Properties

Label 12.14.b.a
Level $12$
Weight $14$
Character orbit 12.b
Analytic conductor $12.868$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [12,14,Mod(11,12)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("12.11"); S:= CuspForms(chi, 14); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(12, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 14, names="a")
 
Level: \( N \) \(=\) \( 12 = 2^{2} \cdot 3 \)
Weight: \( k \) \(=\) \( 14 \)
Character orbit: \([\chi]\) \(=\) 12.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.8677114742\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 24 q - 8376 q^{4} - 135720 q^{6} - 327240 q^{9} + 4403568 q^{10} - 139896 q^{12} - 17520048 q^{13} + 41046816 q^{16} - 102153744 q^{18} + 340864272 q^{21} + 401914896 q^{22} + 14766624 q^{24} - 3043252488 q^{25}+ \cdots - 4159752429648 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
11.1 −89.8019 11.2966i −433.314 + 1185.99i 7936.77 + 2028.92i 24994.7i 52310.1 101609.i 71320.8i −689818. 271859.i −1.21880e6 1.02781e6i −282356. + 2.24457e6i
11.2 −89.8019 + 11.2966i −433.314 1185.99i 7936.77 2028.92i 24994.7i 52310.1 + 101609.i 71320.8i −689818. + 271859.i −1.21880e6 + 1.02781e6i −282356. 2.24457e6i
11.3 −83.2487 35.5199i 1204.82 + 377.813i 5668.68 + 5913.96i 53567.1i −86879.4 74247.3i 133564.i −261847. 693680.i 1.30884e6 + 910390.i 1.90270e6 4.45939e6i
11.4 −83.2487 + 35.5199i 1204.82 377.813i 5668.68 5913.96i 53567.1i −86879.4 + 74247.3i 133564.i −261847. + 693680.i 1.30884e6 910390.i 1.90270e6 + 4.45939e6i
11.5 −63.1407 64.8479i −1256.10 128.555i −218.513 + 8189.09i 1788.84i 70974.7 + 89572.8i 316886.i 544842. 502894.i 1.56127e6 + 322956.i 116003. 112949.i
11.6 −63.1407 + 64.8479i −1256.10 + 128.555i −218.513 8189.09i 1788.84i 70974.7 89572.8i 316886.i 544842. + 502894.i 1.56127e6 322956.i 116003. + 112949.i
11.7 −61.4564 66.4463i 544.543 1139.21i −638.220 + 8167.10i 30890.7i −109162. + 33828.8i 363071.i 581896. 459513.i −1.00127e6 1.24070e6i −2.05257e6 + 1.89843e6i
11.8 −61.4564 + 66.4463i 544.543 + 1139.21i −638.220 8167.10i 30890.7i −109162. 33828.8i 363071.i 581896. + 459513.i −1.00127e6 + 1.24070e6i −2.05257e6 1.89843e6i
11.9 −26.1905 86.6375i 919.540 + 865.314i −6820.12 + 4538.16i 34796.6i 50885.4 102330.i 298175.i 571797. + 472022.i 96786.4 + 1.59138e6i −3.01469e6 + 911338.i
11.10 −26.1905 + 86.6375i 919.540 865.314i −6820.12 4538.16i 34796.6i 50885.4 + 102330.i 298175.i 571797. 472022.i 96786.4 1.59138e6i −3.01469e6 911338.i
11.11 −9.20327 90.0405i −618.744 + 1100.67i −8022.60 + 1657.33i 49220.1i 104800. + 45582.3i 527913.i 223061. + 707106.i −828634. 1.36207e6i 4.43181e6 452986.i
11.12 −9.20327 + 90.0405i −618.744 1100.67i −8022.60 1657.33i 49220.1i 104800. 45582.3i 527913.i 223061. 707106.i −828634. + 1.36207e6i 4.43181e6 + 452986.i
11.13 9.20327 90.0405i 618.744 1100.67i −8022.60 1657.33i 49220.1i −93410.6 65841.9i 527913.i −223061. + 707106.i −828634. 1.36207e6i 4.43181e6 + 452986.i
11.14 9.20327 + 90.0405i 618.744 + 1100.67i −8022.60 + 1657.33i 49220.1i −93410.6 + 65841.9i 527913.i −223061. 707106.i −828634. + 1.36207e6i 4.43181e6 452986.i
11.15 26.1905 86.6375i −919.540 865.314i −6820.12 4538.16i 34796.6i −99051.9 + 57003.7i 298175.i −571797. + 472022.i 96786.4 + 1.59138e6i −3.01469e6 911338.i
11.16 26.1905 + 86.6375i −919.540 + 865.314i −6820.12 + 4538.16i 34796.6i −99051.9 57003.7i 298175.i −571797. 472022.i 96786.4 1.59138e6i −3.01469e6 + 911338.i
11.17 61.4564 66.4463i −544.543 + 1139.21i −638.220 8167.10i 30890.7i 42230.6 + 106195.i 363071.i −581896. 459513.i −1.00127e6 1.24070e6i −2.05257e6 1.89843e6i
11.18 61.4564 + 66.4463i −544.543 1139.21i −638.220 + 8167.10i 30890.7i 42230.6 106195.i 363071.i −581896. + 459513.i −1.00127e6 + 1.24070e6i −2.05257e6 + 1.89843e6i
11.19 63.1407 64.8479i 1256.10 + 128.555i −218.513 8189.09i 1788.84i 87647.7 73338.7i 316886.i −544842. 502894.i 1.56127e6 + 322956.i 116003. + 112949.i
11.20 63.1407 + 64.8479i 1256.10 128.555i −218.513 + 8189.09i 1788.84i 87647.7 + 73338.7i 316886.i −544842. + 502894.i 1.56127e6 322956.i 116003. 112949.i
See all 24 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 11.24
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
4.b odd 2 1 inner
12.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 12.14.b.a 24
3.b odd 2 1 inner 12.14.b.a 24
4.b odd 2 1 inner 12.14.b.a 24
12.b even 2 1 inner 12.14.b.a 24
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
12.14.b.a 24 1.a even 1 1 trivial
12.14.b.a 24 3.b odd 2 1 inner
12.14.b.a 24 4.b odd 2 1 inner
12.14.b.a 24 12.b even 2 1 inner

Hecke kernels

This newform subspace is the entire newspace \(S_{14}^{\mathrm{new}}(12, [\chi])\).