Properties

Label 12.22
Level 12
Weight 22
Dimension 43
Nonzero newspaces 2
Newform subspaces 3
Sturm bound 176
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 12 = 2^{2} \cdot 3 \)
Weight: \( k \) = \( 22 \)
Nonzero newspaces: \( 2 \)
Newform subspaces: \( 3 \)
Sturm bound: \(176\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{22}(\Gamma_1(12))\).

Total New Old
Modular forms 89 47 42
Cusp forms 79 43 36
Eisenstein series 10 4 6

Trace form

\( 43 q - 59049 q^{3} + 1212040 q^{4} + 17559810 q^{5} - 73477608 q^{6} + 791583864 q^{7} + 15323110971 q^{9} + 70993722608 q^{10} - 112222937772 q^{11} + 230311800264 q^{12} - 725726689846 q^{13} - 2367628113510 q^{15}+ \cdots - 39\!\cdots\!72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{22}^{\mathrm{new}}(\Gamma_1(12))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
12.22.a \(\chi_{12}(1, \cdot)\) 12.22.a.a 1 1
12.22.a.b 2
12.22.b \(\chi_{12}(11, \cdot)\) 12.22.b.a 40 1

Decomposition of \(S_{22}^{\mathrm{old}}(\Gamma_1(12))\) into lower level spaces

\( S_{22}^{\mathrm{old}}(\Gamma_1(12)) \cong \) \(S_{22}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 3}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 2}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 2}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 1}\)