Defining parameters
Level: | \( N \) | \(=\) | \( 12 = 2^{2} \cdot 3 \) |
Weight: | \( k \) | \(=\) | \( 22 \) |
Character orbit: | \([\chi]\) | \(=\) | 12.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(44\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{22}(\Gamma_0(12))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 45 | 3 | 42 |
Cusp forms | 39 | 3 | 36 |
Eisenstein series | 6 | 0 | 6 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | Fricke | Dim |
---|---|---|---|
\(-\) | \(+\) | \(-\) | \(2\) |
\(-\) | \(-\) | \(+\) | \(1\) |
Plus space | \(+\) | \(1\) | |
Minus space | \(-\) | \(2\) |
Trace form
Decomposition of \(S_{22}^{\mathrm{new}}(\Gamma_0(12))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 3 | |||||||
12.22.a.a | $1$ | $33.537$ | \(\Q\) | None | \(0\) | \(59049\) | \(-11268090\) | \(281914136\) | $-$ | $-$ | \(q+3^{10}q^{3}-11268090q^{5}+281914136q^{7}+\cdots\) | |
12.22.a.b | $2$ | $33.537$ | \(\mathbb{Q}[x]/(x^{2} - \cdots)\) | None | \(0\) | \(-118098\) | \(28827900\) | \(509669728\) | $-$ | $+$ | \(q-3^{10}q^{3}+(14413950-5\beta )q^{5}+(254834864+\cdots)q^{7}+\cdots\) |
Decomposition of \(S_{22}^{\mathrm{old}}(\Gamma_0(12))\) into lower level spaces
\( S_{22}^{\mathrm{old}}(\Gamma_0(12)) \simeq \) \(S_{22}^{\mathrm{new}}(\Gamma_0(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 3}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_0(4))\)\(^{\oplus 2}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 2}\)