Defining parameters
Level: | \( N \) | \(=\) | \( 12 = 2^{2} \cdot 3 \) |
Weight: | \( k \) | \(=\) | \( 9 \) |
Character orbit: | \([\chi]\) | \(=\) | 12.d (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 4 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(18\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{9}(12, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 18 | 8 | 10 |
Cusp forms | 14 | 8 | 6 |
Eisenstein series | 4 | 0 | 4 |
Trace form
Decomposition of \(S_{9}^{\mathrm{new}}(12, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
12.9.d.a | $8$ | $4.889$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(6\) | \(0\) | \(-336\) | \(0\) | \(q+(1+\beta _{1})q^{2}+(-\beta _{1}-\beta _{3})q^{3}+(-6+\cdots)q^{4}+\cdots\) |
Decomposition of \(S_{9}^{\mathrm{old}}(12, [\chi])\) into lower level spaces
\( S_{9}^{\mathrm{old}}(12, [\chi]) \simeq \) \(S_{9}^{\mathrm{new}}(4, [\chi])\)\(^{\oplus 2}\)