Properties

Label 12.9.c
Level $12$
Weight $9$
Character orbit 12.c
Rep. character $\chi_{12}(5,\cdot)$
Character field $\Q$
Dimension $3$
Newform subspaces $2$
Sturm bound $18$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 12 = 2^{2} \cdot 3 \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 12.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 3 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(18\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{9}(12, [\chi])\).

Total New Old
Modular forms 19 3 16
Cusp forms 13 3 10
Eisenstein series 6 0 6

Trace form

\( 3 q - 21 q^{3} - 2154 q^{7} + 3843 q^{9} + O(q^{10}) \) \( 3 q - 21 q^{3} - 2154 q^{7} + 3843 q^{9} - 50394 q^{13} + 142560 q^{15} - 419178 q^{19} + 642342 q^{21} - 1394205 q^{25} + 1477899 q^{27} - 937578 q^{31} + 142560 q^{33} + 2822118 q^{37} - 2156298 q^{39} + 5472726 q^{43} - 14541120 q^{45} + 18124425 q^{49} - 7413120 q^{51} - 2566080 q^{55} - 12747354 q^{57} + 14911782 q^{61} + 34876566 q^{63} - 61469994 q^{67} + 12260160 q^{69} - 34291002 q^{73} + 122666955 q^{75} - 145689834 q^{79} - 35659197 q^{81} + 133436160 q^{85} + 108773280 q^{87} - 99306132 q^{91} - 191025114 q^{93} + 216008646 q^{97} - 14541120 q^{99} + O(q^{100}) \)

Decomposition of \(S_{9}^{\mathrm{new}}(12, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
12.9.c.a 12.c 3.b $1$ $4.889$ \(\Q\) \(\Q(\sqrt{-3}) \) 12.9.c.a \(0\) \(81\) \(0\) \(4034\) $\mathrm{U}(1)[D_{2}]$ \(q+3^{4}q^{3}+4034q^{7}+3^{8}q^{9}-35806q^{13}+\cdots\)
12.9.c.b 12.c 3.b $2$ $4.889$ \(\Q(\sqrt{-110}) \) None 12.9.c.b \(0\) \(-102\) \(0\) \(-6188\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-51+\beta )q^{3}-18\beta q^{5}-3094q^{7}+\cdots\)

Decomposition of \(S_{9}^{\mathrm{old}}(12, [\chi])\) into lower level spaces

\( S_{9}^{\mathrm{old}}(12, [\chi]) \simeq \) \(S_{9}^{\mathrm{new}}(3, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(6, [\chi])\)\(^{\oplus 2}\)