Properties

Label 12.3.d
Level $12$
Weight $3$
Character orbit 12.d
Rep. character $\chi_{12}(7,\cdot)$
Character field $\Q$
Dimension $2$
Newform subspaces $1$
Sturm bound $6$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 12 = 2^{2} \cdot 3 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 12.d (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 4 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(6\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(12, [\chi])\).

Total New Old
Modular forms 6 2 4
Cusp forms 2 2 0
Eisenstein series 4 0 4

Trace form

\( 2 q - 2 q^{2} - 4 q^{4} - 4 q^{5} + 6 q^{6} + 16 q^{8} - 6 q^{9} + 4 q^{10} - 12 q^{12} + 4 q^{13} - 24 q^{14} - 16 q^{16} + 20 q^{17} + 6 q^{18} + 8 q^{20} + 24 q^{21} + 24 q^{22} - 42 q^{25} - 4 q^{26}+ \cdots - 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(12, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
12.3.d.a 12.d 4.b $2$ $0.327$ \(\Q(\sqrt{-3}) \) None 12.3.d.a \(-2\) \(0\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-\beta-1)q^{2}+\beta q^{3}+(2\beta-2)q^{4}+\cdots\)