Properties

Label 12.10.a
Level $12$
Weight $10$
Character orbit 12.a
Rep. character $\chi_{12}(1,\cdot)$
Character field $\Q$
Dimension $1$
Newform subspaces $1$
Sturm bound $20$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 12 = 2^{2} \cdot 3 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 12.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(20\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{10}(\Gamma_0(12))\).

Total New Old
Modular forms 21 1 20
Cusp forms 15 1 14
Eisenstein series 6 0 6

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(5\)\(0\)\(5\)\(3\)\(0\)\(3\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(-\)\(6\)\(0\)\(6\)\(4\)\(0\)\(4\)\(2\)\(0\)\(2\)
\(-\)\(+\)\(-\)\(5\)\(1\)\(4\)\(4\)\(1\)\(3\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(+\)\(5\)\(0\)\(5\)\(4\)\(0\)\(4\)\(1\)\(0\)\(1\)
Plus space\(+\)\(10\)\(0\)\(10\)\(7\)\(0\)\(7\)\(3\)\(0\)\(3\)
Minus space\(-\)\(11\)\(1\)\(10\)\(8\)\(1\)\(7\)\(3\)\(0\)\(3\)

Trace form

\( q - 81 q^{3} + 990 q^{5} + 8576 q^{7} + 6561 q^{9} + 70596 q^{11} - 2530 q^{13} - 80190 q^{15} - 200574 q^{17} - 695620 q^{19} - 694656 q^{21} + 2472696 q^{23} - 973025 q^{25} - 531441 q^{27} + 5474214 q^{29}+ \cdots + 463180356 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{10}^{\mathrm{new}}(\Gamma_0(12))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3
12.10.a.a 12.a 1.a $1$ $6.180$ \(\Q\) None 12.10.a.a \(0\) \(-81\) \(990\) \(8576\) $-$ $+$ $\mathrm{SU}(2)$ \(q-3^{4}q^{3}+990q^{5}+8576q^{7}+3^{8}q^{9}+\cdots\)

Decomposition of \(S_{10}^{\mathrm{old}}(\Gamma_0(12))\) into lower level spaces

\( S_{10}^{\mathrm{old}}(\Gamma_0(12)) \simeq \) \(S_{10}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 3}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(4))\)\(^{\oplus 2}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 2}\)