Properties

Label 12.8.a.b
Level $12$
Weight $8$
Character orbit 12.a
Self dual yes
Analytic conductor $3.749$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [12,8,Mod(1,12)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(12, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("12.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 12 = 2^{2} \cdot 3 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 12.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(3.74862030581\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 27 q^{3} + 270 q^{5} + 1112 q^{7} + 729 q^{9} - 5724 q^{11} - 4570 q^{13} + 7290 q^{15} - 36558 q^{17} + 51740 q^{19} + 30024 q^{21} + 22248 q^{23} - 5225 q^{25} + 19683 q^{27} - 157194 q^{29} - 103936 q^{31}+ \cdots - 4172796 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 27.0000 0 270.000 0 1112.00 0 729.000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 12.8.a.b 1
3.b odd 2 1 36.8.a.a 1
4.b odd 2 1 48.8.a.d 1
5.b even 2 1 300.8.a.a 1
5.c odd 4 2 300.8.d.a 2
7.b odd 2 1 588.8.a.a 1
7.c even 3 2 588.8.i.b 2
7.d odd 6 2 588.8.i.g 2
8.b even 2 1 192.8.a.b 1
8.d odd 2 1 192.8.a.j 1
9.c even 3 2 324.8.e.b 2
9.d odd 6 2 324.8.e.e 2
12.b even 2 1 144.8.a.c 1
24.f even 2 1 576.8.a.u 1
24.h odd 2 1 576.8.a.v 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
12.8.a.b 1 1.a even 1 1 trivial
36.8.a.a 1 3.b odd 2 1
48.8.a.d 1 4.b odd 2 1
144.8.a.c 1 12.b even 2 1
192.8.a.b 1 8.b even 2 1
192.8.a.j 1 8.d odd 2 1
300.8.a.a 1 5.b even 2 1
300.8.d.a 2 5.c odd 4 2
324.8.e.b 2 9.c even 3 2
324.8.e.e 2 9.d odd 6 2
576.8.a.u 1 24.f even 2 1
576.8.a.v 1 24.h odd 2 1
588.8.a.a 1 7.b odd 2 1
588.8.i.b 2 7.c even 3 2
588.8.i.g 2 7.d odd 6 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5} - 270 \) acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(12))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T - 27 \) Copy content Toggle raw display
$5$ \( T - 270 \) Copy content Toggle raw display
$7$ \( T - 1112 \) Copy content Toggle raw display
$11$ \( T + 5724 \) Copy content Toggle raw display
$13$ \( T + 4570 \) Copy content Toggle raw display
$17$ \( T + 36558 \) Copy content Toggle raw display
$19$ \( T - 51740 \) Copy content Toggle raw display
$23$ \( T - 22248 \) Copy content Toggle raw display
$29$ \( T + 157194 \) Copy content Toggle raw display
$31$ \( T + 103936 \) Copy content Toggle raw display
$37$ \( T + 94834 \) Copy content Toggle raw display
$41$ \( T - 659610 \) Copy content Toggle raw display
$43$ \( T + 75772 \) Copy content Toggle raw display
$47$ \( T - 405648 \) Copy content Toggle raw display
$53$ \( T + 1346274 \) Copy content Toggle raw display
$59$ \( T + 1303884 \) Copy content Toggle raw display
$61$ \( T - 1833782 \) Copy content Toggle raw display
$67$ \( T - 1369388 \) Copy content Toggle raw display
$71$ \( T - 2714040 \) Copy content Toggle raw display
$73$ \( T - 2868794 \) Copy content Toggle raw display
$79$ \( T + 1129648 \) Copy content Toggle raw display
$83$ \( T - 5912028 \) Copy content Toggle raw display
$89$ \( T + 897750 \) Copy content Toggle raw display
$97$ \( T - 13719074 \) Copy content Toggle raw display
show more
show less