Properties

Label 12.5.c.a
Level 12
Weight 5
Character orbit 12.c
Self dual Yes
Analytic conductor 1.240
Analytic rank 0
Dimension 1
CM disc. -3
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 12 = 2^{2} \cdot 3 \)
Weight: \( k \) = \( 5 \)
Character orbit: \([\chi]\) = 12.c (of order \(2\) and degree \(1\))

Newform invariants

Self dual: Yes
Analytic conductor: \(1.24043955701\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

\(f(q)\) \(=\) \( q + 9q^{3} - 94q^{7} + 81q^{9} + O(q^{10}) \) \( q + 9q^{3} - 94q^{7} + 81q^{9} + 146q^{13} - 46q^{19} - 846q^{21} + 625q^{25} + 729q^{27} + 194q^{31} - 2062q^{37} + 1314q^{39} - 3214q^{43} + 6435q^{49} - 414q^{57} - 1966q^{61} - 7614q^{63} + 5906q^{67} - 8542q^{73} + 5625q^{75} + 7682q^{79} + 6561q^{81} - 13724q^{91} + 1746q^{93} - 18814q^{97} + O(q^{100}) \)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/12\mathbb{Z}\right)^\times\).

\(n\) \(5\) \(7\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
5.1
0
0 9.00000 0 0 0 −94.0000 0 81.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char. orbit Parity Mult. Self Twist Proved
1.a Even 1 trivial yes
3.b Odd 1 CM by \(\Q(\sqrt{-3}) \) yes

Hecke kernels

There are no other newforms in \(S_{5}^{\mathrm{new}}(12, [\chi])\).