Properties

Label 12.5.c
Level 12
Weight 5
Character orbit c
Rep. character \(\chi_{12}(5,\cdot)\)
Character field \(\Q\)
Dimension 1
Newforms 1
Sturm bound 10
Trace bound 0

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 12 = 2^{2} \cdot 3 \)
Weight: \( k \) = \( 5 \)
Character orbit: \([\chi]\) = 12.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 3 \)
Character field: \(\Q\)
Newforms: \( 1 \)
Sturm bound: \(10\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{5}(12, [\chi])\).

Total New Old
Modular forms 11 1 10
Cusp forms 5 1 4
Eisenstein series 6 0 6

Trace form

\( q + 9q^{3} - 94q^{7} + 81q^{9} + O(q^{10}) \) \( q + 9q^{3} - 94q^{7} + 81q^{9} + 146q^{13} - 46q^{19} - 846q^{21} + 625q^{25} + 729q^{27} + 194q^{31} - 2062q^{37} + 1314q^{39} - 3214q^{43} + 6435q^{49} - 414q^{57} - 1966q^{61} - 7614q^{63} + 5906q^{67} - 8542q^{73} + 5625q^{75} + 7682q^{79} + 6561q^{81} - 13724q^{91} + 1746q^{93} - 18814q^{97} + O(q^{100}) \)

Decomposition of \(S_{5}^{\mathrm{new}}(12, [\chi])\) into irreducible Hecke orbits

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
12.5.c.a \(1\) \(1.240\) \(\Q\) \(\Q(\sqrt{-3}) \) \(0\) \(9\) \(0\) \(-94\) \(q+9q^{3}-94q^{7}+3^{4}q^{9}+146q^{13}+\cdots\)

Decomposition of \(S_{5}^{\mathrm{old}}(12, [\chi])\) into lower level spaces

\( S_{5}^{\mathrm{old}}(12, [\chi]) \cong \) \(S_{5}^{\mathrm{new}}(6, [\chi])\)\(^{\oplus 2}\)