Properties

Label 120.2
Level 120
Weight 2
Dimension 136
Nonzero newspaces 9
Newform subspaces 18
Sturm bound 1536
Trace bound 4

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 120 = 2^{3} \cdot 3 \cdot 5 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 9 \)
Newform subspaces: \( 18 \)
Sturm bound: \(1536\)
Trace bound: \(4\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(120))\).

Total New Old
Modular forms 480 160 320
Cusp forms 289 136 153
Eisenstein series 191 24 167

Trace form

\( 136 q + 4 q^{2} + 2 q^{3} + 4 q^{5} - 12 q^{6} + 8 q^{7} - 8 q^{8} - 12 q^{10} - 32 q^{12} + 8 q^{13} - 32 q^{14} - 18 q^{15} - 48 q^{16} - 20 q^{18} - 40 q^{19} - 32 q^{20} - 16 q^{21} - 32 q^{22} - 24 q^{23}+ \cdots + 88 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(120))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
120.2.a \(\chi_{120}(1, \cdot)\) 120.2.a.a 1 1
120.2.a.b 1
120.2.b \(\chi_{120}(11, \cdot)\) 120.2.b.a 8 1
120.2.b.b 8
120.2.d \(\chi_{120}(109, \cdot)\) 120.2.d.a 6 1
120.2.d.b 6
120.2.f \(\chi_{120}(49, \cdot)\) 120.2.f.a 2 1
120.2.h \(\chi_{120}(71, \cdot)\) None 0 1
120.2.k \(\chi_{120}(61, \cdot)\) 120.2.k.a 2 1
120.2.k.b 6
120.2.m \(\chi_{120}(59, \cdot)\) 120.2.m.a 4 1
120.2.m.b 16
120.2.o \(\chi_{120}(119, \cdot)\) None 0 1
120.2.r \(\chi_{120}(17, \cdot)\) 120.2.r.a 4 2
120.2.r.b 4
120.2.r.c 4
120.2.s \(\chi_{120}(7, \cdot)\) None 0 2
120.2.v \(\chi_{120}(43, \cdot)\) 120.2.v.a 24 2
120.2.w \(\chi_{120}(53, \cdot)\) 120.2.w.a 4 2
120.2.w.b 4
120.2.w.c 32

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(120))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(120)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(24))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(30))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(40))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(60))\)\(^{\oplus 2}\)