Properties

Label 120.2.d.b
Level 120
Weight 2
Character orbit 120.d
Analytic conductor 0.958
Analytic rank 0
Dimension 6
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 120 = 2^{3} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 120.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.958204824255\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.839056.1
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q -\beta_{2} q^{2} - q^{3} + ( \beta_{1} - \beta_{3} ) q^{4} + ( \beta_{1} - \beta_{3} + \beta_{5} ) q^{5} + \beta_{2} q^{6} + ( -\beta_{1} - \beta_{2} - \beta_{4} ) q^{7} + ( \beta_{1} - \beta_{3} + \beta_{4} + \beta_{5} ) q^{8} + q^{9} +O(q^{10})\) \( q -\beta_{2} q^{2} - q^{3} + ( \beta_{1} - \beta_{3} ) q^{4} + ( \beta_{1} - \beta_{3} + \beta_{5} ) q^{5} + \beta_{2} q^{6} + ( -\beta_{1} - \beta_{2} - \beta_{4} ) q^{7} + ( \beta_{1} - \beta_{3} + \beta_{4} + \beta_{5} ) q^{8} + q^{9} + ( -2 + \beta_{1} + \beta_{4} ) q^{10} + ( -\beta_{1} - \beta_{2} + \beta_{5} ) q^{11} + ( -\beta_{1} + \beta_{3} ) q^{12} + ( 2 - \beta_{1} + \beta_{2} + 2 \beta_{3} - \beta_{4} ) q^{13} + ( -2 - 2 \beta_{3} ) q^{14} + ( -\beta_{1} + \beta_{3} - \beta_{5} ) q^{15} + ( \beta_{1} + \beta_{3} + \beta_{4} - \beta_{5} ) q^{16} + ( -\beta_{1} + \beta_{2} + \beta_{4} ) q^{17} -\beta_{2} q^{18} + ( -2 \beta_{1} - \beta_{4} - \beta_{5} ) q^{19} + ( 2 + \beta_{1} + 2 \beta_{2} + \beta_{3} ) q^{20} + ( \beta_{1} + \beta_{2} + \beta_{4} ) q^{21} + ( -2 - 2 \beta_{5} ) q^{22} + ( 2 \beta_{1} - \beta_{4} - \beta_{5} ) q^{23} + ( -\beta_{1} + \beta_{3} - \beta_{4} - \beta_{5} ) q^{24} + ( 1 - \beta_{1} + \beta_{2} + 2 \beta_{3} + \beta_{5} ) q^{25} + ( -2 - 2 \beta_{1} - 2 \beta_{2} + 2 \beta_{3} - 2 \beta_{4} ) q^{26} - q^{27} + ( 2 \beta_{2} - 2 \beta_{3} + 2 \beta_{4} ) q^{28} + ( \beta_{1} - \beta_{2} - 2 \beta_{4} - \beta_{5} ) q^{29} + ( 2 - \beta_{1} - \beta_{4} ) q^{30} + ( -2 + 2 \beta_{2} - \beta_{4} + \beta_{5} ) q^{31} + ( 4 + \beta_{1} + \beta_{3} - \beta_{4} + \beta_{5} ) q^{32} + ( \beta_{1} + \beta_{2} - \beta_{5} ) q^{33} + ( 2 - 2 \beta_{1} + 2 \beta_{3} - 2 \beta_{5} ) q^{34} + ( \beta_{1} + \beta_{2} - 2 \beta_{3} + 3 \beta_{4} ) q^{35} + ( \beta_{1} - \beta_{3} ) q^{36} + ( 2 + \beta_{1} - \beta_{2} - 2 \beta_{3} + \beta_{4} ) q^{37} + ( -2 \beta_{1} - 2 \beta_{3} ) q^{38} + ( -2 + \beta_{1} - \beta_{2} - 2 \beta_{3} + \beta_{4} ) q^{39} + ( -\beta_{1} - 2 \beta_{2} + 3 \beta_{3} - \beta_{4} + \beta_{5} ) q^{40} + ( -2 - 4 \beta_{2} + 2 \beta_{4} - 2 \beta_{5} ) q^{41} + ( 2 + 2 \beta_{3} ) q^{42} + ( -2 \beta_{1} - 2 \beta_{2} + 4 \beta_{3} - 2 \beta_{5} ) q^{43} + ( 4 + 2 \beta_{2} - 2 \beta_{3} + 2 \beta_{5} ) q^{44} + ( \beta_{1} - \beta_{3} + \beta_{5} ) q^{45} + ( 2 \beta_{1} - 2 \beta_{3} + 4 \beta_{5} ) q^{46} + ( 2 \beta_{1} + \beta_{4} + \beta_{5} ) q^{47} + ( -\beta_{1} - \beta_{3} - \beta_{4} + \beta_{5} ) q^{48} + ( -1 + 2 \beta_{1} + 2 \beta_{2} - 4 \beta_{3} + 2 \beta_{5} ) q^{49} + ( -2 - 2 \beta_{1} - \beta_{2} + 4 \beta_{3} - 2 \beta_{4} - 2 \beta_{5} ) q^{50} + ( \beta_{1} - \beta_{2} - \beta_{4} ) q^{51} + ( -4 + 2 \beta_{2} - 2 \beta_{3} - 2 \beta_{4} ) q^{52} + ( -4 - \beta_{1} - \beta_{2} + 2 \beta_{3} - \beta_{5} ) q^{53} + \beta_{2} q^{54} + ( -2 - \beta_{1} - 3 \beta_{2} + 2 \beta_{4} + \beta_{5} ) q^{55} + ( 4 - 2 \beta_{1} + 2 \beta_{3} + 2 \beta_{4} - 2 \beta_{5} ) q^{56} + ( 2 \beta_{1} + \beta_{4} + \beta_{5} ) q^{57} + ( -2 + 2 \beta_{1} - 4 \beta_{3} + 4 \beta_{5} ) q^{58} + ( 3 \beta_{1} + 3 \beta_{2} + 2 \beta_{4} - \beta_{5} ) q^{59} + ( -2 - \beta_{1} - 2 \beta_{2} - \beta_{3} ) q^{60} + ( 4 \beta_{2} + 2 \beta_{4} - 2 \beta_{5} ) q^{61} + ( -4 - 2 \beta_{1} + 2 \beta_{2} + 2 \beta_{3} ) q^{62} + ( -\beta_{1} - \beta_{2} - \beta_{4} ) q^{63} + ( -4 + \beta_{1} - 4 \beta_{2} + \beta_{3} - \beta_{4} + \beta_{5} ) q^{64} + ( -2 - \beta_{1} + \beta_{2} - 4 \beta_{3} - \beta_{4} + 2 \beta_{5} ) q^{65} + ( 2 + 2 \beta_{5} ) q^{66} + ( 2 \beta_{1} + 2 \beta_{2} - 4 \beta_{3} + 2 \beta_{5} ) q^{67} + ( 4 - 2 \beta_{1} - 2 \beta_{2} - 2 \beta_{4} ) q^{68} + ( -2 \beta_{1} + \beta_{4} + \beta_{5} ) q^{69} + ( 6 + 2 \beta_{3} + 2 \beta_{4} - 2 \beta_{5} ) q^{70} + ( 4 + 4 \beta_{2} - 2 \beta_{4} + 2 \beta_{5} ) q^{71} + ( \beta_{1} - \beta_{3} + \beta_{4} + \beta_{5} ) q^{72} + ( 4 \beta_{1} - 4 \beta_{2} - 2 \beta_{4} + 2 \beta_{5} ) q^{73} + ( 2 + 2 \beta_{1} - 2 \beta_{2} - 2 \beta_{3} + 2 \beta_{4} ) q^{74} + ( -1 + \beta_{1} - \beta_{2} - 2 \beta_{3} - \beta_{5} ) q^{75} + ( -2 \beta_{1} - 2 \beta_{3} + 2 \beta_{4} - 2 \beta_{5} ) q^{76} -4 q^{77} + ( 2 + 2 \beta_{1} + 2 \beta_{2} - 2 \beta_{3} + 2 \beta_{4} ) q^{78} + ( 2 - 2 \beta_{2} + \beta_{4} - \beta_{5} ) q^{79} + ( -4 + \beta_{1} + \beta_{3} - 3 \beta_{4} - \beta_{5} ) q^{80} + q^{81} + ( 8 + 4 \beta_{1} + 2 \beta_{2} - 4 \beta_{3} ) q^{82} + ( 4 - 2 \beta_{1} + 2 \beta_{2} + 4 \beta_{3} - 2 \beta_{4} ) q^{83} + ( -2 \beta_{2} + 2 \beta_{3} - 2 \beta_{4} ) q^{84} + ( 2 - \beta_{1} - 5 \beta_{2} - \beta_{4} ) q^{85} + ( 4 - 4 \beta_{4} ) q^{86} + ( -\beta_{1} + \beta_{2} + 2 \beta_{4} + \beta_{5} ) q^{87} + ( -4 - 2 \beta_{1} - 4 \beta_{2} + 2 \beta_{3} + 2 \beta_{4} - 2 \beta_{5} ) q^{88} + ( -2 - 4 \beta_{1} + 8 \beta_{3} - 2 \beta_{4} - 2 \beta_{5} ) q^{89} + ( -2 + \beta_{1} + \beta_{4} ) q^{90} + ( 2 \beta_{1} - 6 \beta_{2} - 4 \beta_{4} + 2 \beta_{5} ) q^{91} + ( -8 + 2 \beta_{1} + 2 \beta_{3} + 2 \beta_{4} - 2 \beta_{5} ) q^{92} + ( 2 - 2 \beta_{2} + \beta_{4} - \beta_{5} ) q^{93} + ( 2 \beta_{1} + 2 \beta_{3} ) q^{94} + ( 4 + 2 \beta_{1} - 4 \beta_{3} + 3 \beta_{4} - \beta_{5} ) q^{95} + ( -4 - \beta_{1} - \beta_{3} + \beta_{4} - \beta_{5} ) q^{96} + ( -2 \beta_{1} + 2 \beta_{2} - 2 \beta_{4} - 4 \beta_{5} ) q^{97} + ( -4 + \beta_{2} + 4 \beta_{4} ) q^{98} + ( -\beta_{1} - \beta_{2} + \beta_{5} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6q + q^{2} - 6q^{3} + q^{4} - q^{6} + q^{8} + 6q^{9} + O(q^{10}) \) \( 6q + q^{2} - 6q^{3} + q^{4} - q^{6} + q^{8} + 6q^{9} - 11q^{10} - q^{12} + 8q^{13} - 10q^{14} + q^{16} + q^{18} + 9q^{20} - 10q^{22} - q^{24} + 2q^{25} - 14q^{26} - 6q^{27} + 2q^{28} + 11q^{30} - 16q^{31} + 21q^{32} + 12q^{34} + 4q^{35} + q^{36} + 16q^{37} + 2q^{38} - 8q^{39} - 3q^{40} - 4q^{41} + 10q^{42} + 22q^{44} - 2q^{46} - q^{48} - 6q^{49} - 15q^{50} - 26q^{52} - 24q^{53} - q^{54} - 8q^{55} + 26q^{56} - 12q^{58} - 9q^{60} - 28q^{62} - 23q^{64} - 12q^{65} + 10q^{66} + 24q^{68} + 38q^{70} + 16q^{71} + q^{72} + 18q^{74} - 2q^{75} + 6q^{76} - 24q^{77} + 14q^{78} + 16q^{79} - 27q^{80} + 6q^{81} + 50q^{82} + 16q^{83} - 2q^{84} + 16q^{85} + 20q^{86} - 18q^{88} - 20q^{89} - 11q^{90} - 46q^{92} + 16q^{93} - 2q^{94} + 32q^{95} - 21q^{96} - 21q^{98} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{6} + 6 x^{4} + 8 x^{2} + 1\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu^{3} + 4 \nu \)
\(\beta_{2}\)\(=\)\((\)\( \nu^{5} + \nu^{4} + 5 \nu^{3} + 5 \nu^{2} + 5 \nu + 3 \)\()/2\)
\(\beta_{3}\)\(=\)\((\)\( -\nu^{5} + \nu^{4} - 5 \nu^{3} + 3 \nu^{2} - 3 \nu - 1 \)\()/2\)
\(\beta_{4}\)\(=\)\((\)\( -\nu^{5} - \nu^{4} - 7 \nu^{3} - 5 \nu^{2} - 9 \nu - 3 \)\()/2\)
\(\beta_{5}\)\(=\)\((\)\( -3 \nu^{5} + \nu^{4} - 17 \nu^{3} + 5 \nu^{2} - 19 \nu + 3 \)\()/2\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\((\)\(\beta_{4} + \beta_{2} + \beta_{1}\)\()/2\)
\(\nu^{2}\)\(=\)\((\)\(\beta_{5} - 2 \beta_{3} + \beta_{2} + \beta_{1} - 4\)\()/2\)
\(\nu^{3}\)\(=\)\(-2 \beta_{4} - 2 \beta_{2} - \beta_{1}\)
\(\nu^{4}\)\(=\)\((\)\(-4 \beta_{5} - \beta_{4} + 10 \beta_{3} - 3 \beta_{2} - 5 \beta_{1} + 14\)\()/2\)
\(\nu^{5}\)\(=\)\((\)\(-\beta_{5} + 16 \beta_{4} + 17 \beta_{2} + 5 \beta_{1}\)\()/2\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/120\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(41\) \(61\) \(97\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
109.1
0.373087i
0.373087i
2.02852i
2.02852i
1.32132i
1.32132i
−1.16170 0.806504i −1.00000 0.699104 + 1.87383i 1.86081 1.23992i 1.16170 + 0.806504i 0.746175i 0.699104 2.74067i 1.00000 −3.16170 0.0603290i
109.2 −1.16170 + 0.806504i −1.00000 0.699104 1.87383i 1.86081 + 1.23992i 1.16170 0.806504i 0.746175i 0.699104 + 2.74067i 1.00000 −3.16170 + 0.0603290i
109.3 0.321037 1.37729i −1.00000 −1.79387 0.884323i −2.11491 0.726062i −0.321037 + 1.37729i 4.05705i −1.79387 + 2.18678i 1.00000 −1.67896 + 2.67975i
109.4 0.321037 + 1.37729i −1.00000 −1.79387 + 0.884323i −2.11491 + 0.726062i −0.321037 1.37729i 4.05705i −1.79387 2.18678i 1.00000 −1.67896 2.67975i
109.5 1.34067 0.450129i −1.00000 1.59477 1.20695i 0.254102 2.22158i −1.34067 + 0.450129i 2.64265i 1.59477 2.33596i 1.00000 −0.659335 3.09278i
109.6 1.34067 + 0.450129i −1.00000 1.59477 + 1.20695i 0.254102 + 2.22158i −1.34067 0.450129i 2.64265i 1.59477 + 2.33596i 1.00000 −0.659335 + 3.09278i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 109.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
40.f even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 120.2.d.b yes 6
3.b odd 2 1 360.2.d.e 6
4.b odd 2 1 480.2.d.b 6
5.b even 2 1 120.2.d.a 6
5.c odd 4 2 600.2.k.f 12
8.b even 2 1 120.2.d.a 6
8.d odd 2 1 480.2.d.a 6
12.b even 2 1 1440.2.d.f 6
15.d odd 2 1 360.2.d.f 6
15.e even 4 2 1800.2.k.u 12
16.e even 4 2 3840.2.f.l 12
16.f odd 4 2 3840.2.f.m 12
20.d odd 2 1 480.2.d.a 6
20.e even 4 2 2400.2.k.f 12
24.f even 2 1 1440.2.d.e 6
24.h odd 2 1 360.2.d.f 6
40.e odd 2 1 480.2.d.b 6
40.f even 2 1 inner 120.2.d.b yes 6
40.i odd 4 2 600.2.k.f 12
40.k even 4 2 2400.2.k.f 12
60.h even 2 1 1440.2.d.e 6
60.l odd 4 2 7200.2.k.u 12
80.k odd 4 2 3840.2.f.m 12
80.q even 4 2 3840.2.f.l 12
120.i odd 2 1 360.2.d.e 6
120.m even 2 1 1440.2.d.f 6
120.q odd 4 2 7200.2.k.u 12
120.w even 4 2 1800.2.k.u 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
120.2.d.a 6 5.b even 2 1
120.2.d.a 6 8.b even 2 1
120.2.d.b yes 6 1.a even 1 1 trivial
120.2.d.b yes 6 40.f even 2 1 inner
360.2.d.e 6 3.b odd 2 1
360.2.d.e 6 120.i odd 2 1
360.2.d.f 6 15.d odd 2 1
360.2.d.f 6 24.h odd 2 1
480.2.d.a 6 8.d odd 2 1
480.2.d.a 6 20.d odd 2 1
480.2.d.b 6 4.b odd 2 1
480.2.d.b 6 40.e odd 2 1
600.2.k.f 12 5.c odd 4 2
600.2.k.f 12 40.i odd 4 2
1440.2.d.e 6 24.f even 2 1
1440.2.d.e 6 60.h even 2 1
1440.2.d.f 6 12.b even 2 1
1440.2.d.f 6 120.m even 2 1
1800.2.k.u 12 15.e even 4 2
1800.2.k.u 12 120.w even 4 2
2400.2.k.f 12 20.e even 4 2
2400.2.k.f 12 40.k even 4 2
3840.2.f.l 12 16.e even 4 2
3840.2.f.l 12 80.q even 4 2
3840.2.f.m 12 16.f odd 4 2
3840.2.f.m 12 80.k odd 4 2
7200.2.k.u 12 60.l odd 4 2
7200.2.k.u 12 120.q odd 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{13}^{3} - 4 T_{13}^{2} - 16 T_{13} + 56 \) acting on \(S_{2}^{\mathrm{new}}(120, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 - T - 4 T^{5} + 8 T^{6} \)
$3$ \( ( 1 + T )^{6} \)
$5$ \( 1 - T^{2} + 8 T^{3} - 5 T^{4} + 125 T^{6} \)
$7$ \( 1 - 18 T^{2} + 191 T^{4} - 1532 T^{6} + 9359 T^{8} - 43218 T^{10} + 117649 T^{12} \)
$11$ \( 1 - 34 T^{2} + 503 T^{4} - 5436 T^{6} + 60863 T^{8} - 497794 T^{10} + 1771561 T^{12} \)
$13$ \( ( 1 - 4 T + 23 T^{2} - 48 T^{3} + 299 T^{4} - 676 T^{5} + 2197 T^{6} )^{2} \)
$17$ \( 1 - 66 T^{2} + 2255 T^{4} - 47324 T^{6} + 651695 T^{8} - 5512386 T^{10} + 24137569 T^{12} \)
$19$ \( 1 - 54 T^{2} + 1367 T^{4} - 25652 T^{6} + 493487 T^{8} - 7037334 T^{10} + 47045881 T^{12} \)
$23$ \( 1 - 46 T^{2} + 1775 T^{4} - 40932 T^{6} + 938975 T^{8} - 12872686 T^{10} + 148035889 T^{12} \)
$29$ \( 1 - 66 T^{2} + 3207 T^{4} - 111228 T^{6} + 2697087 T^{8} - 46680546 T^{10} + 594823321 T^{12} \)
$31$ \( ( 1 + 8 T + 89 T^{2} + 432 T^{3} + 2759 T^{4} + 7688 T^{5} + 29791 T^{6} )^{2} \)
$37$ \( ( 1 - 8 T + 111 T^{2} - 584 T^{3} + 4107 T^{4} - 10952 T^{5} + 50653 T^{6} )^{2} \)
$41$ \( ( 1 + 2 T + 23 T^{2} + 220 T^{3} + 943 T^{4} + 3362 T^{5} + 68921 T^{6} )^{2} \)
$43$ \( ( 1 + 65 T^{2} - 64 T^{3} + 2795 T^{4} + 79507 T^{6} )^{2} \)
$47$ \( 1 - 222 T^{2} + 22367 T^{4} - 1328324 T^{6} + 49408703 T^{8} - 1083289182 T^{10} + 10779215329 T^{12} \)
$53$ \( ( 1 + 12 T + 191 T^{2} + 1264 T^{3} + 10123 T^{4} + 33708 T^{5} + 148877 T^{6} )^{2} \)
$59$ \( 1 - 178 T^{2} + 20567 T^{4} - 1418652 T^{6} + 71593727 T^{8} - 2156890258 T^{10} + 42180533641 T^{12} \)
$61$ \( 1 - 190 T^{2} + 20039 T^{4} - 1419204 T^{6} + 74565119 T^{8} - 2630709790 T^{10} + 51520374361 T^{12} \)
$67$ \( ( 1 + 137 T^{2} + 64 T^{3} + 9179 T^{4} + 300763 T^{6} )^{2} \)
$71$ \( ( 1 - 8 T + 133 T^{2} - 1008 T^{3} + 9443 T^{4} - 40328 T^{5} + 357911 T^{6} )^{2} \)
$73$ \( 1 - 54 T^{2} + 2367 T^{4} - 531700 T^{6} + 12613743 T^{8} - 1533505014 T^{10} + 151334226289 T^{12} \)
$79$ \( ( 1 - 8 T + 233 T^{2} - 1200 T^{3} + 18407 T^{4} - 49928 T^{5} + 493039 T^{6} )^{2} \)
$83$ \( ( 1 - 8 T + 185 T^{2} - 880 T^{3} + 15355 T^{4} - 55112 T^{5} + 571787 T^{6} )^{2} \)
$89$ \( ( 1 + 10 T + 103 T^{2} + 396 T^{3} + 9167 T^{4} + 79210 T^{5} + 704969 T^{6} )^{2} \)
$97$ \( 1 - 246 T^{2} + 39183 T^{4} - 4535476 T^{6} + 368672847 T^{8} - 21778203126 T^{10} + 832972004929 T^{12} \)
show more
show less