Properties

Label 12.3.c.a.5.1
Level $12$
Weight $3$
Character 12.5
Self dual yes
Analytic conductor $0.327$
Analytic rank $0$
Dimension $1$
CM discriminant -3
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 12 = 2^{2} \cdot 3 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 12.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: yes
Analytic conductor: \(0.326976317232\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 5.1
Character \(\chi\) \(=\) 12.5

$q$-expansion

\(f(q)\) \(=\) \(q-3.00000 q^{3} +2.00000 q^{7} +9.00000 q^{9} +O(q^{10})\) \(q-3.00000 q^{3} +2.00000 q^{7} +9.00000 q^{9} -22.0000 q^{13} +26.0000 q^{19} -6.00000 q^{21} +25.0000 q^{25} -27.0000 q^{27} -46.0000 q^{31} +26.0000 q^{37} +66.0000 q^{39} -22.0000 q^{43} -45.0000 q^{49} -78.0000 q^{57} +74.0000 q^{61} +18.0000 q^{63} +122.000 q^{67} -46.0000 q^{73} -75.0000 q^{75} -142.000 q^{79} +81.0000 q^{81} -44.0000 q^{91} +138.000 q^{93} +2.00000 q^{97} +O(q^{100})\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/12\mathbb{Z}\right)^\times\).

\(n\) \(5\) \(7\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.00000 −1.00000
\(4\) 0 0
\(5\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(6\) 0 0
\(7\) 2.00000 0.285714 0.142857 0.989743i \(-0.454371\pi\)
0.142857 + 0.989743i \(0.454371\pi\)
\(8\) 0 0
\(9\) 9.00000 1.00000
\(10\) 0 0
\(11\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(12\) 0 0
\(13\) −22.0000 −1.69231 −0.846154 0.532939i \(-0.821088\pi\)
−0.846154 + 0.532939i \(0.821088\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) 0 0
\(19\) 26.0000 1.36842 0.684211 0.729285i \(-0.260147\pi\)
0.684211 + 0.729285i \(0.260147\pi\)
\(20\) 0 0
\(21\) −6.00000 −0.285714
\(22\) 0 0
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) 0 0
\(25\) 25.0000 1.00000
\(26\) 0 0
\(27\) −27.0000 −1.00000
\(28\) 0 0
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 0 0
\(31\) −46.0000 −1.48387 −0.741935 0.670471i \(-0.766092\pi\)
−0.741935 + 0.670471i \(0.766092\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 26.0000 0.702703 0.351351 0.936244i \(-0.385722\pi\)
0.351351 + 0.936244i \(0.385722\pi\)
\(38\) 0 0
\(39\) 66.0000 1.69231
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) −22.0000 −0.511628 −0.255814 0.966726i \(-0.582343\pi\)
−0.255814 + 0.966726i \(0.582343\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) 0 0
\(49\) −45.0000 −0.918367
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −78.0000 −1.36842
\(58\) 0 0
\(59\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(60\) 0 0
\(61\) 74.0000 1.21311 0.606557 0.795040i \(-0.292550\pi\)
0.606557 + 0.795040i \(0.292550\pi\)
\(62\) 0 0
\(63\) 18.0000 0.285714
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 122.000 1.82090 0.910448 0.413624i \(-0.135737\pi\)
0.910448 + 0.413624i \(0.135737\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 0 0
\(73\) −46.0000 −0.630137 −0.315068 0.949069i \(-0.602027\pi\)
−0.315068 + 0.949069i \(0.602027\pi\)
\(74\) 0 0
\(75\) −75.0000 −1.00000
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −142.000 −1.79747 −0.898734 0.438494i \(-0.855512\pi\)
−0.898734 + 0.438494i \(0.855512\pi\)
\(80\) 0 0
\(81\) 81.0000 1.00000
\(82\) 0 0
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) −44.0000 −0.483516
\(92\) 0 0
\(93\) 138.000 1.48387
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 2.00000 0.0206186 0.0103093 0.999947i \(-0.496718\pi\)
0.0103093 + 0.999947i \(0.496718\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 0 0
\(103\) 194.000 1.88350 0.941748 0.336321i \(-0.109183\pi\)
0.941748 + 0.336321i \(0.109183\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(108\) 0 0
\(109\) −214.000 −1.96330 −0.981651 0.190684i \(-0.938929\pi\)
−0.981651 + 0.190684i \(0.938929\pi\)
\(110\) 0 0
\(111\) −78.0000 −0.702703
\(112\) 0 0
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −198.000 −1.69231
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 121.000 1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 146.000 1.14961 0.574803 0.818292i \(-0.305079\pi\)
0.574803 + 0.818292i \(0.305079\pi\)
\(128\) 0 0
\(129\) 66.0000 0.511628
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) 52.0000 0.390977
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) 0 0
\(139\) −22.0000 −0.158273 −0.0791367 0.996864i \(-0.525216\pi\)
−0.0791367 + 0.996864i \(0.525216\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 135.000 0.918367
\(148\) 0 0
\(149\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(150\) 0 0
\(151\) −286.000 −1.89404 −0.947020 0.321175i \(-0.895922\pi\)
−0.947020 + 0.321175i \(0.895922\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −118.000 −0.751592 −0.375796 0.926702i \(-0.622631\pi\)
−0.375796 + 0.926702i \(0.622631\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −262.000 −1.60736 −0.803681 0.595060i \(-0.797128\pi\)
−0.803681 + 0.595060i \(0.797128\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(168\) 0 0
\(169\) 315.000 1.86391
\(170\) 0 0
\(171\) 234.000 1.36842
\(172\) 0 0
\(173\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(174\) 0 0
\(175\) 50.0000 0.285714
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(180\) 0 0
\(181\) 314.000 1.73481 0.867403 0.497606i \(-0.165787\pi\)
0.867403 + 0.497606i \(0.165787\pi\)
\(182\) 0 0
\(183\) −222.000 −1.21311
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −54.0000 −0.285714
\(190\) 0 0
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) 0 0
\(193\) −382.000 −1.97927 −0.989637 0.143590i \(-0.954135\pi\)
−0.989637 + 0.143590i \(0.954135\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 0 0
\(199\) 386.000 1.93970 0.969849 0.243706i \(-0.0783631\pi\)
0.969849 + 0.243706i \(0.0783631\pi\)
\(200\) 0 0
\(201\) −366.000 −1.82090
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −166.000 −0.786730 −0.393365 0.919382i \(-0.628689\pi\)
−0.393365 + 0.919382i \(0.628689\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −92.0000 −0.423963
\(218\) 0 0
\(219\) 138.000 0.630137
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 338.000 1.51570 0.757848 0.652432i \(-0.226251\pi\)
0.757848 + 0.652432i \(0.226251\pi\)
\(224\) 0 0
\(225\) 225.000 1.00000
\(226\) 0 0
\(227\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(228\) 0 0
\(229\) 26.0000 0.113537 0.0567686 0.998387i \(-0.481920\pi\)
0.0567686 + 0.998387i \(0.481920\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 426.000 1.79747
\(238\) 0 0
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 0 0
\(241\) −286.000 −1.18672 −0.593361 0.804936i \(-0.702199\pi\)
−0.593361 + 0.804936i \(0.702199\pi\)
\(242\) 0 0
\(243\) −243.000 −1.00000
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −572.000 −2.31579
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(258\) 0 0
\(259\) 52.0000 0.200772
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(270\) 0 0
\(271\) 242.000 0.892989 0.446494 0.894786i \(-0.352672\pi\)
0.446494 + 0.894786i \(0.352672\pi\)
\(272\) 0 0
\(273\) 132.000 0.483516
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 122.000 0.440433 0.220217 0.975451i \(-0.429324\pi\)
0.220217 + 0.975451i \(0.429324\pi\)
\(278\) 0 0
\(279\) −414.000 −1.48387
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) 458.000 1.61837 0.809187 0.587551i \(-0.199908\pi\)
0.809187 + 0.587551i \(0.199908\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 289.000 1.00000
\(290\) 0 0
\(291\) −6.00000 −0.0206186
\(292\) 0 0
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −44.0000 −0.146179
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −358.000 −1.16612 −0.583062 0.812428i \(-0.698145\pi\)
−0.583062 + 0.812428i \(0.698145\pi\)
\(308\) 0 0
\(309\) −582.000 −1.88350
\(310\) 0 0
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 0 0
\(313\) −142.000 −0.453674 −0.226837 0.973933i \(-0.572838\pi\)
−0.226837 + 0.973933i \(0.572838\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −550.000 −1.69231
\(326\) 0 0
\(327\) 642.000 1.96330
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 362.000 1.09366 0.546828 0.837245i \(-0.315835\pi\)
0.546828 + 0.837245i \(0.315835\pi\)
\(332\) 0 0
\(333\) 234.000 0.702703
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 482.000 1.43027 0.715134 0.698988i \(-0.246366\pi\)
0.715134 + 0.698988i \(0.246366\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −188.000 −0.548105
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(348\) 0 0
\(349\) −502.000 −1.43840 −0.719198 0.694805i \(-0.755490\pi\)
−0.719198 + 0.694805i \(0.755490\pi\)
\(350\) 0 0
\(351\) 594.000 1.69231
\(352\) 0 0
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(360\) 0 0
\(361\) 315.000 0.872576
\(362\) 0 0
\(363\) −363.000 −1.00000
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −718.000 −1.95640 −0.978202 0.207657i \(-0.933416\pi\)
−0.978202 + 0.207657i \(0.933416\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 698.000 1.87131 0.935657 0.352911i \(-0.114808\pi\)
0.935657 + 0.352911i \(0.114808\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −694.000 −1.83113 −0.915567 0.402165i \(-0.868258\pi\)
−0.915567 + 0.402165i \(0.868258\pi\)
\(380\) 0 0
\(381\) −438.000 −1.14961
\(382\) 0 0
\(383\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −198.000 −0.511628
\(388\) 0 0
\(389\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 362.000 0.911839 0.455919 0.890021i \(-0.349311\pi\)
0.455919 + 0.890021i \(0.349311\pi\)
\(398\) 0 0
\(399\) −156.000 −0.390977
\(400\) 0 0
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) 1012.00 2.51117
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 626.000 1.53056 0.765281 0.643696i \(-0.222600\pi\)
0.765281 + 0.643696i \(0.222600\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 66.0000 0.158273
\(418\) 0 0
\(419\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(420\) 0 0
\(421\) −358.000 −0.850356 −0.425178 0.905110i \(-0.639789\pi\)
−0.425178 + 0.905110i \(0.639789\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 148.000 0.346604
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 0 0
\(433\) −862.000 −1.99076 −0.995381 0.0960028i \(-0.969394\pi\)
−0.995381 + 0.0960028i \(0.969394\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −94.0000 −0.214123 −0.107062 0.994252i \(-0.534144\pi\)
−0.107062 + 0.994252i \(0.534144\pi\)
\(440\) 0 0
\(441\) −405.000 −0.918367
\(442\) 0 0
\(443\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 858.000 1.89404
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −814.000 −1.78118 −0.890591 0.454805i \(-0.849709\pi\)
−0.890591 + 0.454805i \(0.849709\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) −526.000 −1.13607 −0.568035 0.823005i \(-0.692296\pi\)
−0.568035 + 0.823005i \(0.692296\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(468\) 0 0
\(469\) 244.000 0.520256
\(470\) 0 0
\(471\) 354.000 0.751592
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 650.000 1.36842
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(480\) 0 0
\(481\) −572.000 −1.18919
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 962.000 1.97536 0.987680 0.156489i \(-0.0500176\pi\)
0.987680 + 0.156489i \(0.0500176\pi\)
\(488\) 0 0
\(489\) 786.000 1.60736
\(490\) 0 0
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 26.0000 0.0521042 0.0260521 0.999661i \(-0.491706\pi\)
0.0260521 + 0.999661i \(0.491706\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −945.000 −1.86391
\(508\) 0 0
\(509\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(510\) 0 0
\(511\) −92.0000 −0.180039
\(512\) 0 0
\(513\) −702.000 −1.36842
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) −982.000 −1.87763 −0.938815 0.344423i \(-0.888075\pi\)
−0.938815 + 0.344423i \(0.888075\pi\)
\(524\) 0 0
\(525\) −150.000 −0.285714
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 529.000 1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 1034.00 1.91128 0.955638 0.294545i \(-0.0951680\pi\)
0.955638 + 0.294545i \(0.0951680\pi\)
\(542\) 0 0
\(543\) −942.000 −1.73481
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 506.000 0.925046 0.462523 0.886607i \(-0.346944\pi\)
0.462523 + 0.886607i \(0.346944\pi\)
\(548\) 0 0
\(549\) 666.000 1.21311
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −284.000 −0.513562
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(558\) 0 0
\(559\) 484.000 0.865832
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 162.000 0.285714
\(568\) 0 0
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) −886.000 −1.55166 −0.775832 0.630940i \(-0.782670\pi\)
−0.775832 + 0.630940i \(0.782670\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 962.000 1.66724 0.833622 0.552335i \(-0.186263\pi\)
0.833622 + 0.552335i \(0.186263\pi\)
\(578\) 0 0
\(579\) 1146.00 1.97927
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) 0 0
\(589\) −1196.00 −2.03056
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −1158.00 −1.93970
\(598\) 0 0
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) 0 0
\(601\) −526.000 −0.875208 −0.437604 0.899168i \(-0.644173\pi\)
−0.437604 + 0.899168i \(0.644173\pi\)
\(602\) 0 0
\(603\) 1098.00 1.82090
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −814.000 −1.34102 −0.670511 0.741900i \(-0.733925\pi\)
−0.670511 + 0.741900i \(0.733925\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −1126.00 −1.83687 −0.918434 0.395574i \(-0.870546\pi\)
−0.918434 + 0.395574i \(0.870546\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) 0 0
\(619\) −214.000 −0.345719 −0.172859 0.984947i \(-0.555301\pi\)
−0.172859 + 0.984947i \(0.555301\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 625.000 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 674.000 1.06815 0.534073 0.845438i \(-0.320661\pi\)
0.534073 + 0.845438i \(0.320661\pi\)
\(632\) 0 0
\(633\) 498.000 0.786730
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 990.000 1.55416
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 0 0
\(643\) 314.000 0.488336 0.244168 0.969733i \(-0.421485\pi\)
0.244168 + 0.969733i \(0.421485\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 276.000 0.423963
\(652\) 0 0
\(653\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −414.000 −0.630137
\(658\) 0 0
\(659\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(660\) 0 0
\(661\) 122.000 0.184569 0.0922844 0.995733i \(-0.470583\pi\)
0.0922844 + 0.995733i \(0.470583\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) −1014.00 −1.51570
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 1154.00 1.71471 0.857355 0.514725i \(-0.172106\pi\)
0.857355 + 0.514725i \(0.172106\pi\)
\(674\) 0 0
\(675\) −675.000 −1.00000
\(676\) 0 0
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) 0 0
\(679\) 4.00000 0.00589102
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −78.0000 −0.113537
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −1318.00 −1.90738 −0.953690 0.300790i \(-0.902750\pi\)
−0.953690 + 0.300790i \(0.902750\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) 676.000 0.961593
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −934.000 −1.31735 −0.658674 0.752428i \(-0.728882\pi\)
−0.658674 + 0.752428i \(0.728882\pi\)
\(710\) 0 0
\(711\) −1278.00 −1.79747
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(720\) 0 0
\(721\) 388.000 0.538141
\(722\) 0 0
\(723\) 858.000 1.18672
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 482.000 0.662999 0.331499 0.943455i \(-0.392446\pi\)
0.331499 + 0.943455i \(0.392446\pi\)
\(728\) 0 0
\(729\) 729.000 1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 1034.00 1.41064 0.705321 0.708888i \(-0.250803\pi\)
0.705321 + 0.708888i \(0.250803\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −1222.00 −1.65359 −0.826793 0.562506i \(-0.809837\pi\)
−0.826793 + 0.562506i \(0.809837\pi\)
\(740\) 0 0
\(741\) 1716.00 2.31579
\(742\) 0 0
\(743\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 1202.00 1.60053 0.800266 0.599645i \(-0.204691\pi\)
0.800266 + 0.599645i \(0.204691\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −838.000 −1.10700 −0.553501 0.832849i \(-0.686708\pi\)
−0.553501 + 0.832849i \(0.686708\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) −428.000 −0.560944
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −1534.00 −1.99480 −0.997399 0.0720749i \(-0.977038\pi\)
−0.997399 + 0.0720749i \(0.977038\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(774\) 0 0
\(775\) −1150.00 −1.48387
\(776\) 0 0
\(777\) −156.000 −0.200772
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 1562.00 1.98475 0.992376 0.123246i \(-0.0393305\pi\)
0.992376 + 0.123246i \(0.0393305\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −1628.00 −2.05296
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(810\) 0 0
\(811\) 1514.00 1.86683 0.933416 0.358797i \(-0.116813\pi\)
0.933416 + 0.358797i \(0.116813\pi\)
\(812\) 0 0
\(813\) −726.000 −0.892989
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −572.000 −0.700122
\(818\) 0 0
\(819\) −396.000 −0.483516
\(820\) 0 0
\(821\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(822\) 0 0
\(823\) 1058.00 1.28554 0.642770 0.766059i \(-0.277785\pi\)
0.642770 + 0.766059i \(0.277785\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(828\) 0 0
\(829\) 458.000 0.552473 0.276236 0.961090i \(-0.410913\pi\)
0.276236 + 0.961090i \(0.410913\pi\)
\(830\) 0 0
\(831\) −366.000 −0.440433
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 1242.00 1.48387
\(838\) 0 0
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 0 0
\(841\) 841.000 1.00000
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 242.000 0.285714
\(848\) 0 0
\(849\) −1374.00 −1.61837
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 1658.00 1.94373 0.971864 0.235543i \(-0.0756867\pi\)
0.971864 + 0.235543i \(0.0756867\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(858\) 0 0
\(859\) 1418.00 1.65076 0.825378 0.564580i \(-0.190962\pi\)
0.825378 + 0.564580i \(0.190962\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −867.000 −1.00000
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −2684.00 −3.08152
\(872\) 0 0
\(873\) 18.0000 0.0206186
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −598.000 −0.681870 −0.340935 0.940087i \(-0.610744\pi\)
−0.340935 + 0.940087i \(0.610744\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) 0 0
\(883\) −1702.00 −1.92752 −0.963760 0.266771i \(-0.914043\pi\)
−0.963760 + 0.266771i \(0.914043\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(888\) 0 0
\(889\) 292.000 0.328459
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 132.000 0.146179
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −214.000 −0.235943 −0.117971 0.993017i \(-0.537639\pi\)
−0.117971 + 0.993017i \(0.537639\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 866.000 0.942329 0.471164 0.882045i \(-0.343834\pi\)
0.471164 + 0.882045i \(0.343834\pi\)
\(920\) 0 0
\(921\) 1074.00 1.16612
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 650.000 0.702703
\(926\) 0 0
\(927\) 1746.00 1.88350
\(928\) 0 0
\(929\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(930\) 0 0
\(931\) −1170.00 −1.25671
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −1198.00 −1.27855 −0.639274 0.768979i \(-0.720765\pi\)
−0.639274 + 0.768979i \(0.720765\pi\)
\(938\) 0 0
\(939\) 426.000 0.453674
\(940\) 0 0
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(948\) 0 0
\(949\) 1012.00 1.06639
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 1155.00 1.20187
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −1534.00 −1.58635 −0.793175 0.608994i \(-0.791573\pi\)
−0.793175 + 0.608994i \(0.791573\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) 0 0
\(973\) −44.0000 −0.0452210
\(974\) 0 0
\(975\) 1650.00 1.69231
\(976\) 0 0
\(977\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −1926.00 −1.96330
\(982\) 0 0
\(983\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −46.0000 −0.0464178 −0.0232089 0.999731i \(-0.507388\pi\)
−0.0232089 + 0.999731i \(0.507388\pi\)
\(992\) 0 0
\(993\) −1086.00 −1.09366
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −1894.00 −1.89970 −0.949850 0.312707i \(-0.898764\pi\)
−0.949850 + 0.312707i \(0.898764\pi\)
\(998\) 0 0
\(999\) −702.000 −0.702703
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 12.3.c.a.5.1 1
3.2 odd 2 CM 12.3.c.a.5.1 1
4.3 odd 2 48.3.e.a.17.1 1
5.2 odd 4 300.3.b.a.149.2 2
5.3 odd 4 300.3.b.a.149.1 2
5.4 even 2 300.3.g.b.101.1 1
7.2 even 3 588.3.p.c.557.1 2
7.3 odd 6 588.3.p.b.569.1 2
7.4 even 3 588.3.p.c.569.1 2
7.5 odd 6 588.3.p.b.557.1 2
7.6 odd 2 588.3.c.c.197.1 1
8.3 odd 2 192.3.e.a.65.1 1
8.5 even 2 192.3.e.b.65.1 1
9.2 odd 6 324.3.g.b.53.1 2
9.4 even 3 324.3.g.b.269.1 2
9.5 odd 6 324.3.g.b.269.1 2
9.7 even 3 324.3.g.b.53.1 2
11.10 odd 2 1452.3.e.b.485.1 1
12.11 even 2 48.3.e.a.17.1 1
15.2 even 4 300.3.b.a.149.2 2
15.8 even 4 300.3.b.a.149.1 2
15.14 odd 2 300.3.g.b.101.1 1
16.3 odd 4 768.3.h.b.641.2 2
16.5 even 4 768.3.h.a.641.2 2
16.11 odd 4 768.3.h.b.641.1 2
16.13 even 4 768.3.h.a.641.1 2
20.3 even 4 1200.3.c.c.449.2 2
20.7 even 4 1200.3.c.c.449.1 2
20.19 odd 2 1200.3.l.b.401.1 1
21.2 odd 6 588.3.p.c.557.1 2
21.5 even 6 588.3.p.b.557.1 2
21.11 odd 6 588.3.p.c.569.1 2
21.17 even 6 588.3.p.b.569.1 2
21.20 even 2 588.3.c.c.197.1 1
24.5 odd 2 192.3.e.b.65.1 1
24.11 even 2 192.3.e.a.65.1 1
33.32 even 2 1452.3.e.b.485.1 1
36.7 odd 6 1296.3.q.b.1025.1 2
36.11 even 6 1296.3.q.b.1025.1 2
36.23 even 6 1296.3.q.b.593.1 2
36.31 odd 6 1296.3.q.b.593.1 2
48.5 odd 4 768.3.h.a.641.2 2
48.11 even 4 768.3.h.b.641.1 2
48.29 odd 4 768.3.h.a.641.1 2
48.35 even 4 768.3.h.b.641.2 2
60.23 odd 4 1200.3.c.c.449.2 2
60.47 odd 4 1200.3.c.c.449.1 2
60.59 even 2 1200.3.l.b.401.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
12.3.c.a.5.1 1 1.1 even 1 trivial
12.3.c.a.5.1 1 3.2 odd 2 CM
48.3.e.a.17.1 1 4.3 odd 2
48.3.e.a.17.1 1 12.11 even 2
192.3.e.a.65.1 1 8.3 odd 2
192.3.e.a.65.1 1 24.11 even 2
192.3.e.b.65.1 1 8.5 even 2
192.3.e.b.65.1 1 24.5 odd 2
300.3.b.a.149.1 2 5.3 odd 4
300.3.b.a.149.1 2 15.8 even 4
300.3.b.a.149.2 2 5.2 odd 4
300.3.b.a.149.2 2 15.2 even 4
300.3.g.b.101.1 1 5.4 even 2
300.3.g.b.101.1 1 15.14 odd 2
324.3.g.b.53.1 2 9.2 odd 6
324.3.g.b.53.1 2 9.7 even 3
324.3.g.b.269.1 2 9.4 even 3
324.3.g.b.269.1 2 9.5 odd 6
588.3.c.c.197.1 1 7.6 odd 2
588.3.c.c.197.1 1 21.20 even 2
588.3.p.b.557.1 2 7.5 odd 6
588.3.p.b.557.1 2 21.5 even 6
588.3.p.b.569.1 2 7.3 odd 6
588.3.p.b.569.1 2 21.17 even 6
588.3.p.c.557.1 2 7.2 even 3
588.3.p.c.557.1 2 21.2 odd 6
588.3.p.c.569.1 2 7.4 even 3
588.3.p.c.569.1 2 21.11 odd 6
768.3.h.a.641.1 2 16.13 even 4
768.3.h.a.641.1 2 48.29 odd 4
768.3.h.a.641.2 2 16.5 even 4
768.3.h.a.641.2 2 48.5 odd 4
768.3.h.b.641.1 2 16.11 odd 4
768.3.h.b.641.1 2 48.11 even 4
768.3.h.b.641.2 2 16.3 odd 4
768.3.h.b.641.2 2 48.35 even 4
1200.3.c.c.449.1 2 20.7 even 4
1200.3.c.c.449.1 2 60.47 odd 4
1200.3.c.c.449.2 2 20.3 even 4
1200.3.c.c.449.2 2 60.23 odd 4
1200.3.l.b.401.1 1 20.19 odd 2
1200.3.l.b.401.1 1 60.59 even 2
1296.3.q.b.593.1 2 36.23 even 6
1296.3.q.b.593.1 2 36.31 odd 6
1296.3.q.b.1025.1 2 36.7 odd 6
1296.3.q.b.1025.1 2 36.11 even 6
1452.3.e.b.485.1 1 11.10 odd 2
1452.3.e.b.485.1 1 33.32 even 2