Properties

Label 12.5.c.a
Level 12
Weight 5
Character orbit 12.c
Self dual Yes
Analytic conductor 1.240
Analytic rank 0
Dimension 1
CM disc. -3
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 12 = 2^{2} \cdot 3 \)
Weight: \( k \) = \( 5 \)
Character orbit: \([\chi]\) = 12.c (of order \(2\) and degree \(1\))

Newform invariants

Self dual: Yes
Analytic conductor: \(1.24043955701\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

\(f(q)\) \(=\) \(q \) \(\mathstrut +\mathstrut 9q^{3} \) \(\mathstrut -\mathstrut 94q^{7} \) \(\mathstrut +\mathstrut 81q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(q \) \(\mathstrut +\mathstrut 9q^{3} \) \(\mathstrut -\mathstrut 94q^{7} \) \(\mathstrut +\mathstrut 81q^{9} \) \(\mathstrut +\mathstrut 146q^{13} \) \(\mathstrut -\mathstrut 46q^{19} \) \(\mathstrut -\mathstrut 846q^{21} \) \(\mathstrut +\mathstrut 625q^{25} \) \(\mathstrut +\mathstrut 729q^{27} \) \(\mathstrut +\mathstrut 194q^{31} \) \(\mathstrut -\mathstrut 2062q^{37} \) \(\mathstrut +\mathstrut 1314q^{39} \) \(\mathstrut -\mathstrut 3214q^{43} \) \(\mathstrut +\mathstrut 6435q^{49} \) \(\mathstrut -\mathstrut 414q^{57} \) \(\mathstrut -\mathstrut 1966q^{61} \) \(\mathstrut -\mathstrut 7614q^{63} \) \(\mathstrut +\mathstrut 5906q^{67} \) \(\mathstrut -\mathstrut 8542q^{73} \) \(\mathstrut +\mathstrut 5625q^{75} \) \(\mathstrut +\mathstrut 7682q^{79} \) \(\mathstrut +\mathstrut 6561q^{81} \) \(\mathstrut -\mathstrut 13724q^{91} \) \(\mathstrut +\mathstrut 1746q^{93} \) \(\mathstrut -\mathstrut 18814q^{97} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/12\mathbb{Z}\right)^\times\).

\(n\) \(5\) \(7\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
5.1
0
0 9.00000 0 0 0 −94.0000 0 81.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char. orbit Parity Mult. Self Twist Proved
1.a Even 1 trivial yes
3.b Odd 1 CM by \(\Q(\sqrt{-3}) \) yes

Hecke kernels

There are no other newforms in \(S_{5}^{\mathrm{new}}(12, [\chi])\).