Properties

Label 12.9.d
Level $12$
Weight $9$
Character orbit 12.d
Rep. character $\chi_{12}(7,\cdot)$
Character field $\Q$
Dimension $8$
Newform subspaces $1$
Sturm bound $18$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 12 = 2^{2} \cdot 3 \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 12.d (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 4 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(18\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{9}(12, [\chi])\).

Total New Old
Modular forms 18 8 10
Cusp forms 14 8 6
Eisenstein series 4 0 4

Trace form

\( 8 q + 6 q^{2} - 52 q^{4} - 336 q^{5} + 1134 q^{6} - 12960 q^{8} - 17496 q^{9} + 36628 q^{10} - 11340 q^{12} - 2864 q^{13} + 52728 q^{14} + 99440 q^{16} - 193200 q^{17} - 13122 q^{18} + 335592 q^{20} + 121824 q^{21}+ \cdots + 691081830 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{9}^{\mathrm{new}}(12, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
12.9.d.a 12.d 4.b $8$ $4.889$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 12.9.d.a \(6\) \(0\) \(-336\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(1+\beta _{1})q^{2}+(-\beta _{1}-\beta _{3})q^{3}+(-6+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{9}^{\mathrm{old}}(12, [\chi])\) into lower level spaces

\( S_{9}^{\mathrm{old}}(12, [\chi]) \simeq \) \(S_{9}^{\mathrm{new}}(4, [\chi])\)\(^{\oplus 2}\)