Properties

Label 12.16.b
Level 12
Weight 16
Character orbit b
Rep. character \(\chi_{12}(11,\cdot)\)
Character field \(\Q\)
Dimension 28
Newforms 1
Sturm bound 32
Trace bound 0

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 12 = 2^{2} \cdot 3 \)
Weight: \( k \) = \( 16 \)
Character orbit: \([\chi]\) = 12.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 12 \)
Character field: \(\Q\)
Newforms: \( 1 \)
Sturm bound: \(32\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{16}(12, [\chi])\).

Total New Old
Modular forms 32 32 0
Cusp forms 28 28 0
Eisenstein series 4 4 0

Trace form

\( 28q + 26968q^{4} + 823656q^{6} - 3812052q^{9} + O(q^{10}) \) \( 28q + 26968q^{4} + 823656q^{6} - 3812052q^{9} - 43831600q^{10} - 226414248q^{12} + 124527272q^{13} - 1459325408q^{16} - 4234777584q^{18} - 7261350648q^{21} - 2533670160q^{22} - 18487781856q^{24} - 146804950740q^{25} + 5481093840q^{28} + 8237058960q^{30} + 204574669728q^{33} + 450165745472q^{34} + 232631927160q^{36} + 386069193224q^{37} + 1945471012160q^{40} + 1938106219632q^{42} - 5007113912640q^{45} + 2270790222432q^{46} + 5846474725152q^{48} - 18480860963084q^{49} - 6113229405424q^{52} + 1626598700568q^{54} + 8085872464056q^{57} - 19395437098192q^{58} - 10924219377600q^{60} - 16392792556696q^{61} + 21633892829056q^{64} + 4928819126448q^{66} + 137029869973056q^{69} + 91772543171040q^{70} + 66924493142592q^{72} + 158451626683736q^{73} - 205265768291280q^{76} + 58364283489648q^{78} + 116126816635836q^{81} - 750029796726880q^{82} - 92605433207856q^{84} - 30099357052160q^{85} - 619691835246912q^{88} - 471443548913520q^{90} - 777661615138584q^{93} + 1301107064491200q^{94} + 525428335287168q^{96} - 824166397720648q^{97} + O(q^{100}) \)

Decomposition of \(S_{16}^{\mathrm{new}}(12, [\chi])\) into irreducible Hecke orbits

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
12.16.b.a \(28\) \(17.123\) None \(0\) \(0\) \(0\) \(0\)