Properties

Label 12.6
Level 12
Weight 6
Dimension 8
Nonzero newspaces 1
Newform subspaces 1
Sturm bound 48
Trace bound 0

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 12 = 2^{2} \cdot 3 \)
Weight: \( k \) = \( 6 \)
Nonzero newspaces: \( 1 \)
Newform subspaces: \( 1 \)
Sturm bound: \(48\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_1(12))\).

Total New Old
Modular forms 25 12 13
Cusp forms 15 8 7
Eisenstein series 10 4 6

Trace form

\( 8 q + 8 q^{4} + 24 q^{6} - 24 q^{9} - 272 q^{10} - 696 q^{12} + 112 q^{13} + 2336 q^{16} + 3696 q^{18} - 336 q^{21} - 8304 q^{22} - 11232 q^{24} - 1368 q^{25} + 19248 q^{28} + 25008 q^{30} + 4224 q^{33}+ \cdots - 392048 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_1(12))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
12.6.a \(\chi_{12}(1, \cdot)\) None 0 1
12.6.b \(\chi_{12}(11, \cdot)\) 12.6.b.a 8 1

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_1(12))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_1(12)) \cong \) \(S_{6}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 2}\)