Properties

Label 12.9
Level 12
Weight 9
Dimension 11
Nonzero newspaces 2
Newform subspaces 3
Sturm bound 72
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 12 = 2^{2} \cdot 3 \)
Weight: \( k \) = \( 9 \)
Nonzero newspaces: \( 2 \)
Newform subspaces: \( 3 \)
Sturm bound: \(72\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{9}(\Gamma_1(12))\).

Total New Old
Modular forms 37 11 26
Cusp forms 27 11 16
Eisenstein series 10 0 10

Trace form

\( 11 q + 6 q^{2} - 21 q^{3} - 52 q^{4} - 336 q^{5} + 1134 q^{6} - 2154 q^{7} - 12960 q^{8} - 13653 q^{9} + 36628 q^{10} - 11340 q^{12} - 53258 q^{13} + 52728 q^{14} + 142560 q^{15} + 99440 q^{16} - 193200 q^{17}+ \cdots - 14541120 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{9}^{\mathrm{new}}(\Gamma_1(12))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
12.9.c \(\chi_{12}(5, \cdot)\) 12.9.c.a 1 1
12.9.c.b 2
12.9.d \(\chi_{12}(7, \cdot)\) 12.9.d.a 8 1

Decomposition of \(S_{9}^{\mathrm{old}}(\Gamma_1(12))\) into lower level spaces

\( S_{9}^{\mathrm{old}}(\Gamma_1(12)) \cong \) \(S_{9}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 3}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 2}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 2}\)