Newspace parameters
| Level: | \( N \) | \(=\) | \( 12 = 2^{2} \cdot 3 \) |
| Weight: | \( k \) | \(=\) | \( 14 \) |
| Character orbit: | \([\chi]\) | \(=\) | 12.b (of order \(2\), degree \(1\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(12.8677114742\) |
| Analytic rank: | \(0\) |
| Dimension: | \(24\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 11.1 | −89.8019 | − | 11.2966i | −433.314 | + | 1185.99i | 7936.77 | + | 2028.92i | − | 24994.7i | 52310.1 | − | 101609.i | − | 71320.8i | −689818. | − | 271859.i | −1.21880e6 | − | 1.02781e6i | −282356. | + | 2.24457e6i | ||
| 11.2 | −89.8019 | + | 11.2966i | −433.314 | − | 1185.99i | 7936.77 | − | 2028.92i | 24994.7i | 52310.1 | + | 101609.i | 71320.8i | −689818. | + | 271859.i | −1.21880e6 | + | 1.02781e6i | −282356. | − | 2.24457e6i | ||||
| 11.3 | −83.2487 | − | 35.5199i | 1204.82 | + | 377.813i | 5668.68 | + | 5913.96i | 53567.1i | −86879.4 | − | 74247.3i | − | 133564.i | −261847. | − | 693680.i | 1.30884e6 | + | 910390.i | 1.90270e6 | − | 4.45939e6i | |||
| 11.4 | −83.2487 | + | 35.5199i | 1204.82 | − | 377.813i | 5668.68 | − | 5913.96i | − | 53567.1i | −86879.4 | + | 74247.3i | 133564.i | −261847. | + | 693680.i | 1.30884e6 | − | 910390.i | 1.90270e6 | + | 4.45939e6i | |||
| 11.5 | −63.1407 | − | 64.8479i | −1256.10 | − | 128.555i | −218.513 | + | 8189.09i | 1788.84i | 70974.7 | + | 89572.8i | 316886.i | 544842. | − | 502894.i | 1.56127e6 | + | 322956.i | 116003. | − | 112949.i | ||||
| 11.6 | −63.1407 | + | 64.8479i | −1256.10 | + | 128.555i | −218.513 | − | 8189.09i | − | 1788.84i | 70974.7 | − | 89572.8i | − | 316886.i | 544842. | + | 502894.i | 1.56127e6 | − | 322956.i | 116003. | + | 112949.i | ||
| 11.7 | −61.4564 | − | 66.4463i | 544.543 | − | 1139.21i | −638.220 | + | 8167.10i | − | 30890.7i | −109162. | + | 33828.8i | − | 363071.i | 581896. | − | 459513.i | −1.00127e6 | − | 1.24070e6i | −2.05257e6 | + | 1.89843e6i | ||
| 11.8 | −61.4564 | + | 66.4463i | 544.543 | + | 1139.21i | −638.220 | − | 8167.10i | 30890.7i | −109162. | − | 33828.8i | 363071.i | 581896. | + | 459513.i | −1.00127e6 | + | 1.24070e6i | −2.05257e6 | − | 1.89843e6i | ||||
| 11.9 | −26.1905 | − | 86.6375i | 919.540 | + | 865.314i | −6820.12 | + | 4538.16i | − | 34796.6i | 50885.4 | − | 102330.i | 298175.i | 571797. | + | 472022.i | 96786.4 | + | 1.59138e6i | −3.01469e6 | + | 911338.i | |||
| 11.10 | −26.1905 | + | 86.6375i | 919.540 | − | 865.314i | −6820.12 | − | 4538.16i | 34796.6i | 50885.4 | + | 102330.i | − | 298175.i | 571797. | − | 472022.i | 96786.4 | − | 1.59138e6i | −3.01469e6 | − | 911338.i | |||
| 11.11 | −9.20327 | − | 90.0405i | −618.744 | + | 1100.67i | −8022.60 | + | 1657.33i | 49220.1i | 104800. | + | 45582.3i | − | 527913.i | 223061. | + | 707106.i | −828634. | − | 1.36207e6i | 4.43181e6 | − | 452986.i | |||
| 11.12 | −9.20327 | + | 90.0405i | −618.744 | − | 1100.67i | −8022.60 | − | 1657.33i | − | 49220.1i | 104800. | − | 45582.3i | 527913.i | 223061. | − | 707106.i | −828634. | + | 1.36207e6i | 4.43181e6 | + | 452986.i | |||
| 11.13 | 9.20327 | − | 90.0405i | 618.744 | − | 1100.67i | −8022.60 | − | 1657.33i | 49220.1i | −93410.6 | − | 65841.9i | 527913.i | −223061. | + | 707106.i | −828634. | − | 1.36207e6i | 4.43181e6 | + | 452986.i | ||||
| 11.14 | 9.20327 | + | 90.0405i | 618.744 | + | 1100.67i | −8022.60 | + | 1657.33i | − | 49220.1i | −93410.6 | + | 65841.9i | − | 527913.i | −223061. | − | 707106.i | −828634. | + | 1.36207e6i | 4.43181e6 | − | 452986.i | ||
| 11.15 | 26.1905 | − | 86.6375i | −919.540 | − | 865.314i | −6820.12 | − | 4538.16i | − | 34796.6i | −99051.9 | + | 57003.7i | − | 298175.i | −571797. | + | 472022.i | 96786.4 | + | 1.59138e6i | −3.01469e6 | − | 911338.i | ||
| 11.16 | 26.1905 | + | 86.6375i | −919.540 | + | 865.314i | −6820.12 | + | 4538.16i | 34796.6i | −99051.9 | − | 57003.7i | 298175.i | −571797. | − | 472022.i | 96786.4 | − | 1.59138e6i | −3.01469e6 | + | 911338.i | ||||
| 11.17 | 61.4564 | − | 66.4463i | −544.543 | + | 1139.21i | −638.220 | − | 8167.10i | − | 30890.7i | 42230.6 | + | 106195.i | 363071.i | −581896. | − | 459513.i | −1.00127e6 | − | 1.24070e6i | −2.05257e6 | − | 1.89843e6i | |||
| 11.18 | 61.4564 | + | 66.4463i | −544.543 | − | 1139.21i | −638.220 | + | 8167.10i | 30890.7i | 42230.6 | − | 106195.i | − | 363071.i | −581896. | + | 459513.i | −1.00127e6 | + | 1.24070e6i | −2.05257e6 | + | 1.89843e6i | |||
| 11.19 | 63.1407 | − | 64.8479i | 1256.10 | + | 128.555i | −218.513 | − | 8189.09i | 1788.84i | 87647.7 | − | 73338.7i | − | 316886.i | −544842. | − | 502894.i | 1.56127e6 | + | 322956.i | 116003. | + | 112949.i | |||
| 11.20 | 63.1407 | + | 64.8479i | 1256.10 | − | 128.555i | −218.513 | + | 8189.09i | − | 1788.84i | 87647.7 | + | 73338.7i | 316886.i | −544842. | + | 502894.i | 1.56127e6 | − | 322956.i | 116003. | − | 112949.i | |||
| See all 24 embeddings | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 3.b | odd | 2 | 1 | inner |
| 4.b | odd | 2 | 1 | inner |
| 12.b | even | 2 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 12.14.b.a | ✓ | 24 |
| 3.b | odd | 2 | 1 | inner | 12.14.b.a | ✓ | 24 |
| 4.b | odd | 2 | 1 | inner | 12.14.b.a | ✓ | 24 |
| 12.b | even | 2 | 1 | inner | 12.14.b.a | ✓ | 24 |
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 12.14.b.a | ✓ | 24 | 1.a | even | 1 | 1 | trivial |
| 12.14.b.a | ✓ | 24 | 3.b | odd | 2 | 1 | inner |
| 12.14.b.a | ✓ | 24 | 4.b | odd | 2 | 1 | inner |
| 12.14.b.a | ✓ | 24 | 12.b | even | 2 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{14}^{\mathrm{new}}(12, [\chi])\).