 0.894427 + 0.447214i
\(6\) 0 0
\(7\) 2.00000i 0.755929i −0.925820 0.377964i \(-0.876624\pi\)
0.925820 0.377964i \(-0.123376\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) 2.00000 0.603023 0.301511 0.953463i \(-0.402509\pi\)
0.301511 + 0.953463i \(0.402509\pi\)
\(12\) 0 0
\(13\) 2.00000i 0.554700i −0.960769 0.277350i \(-0.910544\pi\)
0.960769 0.277350i \(-0.0894562\pi\)
\(14\) 0 0
\(15\) 1.00000 2.00000i 0.258199 0.516398i
\(16\) 0 0
\(17\) 6.00000i 1.45521i 0.685994 + 0.727607i \(0.259367\pi\)
−0.685994 + 0.727607i \(0.740633\pi\)
\(18\) 0 0
\(19\) −8.00000 −1.83533 −0.917663 0.397360i \(-0.869927\pi\)
−0.917663 + 0.397360i \(0.869927\pi\)
\(20\) 0 0
\(21\) −2.00000 −0.436436
\(22\) 0 0
\(23\) 4.00000i 0.834058i 0.908893 + 0.417029i \(0.136929\pi\)
−0.908893 + 0.417029i \(0.863071\pi\)
\(24\) 0 0
\(25\) 3.00000 + 4.00000i 0.600000 + 0.800000i
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) −8.00000 −1.48556 −0.742781 0.669534i \(-0.766494\pi\)
−0.742781 + 0.669534i \(0.766494\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 0 0
\(33\) 2.00000i 0.348155i
\(34\) 0 0
\(35\) 2.00000 4.00000i 0.338062 0.676123i
\(36\) 0 0
\(37\) 10.0000i 1.64399i −0.569495 0.821995i \(-0.692861\pi\)
0.569495 0.821995i \(-0.307139\pi\)
\(38\) 0 0
\(39\) −2.00000 −0.320256
\(40\) 0 0
\(41\) 2.00000 0.312348 0.156174 0.987730i \(-0.450084\pi\)
0.156174 + 0.987730i \(0.450084\pi\)
\(42\) 0 0
\(43\) 12.0000i 1.82998i 0.403473 + 0.914991i \(0.367803\pi\)
−0.403473 + 0.914991i \(0.632197\pi\)
\(44\) 0 0
\(45\) −2.00000 1.00000i −0.298142 0.149071i
\(46\) 0 0
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) 0 0
\(49\) 3.00000 0.428571
\(50\) 0 0
\(51\) 6.00000 0.840168
\(52\) 0 0
\(53\) 10.0000i 1.37361i −0.726844 0.686803i \(-0.759014\pi\)
0.726844 0.686803i \(-0.240986\pi\)
\(54\) 0 0
\(55\) 4.00000 + 2.00000i 0.539360 + 0.269680i
\(56\) 0 0
\(57\) 8.00000i 1.05963i
\(58\) 0 0
\(59\) 6.00000 0.781133 0.390567 0.920575i \(-0.372279\pi\)
0.390567 + 0.920575i \(0.372279\pi\)
\(60\) 0 0
\(61\) 2.00000 0.256074 0.128037 0.991769i \(-0.459132\pi\)
0.128037 + 0.991769i \(0.459132\pi\)
\(62\) 0 0
\(63\) 2.00000i 0.251976i
\(64\) 0 0
\(65\) 2.00000 4.00000i 0.248069 0.496139i
\(66\) 0 0
\(67\) 8.00000i 0.977356i −0.872464 0.488678i \(-0.837479\pi\)
0.872464 0.488678i \(-0.162521\pi\)
\(68\) 0 0
\(69\) 4.00000 0.481543
\(70\) 0 0
\(71\) −4.00000 −0.474713 −0.237356 0.971423i \(-0.576281\pi\)
−0.237356 + 0.971423i \(0.576281\pi\)
\(72\) 0 0
\(73\) 4.00000i 0.468165i −0.972217 0.234082i \(-0.924791\pi\)
0.972217 0.234082i \(-0.0752085\pi\)
\(74\) 0 0
\(75\) 4.00000 3.00000i 0.461880 0.346410i
\(76\) 0 0
\(77\) 4.00000i 0.455842i
\(78\) 0 0
\(79\) 8.00000 0.900070 0.450035 0.893011i \(-0.351411\pi\)
0.450035 + 0.893011i \(0.351411\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 4.00000i 0.439057i −0.975606 0.219529i \(-0.929548\pi\)
0.975606 0.219529i \(-0.0704519\pi\)
\(84\) 0 0
\(85\) −6.00000 + 12.0000i −0.650791 + 1.30158i
\(86\) 0 0
\(87\) 8.00000i 0.857690i
\(88\) 0 0
\(89\) −6.00000 −0.635999 −0.317999 0.948091i \(-0.603011\pi\)
−0.317999 + 0.948091i \(0.603011\pi\)
\(90\) 0 0
\(91\) −4.00000 −0.419314
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −16.0000 8.00000i −1.64157 0.820783i
\(96\) 0 0
\(97\) 8.00000i 0.812277i 0.913812 + 0.406138i \(0.133125\pi\)
−0.913812 + 0.406138i \(0.866875\pi\)
\(98\) 0 0
\(99\) −2.00000 −0.201008
\(100\) 0 0
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 0 0
\(103\) 2.00000i 0.197066i 0.995134 + 0.0985329i \(0.0314150\pi\)
−0.995134 + 0.0985329i \(0.968585\pi\)
\(104\) 0 0
\(105\) −4.00000 2.00000i −0.390360 0.195180i
\(106\) 0 0
\(107\) 4.00000i 0.386695i 0.981130 + 0.193347i \(0.0619344\pi\)
−0.981130 + 0.193347i \(0.938066\pi\)
\(108\) 0 0
\(109\) 6.00000 0.574696 0.287348 0.957826i \(-0.407226\pi\)
0.287348 + 0.957826i \(0.407226\pi\)
\(110\) 0 0
\(111\) −10.0000 −0.949158
\(112\) 0 0
\(113\) 2.00000i 0.188144i −0.995565 0.0940721i \(-0.970012\pi\)
0.995565 0.0940721i \(-0.0299884\pi\)
\(114\) 0 0
\(115\) −4.00000 + 8.00000i −0.373002 + 0.746004i
\(116\) 0 0
\(117\) 2.00000i 0.184900i
\(118\) 0 0
\(119\) 12.0000 1.10004
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 0 0
\(123\) 2.00000i 0.180334i
\(124\) 0 0
\(125\) 2.00000 + 11.0000i 0.178885 + 0.983870i
\(126\) 0 0
\(127\) 18.0000i 1.59724i −0.601834 0.798621i \(-0.705563\pi\)
0.601834 0.798621i \(-0.294437\pi\)
\(128\) 0 0
\(129\) 12.0000 1.05654
\(130\) 0 0
\(131\) −18.0000 −1.57267 −0.786334 0.617802i \(-0.788023\pi\)
−0.786334 + 0.617802i \(0.788023\pi\)
\(132\) 0 0
\(133\) 16.0000i 1.38738i
\(134\) 0 0
\(135\) −1.00000 + 2.00000i −0.0860663 + 0.172133i
\(136\) 0 0
\(137\) 10.0000i 0.854358i 0.904167 + 0.427179i \(0.140493\pi\)
−0.904167 + 0.427179i \(0.859507\pi\)
\(138\) 0 0
\(139\) −4.00000 −0.339276 −0.169638 0.985506i \(-0.554260\pi\)
−0.169638 + 0.985506i \(0.554260\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 4.00000i 0.334497i
\(144\) 0 0
\(145\) −16.0000 8.00000i −1.32873 0.664364i
\(146\) 0 0
\(147\) 3.00000i 0.247436i
\(148\) 0 0
\(149\) 12.0000 0.983078 0.491539 0.870855i \(-0.336434\pi\)
0.491539 + 0.870855i \(0.336434\pi\)
\(150\) 0 0
\(151\) 16.0000 1.30206 0.651031 0.759051i \(-0.274337\pi\)
0.651031 + 0.759051i \(0.274337\pi\)
\(152\) 0 0
\(153\) 6.00000i 0.485071i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 14.0000i 1.11732i −0.829396 0.558661i \(-0.811315\pi\)
0.829396 0.558661i \(-0.188685\pi\)
\(158\) 0 0
\(159\) −10.0000 −0.793052
\(160\) 0 0
\(161\) 8.00000 0.630488
\(162\) 0 0
\(163\) 16.0000i 1.25322i −0.779334 0.626608i \(-0.784443\pi\)
0.779334 0.626608i \(-0.215557\pi\)
\(164\) 0 0
\(165\) 2.00000 4.00000i 0.155700 0.311400i
\(166\) 0 0
\(167\) 12.0000i 0.928588i 0.885681 + 0.464294i \(0.153692\pi\)
−0.885681 + 0.464294i \(0.846308\pi\)
\(168\) 0 0
\(169\) 9.00000 0.692308
\(170\) 0 0
\(171\) 8.00000 0.611775
\(172\) 0 0
\(173\) 18.0000i 1.36851i 0.729241 + 0.684257i \(0.239873\pi\)
−0.729241 + 0.684257i \(0.760127\pi\)
\(174\) 0 0
\(175\) 8.00000 6.00000i 0.604743 0.453557i
\(176\) 0 0
\(177\) 6.00000i 0.450988i
\(178\) 0 0
\(179\) 22.0000 1.64436 0.822179 0.569230i \(-0.192758\pi\)
0.822179 + 0.569230i \(0.192758\pi\)
\(180\) 0 0
\(181\) −14.0000 −1.04061 −0.520306 0.853980i \(-0.674182\pi\)
−0.520306 + 0.853980i \(0.674182\pi\)
\(182\) 0 0
\(183\) 2.00000i 0.147844i
\(184\) 0 0
\(185\) 10.0000 20.0000i 0.735215 1.47043i
\(186\) 0 0
\(187\) 12.0000i 0.877527i
\(188\) 0 0
\(189\) 2.00000 0.145479
\(190\) 0 0
\(191\) 12.0000 0.868290 0.434145 0.900843i \(-0.357051\pi\)
0.434145 + 0.900843i \(0.357051\pi\)
\(192\) 0 0
\(193\) 4.00000i 0.287926i −0.989583 0.143963i \(-0.954015\pi\)
0.989583 0.143963i \(-0.0459847\pi\)
\(194\) 0 0
\(195\) −4.00000 2.00000i −0.286446 0.143223i
\(196\) 0 0
\(197\) 6.00000i 0.427482i −0.976890 0.213741i \(-0.931435\pi\)
0.976890 0.213741i \(-0.0685649\pi\)
\(198\) 0 0
\(199\) 8.00000 0.567105 0.283552 0.958957i \(-0.408487\pi\)
0.283552 + 0.958957i \(0.408487\pi\)
\(200\) 0 0
\(201\) −8.00000 −0.564276
\(202\) 0 0
\(203\) 16.0000i 1.12298i
\(204\) 0 0
\(205\) 4.00000 + 2.00000i 0.279372 + 0.139686i
\(206\) 0 0
\(207\) 4.00000i 0.278019i
\(208\) 0 0
\(209\) −16.0000 −1.10674
\(210\) 0 0
\(211\) 4.00000 0.275371 0.137686 0.990476i \(-0.456034\pi\)
0.137686 + 0.990476i \(0.456034\pi\)
\(212\) 0 0
\(213\) 4.00000i 0.274075i
\(214\) 0 0
\(215\) −12.0000 + 24.0000i −0.818393 + 1.63679i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −4.00000 −0.270295
\(220\) 0 0
\(221\) 12.0000 0.807207
\(222\) 0 0
\(223\) 6.00000i 0.401790i −0.979613 0.200895i \(-0.935615\pi\)
0.979613 0.200895i \(-0.0643850\pi\)
\(224\) 0 0
\(225\) −3.00000 4.00000i −0.200000 0.266667i
\(226\) 0 0
\(227\) 4.00000i 0.265489i −0.991150 0.132745i \(-0.957621\pi\)
0.991150 0.132745i \(-0.0423790\pi\)
\(228\) 0 0
\(229\) −6.00000 −0.396491 −0.198246 0.980152i \(-0.563524\pi\)
−0.198246 + 0.980152i \(0.563524\pi\)
\(230\) 0 0
\(231\) −4.00000 −0.263181
\(232\) 0 0
\(233\) 6.00000i 0.393073i −0.980497 0.196537i \(-0.937031\pi\)
0.980497 0.196537i \(-0.0629694\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 8.00000i 0.519656i
\(238\) 0 0
\(239\) −20.0000 −1.29369 −0.646846 0.762620i \(-0.723912\pi\)
−0.646846 + 0.762620i \(0.723912\pi\)
\(240\) 0 0
\(241\) −10.0000 −0.644157 −0.322078 0.946713i \(-0.604381\pi\)
−0.322078 + 0.946713i \(0.604381\pi\)
\(242\) 0 0
\(243\) 1.00000i 0.0641500i
\(244\) 0 0
\(245\) 6.00000 + 3.00000i 0.383326 + 0.191663i
\(246\) 0 0
\(247\) 16.0000i 1.01806i
\(248\) 0 0
\(249\) −4.00000 −0.253490
\(250\) 0 0
\(251\) −2.00000 −0.126239 −0.0631194 0.998006i \(-0.520105\pi\)
−0.0631194 + 0.998006i \(0.520105\pi\)
\(252\) 0 0
\(253\) 8.00000i 0.502956i
\(254\) 0 0
\(255\) 12.0000 + 6.00000i 0.751469 + 0.375735i
\(256\) 0 0
\(257\) 6.00000i 0.374270i −0.982334 0.187135i \(-0.940080\pi\)
0.982334 0.187135i \(-0.0599201\pi\)
\(258\) 0 0
\(259\) −20.0000 −1.24274
\(260\) 0 0
\(261\) 8.00000 0.495188
\(262\) 0 0
\(263\) 12.0000i 0.739952i −0.929041 0.369976i \(-0.879366\pi\)
0.929041 0.369976i \(-0.120634\pi\)
\(264\) 0 0
\(265\) 10.0000 20.0000i 0.614295 1.22859i
\(266\) 0 0
\(267\) 6.00000i 0.367194i
\(268\) 0 0
\(269\) −24.0000 −1.46331 −0.731653 0.681677i \(-0.761251\pi\)
−0.731653 + 0.681677i \(0.761251\pi\)
\(270\) 0 0
\(271\) −16.0000 −0.971931 −0.485965 0.873978i \(-0.661532\pi\)
−0.485965 + 0.873978i \(0.661532\pi\)
\(272\) 0 0
\(273\) 4.00000i 0.242091i
\(274\) 0 0
\(275\) 6.00000 + 8.00000i 0.361814 + 0.482418i
\(276\) 0 0
\(277\) 6.00000i 0.360505i 0.983620 + 0.180253i \(0.0576915\pi\)
−0.983620 + 0.180253i \(0.942309\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −18.0000 −1.07379 −0.536895 0.843649i \(-0.680403\pi\)
−0.536895 + 0.843649i \(0.680403\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(284\) 0 0
\(285\) −8.00000 + 16.0000i −0.473879 + 0.947758i
\(286\) 0 0
\(287\) 4.00000i 0.236113i
\(288\) 0 0
\(289\) −19.0000 −1.11765
\(290\) 0 0
\(291\) 8.00000 0.468968
\(292\) 0 0
\(293\) 22.0000i 1.28525i 0.766179 + 0.642627i \(0.222155\pi\)
−0.766179 + 0.642627i \(0.777845\pi\)
\(294\) 0 0
\(295\) 12.0000 + 6.00000i 0.698667 + 0.349334i
\(296\) 0 0
\(297\) 2.00000i 0.116052i
\(298\) 0 0
\(299\) 8.00000 0.462652
\(300\) 0 0
\(301\) 24.0000 1.38334
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 4.00000 + 2.00000i 0.229039 + 0.114520i
\(306\) 0 0
\(307\) 20.0000i 1.14146i 0.821138 + 0.570730i \(0.193340\pi\)
−0.821138 + 0.570730i \(0.806660\pi\)
\(308\) 0 0
\(309\) 2.00000 0.113776
\(310\) 0 0
\(311\) 12.0000 0.680458 0.340229 0.940343i \(-0.389495\pi\)
0.340229 + 0.940343i \(0.389495\pi\)
\(312\) 0 0
\(313\) 4.00000i 0.226093i −0.993590 0.113047i \(-0.963939\pi\)
0.993590 0.113047i \(-0.0360610\pi\)
\(314\) 0 0
\(315\) −2.00000 + 4.00000i −0.112687 + 0.225374i
\(316\) 0 0
\(317\) 18.0000i 1.01098i −0.862832 0.505490i \(-0.831312\pi\)
0.862832 0.505490i \(-0.168688\pi\)
\(318\) 0 0
\(319\) −16.0000 −0.895828
\(320\) 0 0
\(321\) 4.00000 0.223258
\(322\) 0 0
\(323\) 48.0000i 2.67079i
\(324\) 0 0
\(325\) 8.00000 6.00000i 0.443760 0.332820i
\(326\) 0 0
\(327\) 6.00000i 0.331801i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 16.0000 0.879440 0.439720 0.898135i \(-0.355078\pi\)
0.439720 + 0.898135i \(0.355078\pi\)
\(332\) 0 0
\(333\) 10.0000i 0.547997i
\(334\) 0 0
\(335\) 8.00000 16.0000i 0.437087 0.874173i
\(336\) 0 0
\(337\) 28.0000i 1.52526i 0.646837 + 0.762629i \(0.276092\pi\)
−0.646837 + 0.762629i \(0.723908\pi\)
\(338\) 0 0
\(339\) −2.00000 −0.108625
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 20.0000i 1.07990i
\(344\) 0 0
\(345\) 8.00000 + 4.00000i 0.430706 + 0.215353i
\(346\) 0 0
\(347\) 28.0000i 1.50312i −0.659665 0.751559i \(-0.729302\pi\)
0.659665 0.751559i \(-0.270698\pi\)
\(348\) 0 0
\(349\) 22.0000 1.17763 0.588817 0.808267i \(-0.299594\pi\)
0.588817 + 0.808267i \(0.299594\pi\)
\(350\) 0 0
\(351\) 2.00000 0.106752
\(352\) 0 0
\(353\) 6.00000i 0.319348i −0.987170 0.159674i \(-0.948956\pi\)
0.987170 0.159674i \(-0.0510443\pi\)
\(354\) 0 0
\(355\) −8.00000 4.00000i −0.424596 0.212298i
\(356\) 0 0
\(357\) 12.0000i 0.635107i
\(358\) 0 0
\(359\) −16.0000 −0.844448 −0.422224 0.906492i \(-0.638750\pi\)
−0.422224 + 0.906492i \(0.638750\pi\)
\(360\) 0 0
\(361\) 45.0000 2.36842
\(362\) 0 0
\(363\) 7.00000i 0.367405i
\(364\) 0 0
\(365\) 4.00000 8.00000i 0.209370 0.418739i
\(366\) 0 0
\(367\) 14.0000i 0.730794i 0.930852 + 0.365397i \(0.119067\pi\)
−0.930852 + 0.365397i \(0.880933\pi\)
\(368\) 0 0
\(369\) −2.00000 −0.104116
\(370\) 0 0
\(371\) −20.0000 −1.03835
\(372\) 0 0
\(373\) 2.00000i 0.103556i −0.998659 0.0517780i \(-0.983511\pi\)
0.998659 0.0517780i \(-0.0164888\pi\)
\(374\) 0 0
\(375\) 11.0000 2.00000i 0.568038 0.103280i
\(376\) 0 0
\(377\) 16.0000i 0.824042i
\(378\) 0 0
\(379\) 4.00000 0.205466 0.102733 0.994709i \(-0.467241\pi\)
0.102733 + 0.994709i \(0.467241\pi\)
\(380\) 0 0
\(381\) −18.0000 −0.922168
\(382\) 0 0
\(383\) 24.0000i 1.22634i 0.789950 + 0.613171i \(0.210106\pi\)
−0.789950 + 0.613171i \(0.789894\pi\)
\(384\) 0 0
\(385\) 4.00000 8.00000i 0.203859 0.407718i
\(386\) 0 0
\(387\) 12.0000i 0.609994i
\(388\) 0 0
\(389\) −12.0000 −0.608424 −0.304212 0.952604i \(-0.598393\pi\)
−0.304212 + 0.952604i \(0.598393\pi\)
\(390\) 0 0
\(391\) −24.0000 −1.21373
\(392\) 0 0
\(393\) 18.0000i 0.907980i
\(394\) 0 0
\(395\) 16.0000 + 8.00000i 0.805047 + 0.402524i
\(396\) 0 0
\(397\) 6.00000i 0.301131i 0.988600 + 0.150566i \(0.0481095\pi\)
−0.988600 + 0.150566i \(0.951890\pi\)
\(398\) 0 0
\(399\) 16.0000 0.801002
\(400\) 0 0
\(401\) 22.0000 1.09863 0.549314 0.835616i \(-0.314889\pi\)
0.549314 + 0.835616i \(0.314889\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 2.00000 + 1.00000i 0.0993808 + 0.0496904i
\(406\) 0 0
\(407\) 20.0000i 0.991363i
\(408\) 0 0
\(409\) 10.0000 0.494468 0.247234 0.968956i \(-0.420478\pi\)
0.247234 + 0.968956i \(0.420478\pi\)
\(410\) 0 0
\(411\) 10.0000 0.493264
\(412\) 0 0
\(413\) 12.0000i 0.590481i
\(414\) 0 0
\(415\) 4.00000 8.00000i 0.196352 0.392705i
\(416\) 0 0
\(417\) 4.00000i 0.195881i
\(418\) 0 0
\(419\) −6.00000 −0.293119 −0.146560 0.989202i \(-0.546820\pi\)
−0.146560 + 0.989202i \(0.546820\pi\)
\(420\) 0 0
\(421\) −26.0000 −1.26716 −0.633581 0.773676i \(-0.718416\pi\)
−0.633581 + 0.773676i \(0.718416\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −24.0000 + 18.0000i −1.16417 + 0.873128i
\(426\) 0 0
\(427\) 4.00000i 0.193574i
\(428\) 0 0
\(429\) −4.00000 −0.193122
\(430\) 0 0
\(431\) 16.0000 0.770693 0.385346 0.922772i \(-0.374082\pi\)
0.385346 + 0.922772i \(0.374082\pi\)
\(432\) 0 0
\(433\) 12.0000i 0.576683i 0.957528 + 0.288342i \(0.0931039\pi\)
−0.957528 + 0.288342i \(0.906896\pi\)
\(434\) 0 0
\(435\) −8.00000 + 16.0000i −0.383571 + 0.767141i
\(436\) 0 0
\(437\) 32.0000i 1.53077i
\(438\) 0 0
\(439\) −24.0000 −1.14546 −0.572729 0.819745i \(-0.694115\pi\)
−0.572729 + 0.819745i \(0.694115\pi\)
\(440\) 0 0
\(441\) −3.00000 −0.142857
\(442\) 0 0
\(443\) 36.0000i 1.71041i 0.518289 + 0.855206i \(0.326569\pi\)
−0.518289 + 0.855206i \(0.673431\pi\)
\(444\) 0 0
\(445\) −12.0000 6.00000i −0.568855 0.284427i
\(446\) 0 0
\(447\) 12.0000i 0.567581i
\(448\) 0 0
\(449\) 18.0000 0.849473 0.424736 0.905317i \(-0.360367\pi\)
0.424736 + 0.905317i \(0.360367\pi\)
\(450\) 0 0
\(451\) 4.00000 0.188353
\(452\) 0 0
\(453\) 16.0000i 0.751746i
\(454\) 0 0
\(455\) −8.00000 4.00000i −0.375046 0.187523i
\(456\) 0 0
\(457\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(458\) 0 0
\(459\) −6.00000 −0.280056
\(460\) 0 0
\(461\) −12.0000 −0.558896 −0.279448 0.960161i \(-0.590151\pi\)
−0.279448 + 0.960161i \(0.590151\pi\)
\(462\) 0 0
\(463\) 22.0000i 1.02243i 0.859454 + 0.511213i \(0.170804\pi\)
−0.859454 + 0.511213i \(0.829196\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 36.0000i 1.66588i 0.553362 + 0.832941i \(0.313345\pi\)
−0.553362 + 0.832941i \(0.686655\pi\)
\(468\) 0 0
\(469\) −16.0000 −0.738811
\(470\) 0 0
\(471\) −14.0000 −0.645086
\(472\) 0 0
\(473\) 24.0000i 1.10352i
\(474\) 0 0
\(475\) −24.0000 32.0000i −1.10120 1.46826i
\(476\) 0 0
\(477\) 10.0000i 0.457869i
\(478\) 0 0
\(479\) 28.0000 1.27935 0.639676 0.768644i \(-0.279068\pi\)
0.639676 + 0.768644i \(0.279068\pi\)
\(480\) 0 0
\(481\) −20.0000 −0.911922
\(482\) 0 0
\(483\) 8.00000i 0.364013i
\(484\) 0 0
\(485\) −8.00000 + 16.0000i −0.363261 + 0.726523i
\(486\) 0 0
\(487\) 34.0000i 1.54069i 0.637629 + 0.770344i \(0.279915\pi\)
−0.637629 + 0.770344i \(0.720085\pi\)
\(488\) 0 0
\(489\) −16.0000 −0.723545
\(490\) 0 0
\(491\) −34.0000 −1.53440 −0.767199 0.641409i \(-0.778350\pi\)
−0.767199 + 0.641409i \(0.778350\pi\)
\(492\) 0 0
\(493\) 48.0000i 2.16181i
\(494\) 0 0
\(495\) −4.00000 2.00000i −0.179787 0.0898933i
\(496\) 0 0
\(497\) 8.00000i 0.358849i
\(498\) 0 0
\(499\) 40.0000 1.79065 0.895323 0.445418i \(-0.146945\pi\)
0.895323 + 0.445418i \(0.146945\pi\)
\(500\) 0 0
\(501\) 12.0000 0.536120
\(502\) 0 0
\(503\) 16.0000i 0.713405i −0.934218 0.356702i \(-0.883901\pi\)
0.934218 0.356702i \(-0.116099\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 9.00000i 0.399704i
\(508\) 0 0
\(509\) 8.00000 0.354594 0.177297 0.984157i \(-0.443265\pi\)
0.177297 + 0.984157i \(0.443265\pi\)
\(510\) 0 0
\(511\) −8.00000 −0.353899
\(512\) 0 0
\(513\) 8.00000i 0.353209i
\(514\) 0 0
\(515\) −2.00000 + 4.00000i −0.0881305 + 0.176261i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 18.0000 0.790112
\(520\) 0 0
\(521\) −26.0000 −1.13908 −0.569540 0.821963i \(-0.692879\pi\)
−0.569540 + 0.821963i \(0.692879\pi\)
\(522\) 0 0
\(523\) 16.0000i 0.699631i 0.936819 + 0.349816i \(0.113756\pi\)
−0.936819 + 0.349816i \(0.886244\pi\)
\(524\) 0 0
\(525\) −6.00000 8.00000i −0.261861 0.349149i
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 7.00000 0.304348
\(530\) 0 0
\(531\) −6.00000 −0.260378
\(532\) 0 0
\(533\) 4.00000i 0.173259i
\(534\) 0 0
\(535\) −4.00000 + 8.00000i −0.172935 + 0.345870i
\(536\) 0 0
\(537\) 22.0000i 0.949370i
\(538\) 0 0
\(539\) 6.00000 0.258438
\(540\) 0 0
\(541\) 10.0000 0.429934 0.214967 0.976621i \(-0.431036\pi\)
0.214967 + 0.976621i \(0.431036\pi\)
\(542\) 0 0
\(543\) 14.0000i 0.600798i
\(544\) 0 0
\(545\) 12.0000 + 6.00000i 0.514024 + 0.257012i
\(546\) 0 0
\(547\) 20.0000i 0.855138i −0.903983 0.427569i \(-0.859370\pi\)
0.903983 0.427569i \(-0.140630\pi\)
\(548\) 0 0
\(549\) −2.00000 −0.0853579
\(550\) 0 0
\(551\) 64.0000 2.72649
\(552\) 0 0
\(553\) 16.0000i 0.680389i
\(554\) 0 0
\(555\) −20.0000 10.0000i −0.848953 0.424476i
\(556\) 0 0
\(557\) 18.0000i 0.762684i 0.924434 + 0.381342i \(0.124538\pi\)
−0.924434 + 0.381342i \(0.875462\pi\)
\(558\) 0 0
\(559\) 24.0000 1.01509
\(560\) 0 0
\(561\) 12.0000 0.506640
\(562\) 0 0
\(563\) 36.0000i 1.51722i 0.651546 + 0.758610i \(0.274121\pi\)
−0.651546 + 0.758610i \(0.725879\pi\)
\(564\) 0 0
\(565\) 2.00000 4.00000i 0.0841406 0.168281i
\(566\) 0 0
\(567\) 2.00000i 0.0839921i
\(568\) 0 0
\(569\) 42.0000 1.76073 0.880366 0.474295i \(-0.157297\pi\)
0.880366 + 0.474295i \(0.157297\pi\)
\(570\) 0 0
\(571\) 16.0000 0.669579 0.334790 0.942293i \(-0.391335\pi\)
0.334790 + 0.942293i \(0.391335\pi\)
\(572\) 0 0
\(573\) 12.0000i 0.501307i
\(574\) 0 0
\(575\) −16.0000 + 12.0000i −0.667246 + 0.500435i
\(576\) 0 0
\(577\) 16.0000i 0.666089i 0.942911 + 0.333044i \(0.108076\pi\)
−0.942911 + 0.333044i \(0.891924\pi\)
\(578\) 0 0
\(579\) −4.00000 −0.166234
\(580\) 0 0
\(581\) −8.00000 −0.331896
\(582\) 0 0
\(583\) 20.0000i 0.828315i
\(584\) 0 0
\(585\) −2.00000 + 4.00000i −0.0826898 + 0.165380i
\(586\) 0 0
\(587\) 4.00000i 0.165098i 0.996587 + 0.0825488i \(0.0263060\pi\)
−0.996587 + 0.0825488i \(0.973694\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) −6.00000 −0.246807
\(592\) 0 0
\(593\) 34.0000i 1.39621i −0.715994 0.698106i \(-0.754026\pi\)
0.715994 0.698106i \(-0.245974\pi\)
\(594\) 0 0
\(595\) 24.0000 + 12.0000i 0.983904 + 0.491952i
\(596\) 0 0
\(597\) 8.00000i 0.327418i
\(598\) 0 0
\(599\) −16.0000 −0.653742 −0.326871 0.945069i \(-0.605994\pi\)
−0.326871 + 0.945069i \(0.605994\pi\)
\(600\) 0 0
\(601\) −30.0000 −1.22373 −0.611863 0.790964i \(-0.709580\pi\)
−0.611863 + 0.790964i \(0.709580\pi\)
\(602\) 0 0
\(603\) 8.00000i 0.325785i
\(604\) 0 0
\(605\) −14.0000 7.00000i −0.569181 0.284590i
\(606\) 0 0
\(607\) 22.0000i 0.892952i −0.894795 0.446476i \(-0.852679\pi\)
0.894795 0.446476i \(-0.147321\pi\)
\(608\) 0 0
\(609\) 16.0000 0.648353
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 14.0000i 0.565455i −0.959200 0.282727i \(-0.908761\pi\)
0.959200 0.282727i \(-0.0912392\pi\)
\(614\) 0 0
\(615\) 2.00000 4.00000i 0.0806478 0.161296i
\(616\) 0 0
\(617\) 10.0000i 0.402585i −0.979531 0.201292i \(-0.935486\pi\)
0.979531 0.201292i \(-0.0645141\pi\)
\(618\) 0 0
\(619\) 20.0000 0.803868 0.401934 0.915669i \(-0.368338\pi\)
0.401934 + 0.915669i \(0.368338\pi\)
\(620\) 0 0
\(621\) −4.00000 −0.160514
\(622\) 0 0
\(623\) 12.0000i 0.480770i
\(624\) 0 0
\(625\) −7.00000 + 24.0000i −0.280000 + 0.960000i
\(626\) 0 0
\(627\) 16.0000i 0.638978i
\(628\) 0 0
\(629\) 60.0000 2.39236
\(630\) 0 0
\(631\) −40.0000 −1.59237 −0.796187 0.605050i \(-0.793153\pi\)
−0.796187 + 0.605050i \(0.793153\pi\)
\(632\) 0 0
\(633\) 4.00000i 0.158986i
\(634\) 0 0
\(635\) 18.0000 36.0000i 0.714308 1.42862i
\(636\) 0 0
\(637\) 6.00000i 0.237729i
\(638\) 0 0
\(639\) 4.00000 0.158238
\(640\) 0 0
\(641\) 18.0000 0.710957 0.355479 0.934684i \(-0.384318\pi\)
0.355479 + 0.934684i \(0.384318\pi\)
\(642\) 0 0
\(643\) 24.0000i 0.946468i −0.880937 0.473234i \(-0.843087\pi\)
0.880937 0.473234i \(-0.156913\pi\)
\(644\) 0 0
\(645\) 24.0000 + 12.0000i 0.944999 + 0.472500i
\(646\) 0 0
\(647\) 8.00000i 0.314512i −0.987558 0.157256i \(-0.949735\pi\)
0.987558 0.157256i \(-0.0502649\pi\)
\(648\) 0 0
\(649\) 12.0000 0.471041
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 6.00000i 0.234798i −0.993085 0.117399i \(-0.962544\pi\)
0.993085 0.117399i \(-0.0374557\pi\)
\(654\) 0 0
\(655\) −36.0000 18.0000i −1.40664 0.703318i
\(656\) 0 0
\(657\) 4.00000i 0.156055i
\(658\) 0 0
\(659\) −30.0000 −1.16863 −0.584317 0.811525i \(-0.698638\pi\)
−0.584317 + 0.811525i \(0.698638\pi\)
\(660\) 0 0
\(661\) 2.00000 0.0777910 0.0388955 0.999243i \(-0.487616\pi\)
0.0388955 + 0.999243i \(0.487616\pi\)
\(662\) 0 0
\(663\) 12.0000i 0.466041i
\(664\) 0 0
\(665\) −16.0000 + 32.0000i −0.620453 + 1.24091i
\(666\) 0 0
\(667\) 32.0000i 1.23904i
\(668\) 0 0
\(669\) −6.00000 −0.231973
\(670\) 0 0
\(671\) 4.00000 0.154418
\(672\) 0 0
\(673\) 20.0000i 0.770943i 0.922720 + 0.385472i \(0.125961\pi\)
−0.922720 + 0.385472i \(0.874039\pi\)
\(674\) 0 0
\(675\) −4.00000 + 3.00000i −0.153960 + 0.115470i
\(676\) 0 0
\(677\) 30.0000i 1.15299i 0.817099 + 0.576497i \(0.195581\pi\)
−0.817099 + 0.576497i \(0.804419\pi\)
\(678\) 0 0
\(679\) 16.0000 0.614024
\(680\) 0 0
\(681\) −4.00000 −0.153280
\(682\) 0 0
\(683\) 20.0000i 0.765279i −0.923898 0.382639i \(-0.875015\pi\)
0.923898 0.382639i \(-0.124985\pi\)
\(684\) 0 0
\(685\) −10.0000 + 20.0000i −0.382080 + 0.764161i
\(686\) 0 0
\(687\) 6.00000i 0.228914i
\(688\) 0 0
\(689\) −20.0000 −0.761939
\(690\) 0 0
\(691\) 48.0000 1.82601 0.913003 0.407953i \(-0.133757\pi\)
0.913003 + 0.407953i \(0.133757\pi\)
\(692\) 0 0
\(693\) 4.00000i 0.151947i
\(694\) 0 0
\(695\) −8.00000 4.00000i −0.303457 0.151729i
\(696\) 0 0
\(697\) 12.0000i 0.454532i
\(698\) 0 0
\(699\) −6.00000 −0.226941
\(700\) 0 0
\(701\) −8.00000 −0.302156 −0.151078 0.988522i \(-0.548274\pi\)
−0.151078 + 0.988522i \(0.548274\pi\)
\(702\) 0 0
\(703\) 80.0000i 3.01726i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −46.0000 −1.72757 −0.863783 0.503864i \(-0.831911\pi\)
−0.863783 + 0.503864i \(0.831911\pi\)
\(710\) 0 0
\(711\) −8.00000 −0.300023
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 4.00000 8.00000i 0.149592 0.299183i
\(716\) 0 0
\(717\) 20.0000i 0.746914i
\(718\) 0 0
\(719\) −40.0000 −1.49175 −0.745874 0.666087i \(-0.767968\pi\)
−0.745874 + 0.666087i \(0.767968\pi\)
\(720\) 0 0
\(721\) 4.00000 0.148968
\(722\) 0 0
\(723\) 10.0000i 0.371904i
\(724\) 0 0
\(725\) −24.0000 32.0000i −0.891338 1.18845i
\(726\) 0 0
\(727\) 30.0000i 1.11264i −0.830969 0.556319i \(-0.812213\pi\)
0.830969 0.556319i \(-0.187787\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) −72.0000 −2.66302
\(732\) 0 0
\(733\) 42.0000i 1.55131i 0.631160 + 0.775653i \(0.282579\pi\)
−0.631160 + 0.775653i \(0.717421\pi\)
\(734\) 0 0
\(735\) 3.00000 6.00000i 0.110657 0.221313i
\(736\) 0 0
\(737\) 16.0000i 0.589368i
\(738\) 0 0
\(739\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(740\) 0 0
\(741\) 16.0000 0.587775
\(742\) 0 0
\(743\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(744\) 0 0
\(745\) 24.0000 + 12.0000i 0.879292 + 0.439646i
\(746\) 0 0
\(747\) 4.00000i 0.146352i
\(748\) 0 0
\(749\) 8.00000 0.292314
\(750\) 0 0
\(751\) 8.00000 0.291924 0.145962 0.989290i \(-0.453372\pi\)
0.145962 + 0.989290i \(0.453372\pi\)
\(752\) 0 0
\(753\) 2.00000i 0.0728841i
\(754\) 0 0
\(755\) 32.0000 + 16.0000i 1.16460 + 0.582300i
\(756\) 0 0
\(757\) 38.0000i 1.38113i 0.723269 + 0.690567i \(0.242639\pi\)
−0.723269 + 0.690567i \(0.757361\pi\)
\(758\) 0 0
\(759\) 8.00000 0.290382
\(760\) 0 0
\(761\) −2.00000 −0.0724999 −0.0362500 0.999343i \(-0.511541\pi\)
−0.0362500 + 0.999343i \(0.511541\pi\)
\(762\) 0 0
\(763\) 12.0000i 0.434429i
\(764\) 0 0
\(765\) 6.00000 12.0000i 0.216930 0.433861i
\(766\) 0 0
\(767\) 12.0000i 0.433295i
\(768\) 0 0
\(769\) −34.0000 −1.22607 −0.613036 0.790055i \(-0.710052\pi\)
−0.613036 + 0.790055i \(0.710052\pi\)
\(770\) 0 0
\(771\) −6.00000 −0.216085
\(772\) 0 0
\(773\) 38.0000i 1.36677i −0.730061 0.683383i \(-0.760508\pi\)
0.730061 0.683383i \(-0.239492\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 20.0000i 0.717496i
\(778\) 0 0
\(779\) −16.0000 −0.573259
\(780\) 0 0
\(781\) −8.00000 −0.286263
\(782\) 0 0
\(783\) 8.00000i 0.285897i
\(784\) 0 0
\(785\) 14.0000 28.0000i 0.499681 0.999363i
\(786\) 0 0
\(787\) 32.0000i 1.14068i 0.821410 + 0.570338i \(0.193188\pi\)
−0.821410 + 0.570338i \(0.806812\pi\)
\(788\) 0 0
\(789\) −12.0000 −0.427211
\(790\) 0 0
\(791\) −4.00000 −0.142224
\(792\) 0 0
\(793\) 4.00000i 0.142044i
\(794\) 0 0
\(795\) −20.0000 10.0000i −0.709327 0.354663i
\(796\) 0 0
\(797\) 30.0000i 1.06265i 0.847167 + 0.531327i \(0.178307\pi\)
−0.847167 + 0.531327i \(0.821693\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 6.00000 0.212000
\(802\) 0 0
\(803\)