Properties

Label 12.14
Level 12
Weight 14
Dimension 26
Nonzero newspaces 2
Newform subspaces 3
Sturm bound 112
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 12 = 2^{2} \cdot 3 \)
Weight: \( k \) = \( 14 \)
Nonzero newspaces: \( 2 \)
Newform subspaces: \( 3 \)
Sturm bound: \(112\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{14}(\Gamma_1(12))\).

Total New Old
Modular forms 57 30 27
Cusp forms 47 26 21
Eisenstein series 10 4 6

Trace form

\( 26 q - 8376 q^{4} - 39420 q^{5} - 135720 q^{6} - 236600 q^{7} + 735642 q^{9} + 4403568 q^{10} + 4134672 q^{11} - 139896 q^{12} - 30185348 q^{13} - 7085880 q^{15} + 41046816 q^{16} - 37133100 q^{17} - 102153744 q^{18}+ \cdots + 2197334222352 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{14}^{\mathrm{new}}(\Gamma_1(12))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
12.14.a \(\chi_{12}(1, \cdot)\) 12.14.a.a 1 1
12.14.a.b 1
12.14.b \(\chi_{12}(11, \cdot)\) 12.14.b.a 24 1

Decomposition of \(S_{14}^{\mathrm{old}}(\Gamma_1(12))\) into lower level spaces

\( S_{14}^{\mathrm{old}}(\Gamma_1(12)) \cong \) \(S_{14}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 3}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 2}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 2}\)