Properties

Label 12.22.a
Level $12$
Weight $22$
Character orbit 12.a
Rep. character $\chi_{12}(1,\cdot)$
Character field $\Q$
Dimension $3$
Newform subspaces $2$
Sturm bound $44$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 12 = 2^{2} \cdot 3 \)
Weight: \( k \) \(=\) \( 22 \)
Character orbit: \([\chi]\) \(=\) 12.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(44\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{22}(\Gamma_0(12))\).

Total New Old
Modular forms 45 3 42
Cusp forms 39 3 36
Eisenstein series 6 0 6

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)FrickeDim
\(-\)\(+\)\(-\)\(2\)
\(-\)\(-\)\(+\)\(1\)
Plus space\(+\)\(1\)
Minus space\(-\)\(2\)

Trace form

\( 3 q - 59049 q^{3} + 17559810 q^{5} + 791583864 q^{7} + 10460353203 q^{9} - 112222937772 q^{11} - 1258424621670 q^{13} - 2367628113510 q^{15} + 2953244684214 q^{17} + 25208162419020 q^{19} - 13448739952008 q^{21}+ \cdots - 39\!\cdots\!72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{22}^{\mathrm{new}}(\Gamma_0(12))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3
12.22.a.a 12.a 1.a $1$ $33.537$ \(\Q\) None 12.22.a.a \(0\) \(59049\) \(-11268090\) \(281914136\) $-$ $-$ $\mathrm{SU}(2)$ \(q+3^{10}q^{3}-11268090q^{5}+281914136q^{7}+\cdots\)
12.22.a.b 12.a 1.a $2$ $33.537$ \(\mathbb{Q}[x]/(x^{2} - \cdots)\) None 12.22.a.b \(0\) \(-118098\) \(28827900\) \(509669728\) $-$ $+$ $\mathrm{SU}(2)$ \(q-3^{10}q^{3}+(14413950-5\beta )q^{5}+(254834864+\cdots)q^{7}+\cdots\)

Decomposition of \(S_{22}^{\mathrm{old}}(\Gamma_0(12))\) into lower level spaces

\( S_{22}^{\mathrm{old}}(\Gamma_0(12)) \simeq \) \(S_{22}^{\mathrm{new}}(\Gamma_0(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 3}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_0(4))\)\(^{\oplus 2}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 2}\)