Defining parameters
Level: | \( N \) | = | \( 12 = 2^{2} \cdot 3 \) |
Weight: | \( k \) | = | \( 14 \) |
Nonzero newspaces: | \( 2 \) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(112\) | ||
Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{14}(\Gamma_1(12))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 57 | 30 | 27 |
Cusp forms | 47 | 26 | 21 |
Eisenstein series | 10 | 4 | 6 |
Trace form
Decomposition of \(S_{14}^{\mathrm{new}}(\Gamma_1(12))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
12.14.a | \(\chi_{12}(1, \cdot)\) | 12.14.a.a | 1 | 1 |
12.14.a.b | 1 | |||
12.14.b | \(\chi_{12}(11, \cdot)\) | 12.14.b.a | 24 | 1 |
Decomposition of \(S_{14}^{\mathrm{old}}(\Gamma_1(12))\) into lower level spaces
\( S_{14}^{\mathrm{old}}(\Gamma_1(12)) \cong \) \(S_{14}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 3}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 2}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 2}\)