Properties

Label 1197.2.j.k.856.2
Level $1197$
Weight $2$
Character 1197.856
Analytic conductor $9.558$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1197,2,Mod(172,1197)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1197.172"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1197, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1197 = 3^{2} \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1197.j (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.55809312195\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.310217769.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 4x^{6} - 2x^{5} + 15x^{4} - 4x^{3} + 5x^{2} + x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 399)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 856.2
Root \(-0.198169 + 0.343239i\) of defining polynomial
Character \(\chi\) \(=\) 1197.856
Dual form 1197.2.j.k.172.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.198169 + 0.343239i) q^{2} +(0.921458 + 1.59601i) q^{4} +(-0.421458 + 0.729986i) q^{5} +(1.79981 - 1.93925i) q^{7} -1.52310 q^{8} +(-0.167040 - 0.289322i) q^{10} +(-0.0179894 - 0.0311586i) q^{11} +1.96402 q^{13} +(0.308961 + 1.00206i) q^{14} +(-1.54109 + 2.66924i) q^{16} +(1.62676 + 2.81763i) q^{17} +(-0.500000 + 0.866025i) q^{19} -1.55342 q^{20} +0.0142598 q^{22} +(0.641921 - 1.11184i) q^{23} +(2.14475 + 3.71481i) q^{25} +(-0.389209 + 0.674129i) q^{26} +(4.75351 + 1.08558i) q^{28} +7.06045 q^{29} +(1.80976 + 3.13460i) q^{31} +(-2.13389 - 3.69600i) q^{32} -1.28949 q^{34} +(0.657084 + 2.13115i) q^{35} +(1.08137 - 1.87298i) q^{37} +(-0.198169 - 0.343239i) q^{38} +(0.641921 - 1.11184i) q^{40} -0.130805 q^{41} -4.50884 q^{43} +(0.0331530 - 0.0574227i) q^{44} +(0.254418 + 0.440665i) q^{46} +(-3.99277 + 6.91568i) q^{47} +(-0.521390 - 6.98056i) q^{49} -1.70009 q^{50} +(1.80976 + 3.13460i) q^{52} +(1.49085 + 2.58222i) q^{53} +0.0303272 q^{55} +(-2.74128 + 2.95366i) q^{56} +(-1.39916 + 2.42342i) q^{58} +(6.48994 + 11.2409i) q^{59} +(-1.29380 + 2.24092i) q^{61} -1.43456 q^{62} -4.47286 q^{64} +(-0.827752 + 1.43371i) q^{65} +(-2.25952 - 3.91361i) q^{67} +(-2.99798 + 5.19265i) q^{68} +(-0.861707 - 0.196791i) q^{70} +2.64985 q^{71} +(-3.10649 - 5.38059i) q^{73} +(0.428588 + 0.742336i) q^{74} -1.84292 q^{76} +(-0.0928019 - 0.0211935i) q^{77} +(-5.18641 + 8.98312i) q^{79} +(-1.29900 - 2.24994i) q^{80} +(0.0259214 - 0.0448973i) q^{82} -10.2752 q^{83} -2.74244 q^{85} +(0.893513 - 1.54761i) q^{86} +(0.0273996 + 0.0474576i) q^{88} +(4.18641 - 7.25107i) q^{89} +(3.53486 - 3.80873i) q^{91} +2.36601 q^{92} +(-1.58249 - 2.74095i) q^{94} +(-0.421458 - 0.729986i) q^{95} -2.55162 q^{97} +(2.49932 + 1.20437i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{5} + 2 q^{7} + 6 q^{8} + 3 q^{10} - 2 q^{11} + 12 q^{13} - 2 q^{14} + 4 q^{16} - 2 q^{17} - 4 q^{19} - 24 q^{20} - 12 q^{22} + 5 q^{23} + 4 q^{25} - 6 q^{26} + 8 q^{28} + 8 q^{29} - 17 q^{31}+ \cdots - 27 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1197\mathbb{Z}\right)^\times\).

\(n\) \(514\) \(533\) \(1009\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.198169 + 0.343239i −0.140127 + 0.242707i −0.927544 0.373713i \(-0.878084\pi\)
0.787417 + 0.616420i \(0.211418\pi\)
\(3\) 0 0
\(4\) 0.921458 + 1.59601i 0.460729 + 0.798006i
\(5\) −0.421458 + 0.729986i −0.188482 + 0.326460i −0.944744 0.327808i \(-0.893690\pi\)
0.756263 + 0.654268i \(0.227023\pi\)
\(6\) 0 0
\(7\) 1.79981 1.93925i 0.680263 0.732968i
\(8\) −1.52310 −0.538496
\(9\) 0 0
\(10\) −0.167040 0.289322i −0.0528227 0.0914916i
\(11\) −0.0179894 0.0311586i −0.00542402 0.00939468i 0.863301 0.504690i \(-0.168393\pi\)
−0.868725 + 0.495295i \(0.835060\pi\)
\(12\) 0 0
\(13\) 1.96402 0.544721 0.272361 0.962195i \(-0.412196\pi\)
0.272361 + 0.962195i \(0.412196\pi\)
\(14\) 0.308961 + 1.00206i 0.0825732 + 0.267813i
\(15\) 0 0
\(16\) −1.54109 + 2.66924i −0.385271 + 0.667309i
\(17\) 1.62676 + 2.81763i 0.394547 + 0.683375i 0.993043 0.117751i \(-0.0375684\pi\)
−0.598497 + 0.801125i \(0.704235\pi\)
\(18\) 0 0
\(19\) −0.500000 + 0.866025i −0.114708 + 0.198680i
\(20\) −1.55342 −0.347356
\(21\) 0 0
\(22\) 0.0142598 0.00304020
\(23\) 0.641921 1.11184i 0.133850 0.231834i −0.791308 0.611418i \(-0.790599\pi\)
0.925157 + 0.379584i \(0.123933\pi\)
\(24\) 0 0
\(25\) 2.14475 + 3.71481i 0.428949 + 0.742962i
\(26\) −0.389209 + 0.674129i −0.0763301 + 0.132208i
\(27\) 0 0
\(28\) 4.75351 + 1.08558i 0.898330 + 0.205154i
\(29\) 7.06045 1.31109 0.655546 0.755155i \(-0.272438\pi\)
0.655546 + 0.755155i \(0.272438\pi\)
\(30\) 0 0
\(31\) 1.80976 + 3.13460i 0.325043 + 0.562991i 0.981521 0.191354i \(-0.0612879\pi\)
−0.656478 + 0.754345i \(0.727955\pi\)
\(32\) −2.13389 3.69600i −0.377221 0.653367i
\(33\) 0 0
\(34\) −1.28949 −0.221146
\(35\) 0.657084 + 2.13115i 0.111068 + 0.360230i
\(36\) 0 0
\(37\) 1.08137 1.87298i 0.177776 0.307917i −0.763343 0.645994i \(-0.776443\pi\)
0.941118 + 0.338077i \(0.109776\pi\)
\(38\) −0.198169 0.343239i −0.0321473 0.0556808i
\(39\) 0 0
\(40\) 0.641921 1.11184i 0.101497 0.175797i
\(41\) −0.130805 −0.0204282 −0.0102141 0.999948i \(-0.503251\pi\)
−0.0102141 + 0.999948i \(0.503251\pi\)
\(42\) 0 0
\(43\) −4.50884 −0.687591 −0.343796 0.939045i \(-0.611713\pi\)
−0.343796 + 0.939045i \(0.611713\pi\)
\(44\) 0.0331530 0.0574227i 0.00499801 0.00865680i
\(45\) 0 0
\(46\) 0.254418 + 0.440665i 0.0375119 + 0.0649725i
\(47\) −3.99277 + 6.91568i −0.582405 + 1.00876i 0.412788 + 0.910827i \(0.364555\pi\)
−0.995193 + 0.0979283i \(0.968778\pi\)
\(48\) 0 0
\(49\) −0.521390 6.98056i −0.0744842 0.997222i
\(50\) −1.70009 −0.240429
\(51\) 0 0
\(52\) 1.80976 + 3.13460i 0.250969 + 0.434691i
\(53\) 1.49085 + 2.58222i 0.204783 + 0.354695i 0.950064 0.312056i \(-0.101018\pi\)
−0.745280 + 0.666751i \(0.767684\pi\)
\(54\) 0 0
\(55\) 0.0303272 0.00408931
\(56\) −2.74128 + 2.95366i −0.366319 + 0.394700i
\(57\) 0 0
\(58\) −1.39916 + 2.42342i −0.183719 + 0.318211i
\(59\) 6.48994 + 11.2409i 0.844919 + 1.46344i 0.885692 + 0.464273i \(0.153685\pi\)
−0.0407734 + 0.999168i \(0.512982\pi\)
\(60\) 0 0
\(61\) −1.29380 + 2.24092i −0.165654 + 0.286921i −0.936887 0.349632i \(-0.886307\pi\)
0.771234 + 0.636552i \(0.219640\pi\)
\(62\) −1.43456 −0.182189
\(63\) 0 0
\(64\) −4.47286 −0.559107
\(65\) −0.827752 + 1.43371i −0.102670 + 0.177830i
\(66\) 0 0
\(67\) −2.25952 3.91361i −0.276045 0.478124i 0.694353 0.719634i \(-0.255690\pi\)
−0.970398 + 0.241511i \(0.922357\pi\)
\(68\) −2.99798 + 5.19265i −0.363558 + 0.629701i
\(69\) 0 0
\(70\) −0.861707 0.196791i −0.102994 0.0235210i
\(71\) 2.64985 0.314480 0.157240 0.987560i \(-0.449740\pi\)
0.157240 + 0.987560i \(0.449740\pi\)
\(72\) 0 0
\(73\) −3.10649 5.38059i −0.363587 0.629751i 0.624961 0.780656i \(-0.285115\pi\)
−0.988548 + 0.150905i \(0.951781\pi\)
\(74\) 0.428588 + 0.742336i 0.0498223 + 0.0862948i
\(75\) 0 0
\(76\) −1.84292 −0.211397
\(77\) −0.0928019 0.0211935i −0.0105758 0.00241522i
\(78\) 0 0
\(79\) −5.18641 + 8.98312i −0.583516 + 1.01068i 0.411542 + 0.911391i \(0.364990\pi\)
−0.995059 + 0.0992892i \(0.968343\pi\)
\(80\) −1.29900 2.24994i −0.145233 0.251551i
\(81\) 0 0
\(82\) 0.0259214 0.0448973i 0.00286255 0.00495807i
\(83\) −10.2752 −1.12785 −0.563927 0.825825i \(-0.690710\pi\)
−0.563927 + 0.825825i \(0.690710\pi\)
\(84\) 0 0
\(85\) −2.74244 −0.297459
\(86\) 0.893513 1.54761i 0.0963499 0.166883i
\(87\) 0 0
\(88\) 0.0273996 + 0.0474576i 0.00292081 + 0.00505899i
\(89\) 4.18641 7.25107i 0.443758 0.768612i −0.554207 0.832379i \(-0.686978\pi\)
0.997965 + 0.0637675i \(0.0203116\pi\)
\(90\) 0 0
\(91\) 3.53486 3.80873i 0.370554 0.399263i
\(92\) 2.36601 0.246674
\(93\) 0 0
\(94\) −1.58249 2.74095i −0.163221 0.282707i
\(95\) −0.421458 0.729986i −0.0432407 0.0748950i
\(96\) 0 0
\(97\) −2.55162 −0.259077 −0.129539 0.991574i \(-0.541350\pi\)
−0.129539 + 0.991574i \(0.541350\pi\)
\(98\) 2.49932 + 1.20437i 0.252470 + 0.121660i
\(99\) 0 0
\(100\) −3.95259 + 6.84608i −0.395259 + 0.684608i
\(101\) 3.56508 + 6.17491i 0.354739 + 0.614426i 0.987073 0.160270i \(-0.0512363\pi\)
−0.632334 + 0.774696i \(0.717903\pi\)
\(102\) 0 0
\(103\) −1.45461 + 2.51946i −0.143327 + 0.248250i −0.928748 0.370713i \(-0.879113\pi\)
0.785420 + 0.618963i \(0.212447\pi\)
\(104\) −2.99139 −0.293330
\(105\) 0 0
\(106\) −1.18176 −0.114783
\(107\) 4.30466 7.45588i 0.416147 0.720788i −0.579401 0.815042i \(-0.696714\pi\)
0.995548 + 0.0942550i \(0.0300469\pi\)
\(108\) 0 0
\(109\) −0.287469 0.497911i −0.0275346 0.0476913i 0.851930 0.523656i \(-0.175432\pi\)
−0.879464 + 0.475965i \(0.842099\pi\)
\(110\) −0.00600991 + 0.0104095i −0.000573023 + 0.000992505i
\(111\) 0 0
\(112\) 2.40267 + 7.79266i 0.227031 + 0.736337i
\(113\) 15.2784 1.43727 0.718637 0.695385i \(-0.244766\pi\)
0.718637 + 0.695385i \(0.244766\pi\)
\(114\) 0 0
\(115\) 0.541085 + 0.937187i 0.0504564 + 0.0873931i
\(116\) 6.50591 + 11.2686i 0.604058 + 1.04626i
\(117\) 0 0
\(118\) −5.14443 −0.473583
\(119\) 8.39193 + 1.91649i 0.769287 + 0.175685i
\(120\) 0 0
\(121\) 5.49935 9.52516i 0.499941 0.865923i
\(122\) −0.512782 0.888164i −0.0464251 0.0804106i
\(123\) 0 0
\(124\) −3.33524 + 5.77681i −0.299513 + 0.518772i
\(125\) −7.83026 −0.700360
\(126\) 0 0
\(127\) 1.02235 0.0907193 0.0453597 0.998971i \(-0.485557\pi\)
0.0453597 + 0.998971i \(0.485557\pi\)
\(128\) 5.15416 8.92726i 0.455567 0.789066i
\(129\) 0 0
\(130\) −0.328070 0.568234i −0.0287736 0.0498374i
\(131\) −8.49106 + 14.7070i −0.741868 + 1.28495i 0.209776 + 0.977749i \(0.432726\pi\)
−0.951644 + 0.307203i \(0.900607\pi\)
\(132\) 0 0
\(133\) 0.779537 + 2.52830i 0.0675945 + 0.219232i
\(134\) 1.79107 0.154725
\(135\) 0 0
\(136\) −2.47771 4.29151i −0.212462 0.367994i
\(137\) −1.12111 1.94181i −0.0957825 0.165900i 0.814152 0.580651i \(-0.197202\pi\)
−0.909935 + 0.414751i \(0.863869\pi\)
\(138\) 0 0
\(139\) 16.8301 1.42751 0.713753 0.700397i \(-0.246994\pi\)
0.713753 + 0.700397i \(0.246994\pi\)
\(140\) −2.79586 + 3.01248i −0.236293 + 0.254601i
\(141\) 0 0
\(142\) −0.525119 + 0.909533i −0.0440670 + 0.0763263i
\(143\) −0.0353316 0.0611962i −0.00295458 0.00511748i
\(144\) 0 0
\(145\) −2.97568 + 5.15403i −0.247117 + 0.428019i
\(146\) 2.46244 0.203793
\(147\) 0 0
\(148\) 3.98574 0.327626
\(149\) 6.36601 11.0263i 0.521524 0.903306i −0.478163 0.878271i \(-0.658697\pi\)
0.999687 0.0250347i \(-0.00796962\pi\)
\(150\) 0 0
\(151\) 5.91342 + 10.2424i 0.481228 + 0.833511i 0.999768 0.0215425i \(-0.00685771\pi\)
−0.518540 + 0.855053i \(0.673524\pi\)
\(152\) 0.761548 1.31904i 0.0617697 0.106988i
\(153\) 0 0
\(154\) 0.0256649 0.0276534i 0.00206814 0.00222837i
\(155\) −3.05096 −0.245059
\(156\) 0 0
\(157\) −3.68843 6.38855i −0.294369 0.509862i 0.680469 0.732777i \(-0.261776\pi\)
−0.974838 + 0.222915i \(0.928443\pi\)
\(158\) −2.05557 3.56036i −0.163533 0.283247i
\(159\) 0 0
\(160\) 3.59737 0.284397
\(161\) −1.00080 3.24594i −0.0788743 0.255816i
\(162\) 0 0
\(163\) 9.02470 15.6312i 0.706869 1.22433i −0.259144 0.965839i \(-0.583440\pi\)
0.966013 0.258494i \(-0.0832263\pi\)
\(164\) −0.120531 0.208766i −0.00941188 0.0163019i
\(165\) 0 0
\(166\) 2.03624 3.52686i 0.158043 0.273738i
\(167\) −22.6354 −1.75158 −0.875790 0.482693i \(-0.839659\pi\)
−0.875790 + 0.482693i \(0.839659\pi\)
\(168\) 0 0
\(169\) −9.14262 −0.703279
\(170\) 0.543467 0.941312i 0.0416820 0.0721954i
\(171\) 0 0
\(172\) −4.15470 7.19616i −0.316793 0.548702i
\(173\) 3.44141 5.96070i 0.261646 0.453183i −0.705034 0.709174i \(-0.749068\pi\)
0.966679 + 0.255990i \(0.0824015\pi\)
\(174\) 0 0
\(175\) 11.0641 + 2.52674i 0.836366 + 0.191003i
\(176\) 0.110893 0.00835888
\(177\) 0 0
\(178\) 1.65923 + 2.87388i 0.124365 + 0.215406i
\(179\) 0.310439 + 0.537696i 0.0232033 + 0.0401893i 0.877394 0.479771i \(-0.159280\pi\)
−0.854191 + 0.519960i \(0.825947\pi\)
\(180\) 0 0
\(181\) −9.31058 −0.692050 −0.346025 0.938225i \(-0.612469\pi\)
−0.346025 + 0.938225i \(0.612469\pi\)
\(182\) 0.606805 + 1.96808i 0.0449794 + 0.145883i
\(183\) 0 0
\(184\) −0.977707 + 1.69344i −0.0720775 + 0.124842i
\(185\) 0.911502 + 1.57877i 0.0670150 + 0.116073i
\(186\) 0 0
\(187\) 0.0585289 0.101375i 0.00428006 0.00741328i
\(188\) −14.7167 −1.07332
\(189\) 0 0
\(190\) 0.334080 0.0242367
\(191\) 9.16919 15.8815i 0.663459 1.14915i −0.316241 0.948679i \(-0.602421\pi\)
0.979701 0.200466i \(-0.0642457\pi\)
\(192\) 0 0
\(193\) 7.60019 + 13.1639i 0.547074 + 0.947559i 0.998473 + 0.0552373i \(0.0175915\pi\)
−0.451400 + 0.892322i \(0.649075\pi\)
\(194\) 0.505652 0.875814i 0.0363037 0.0628798i
\(195\) 0 0
\(196\) 10.6606 7.26443i 0.761472 0.518888i
\(197\) −7.77205 −0.553736 −0.276868 0.960908i \(-0.589296\pi\)
−0.276868 + 0.960908i \(0.589296\pi\)
\(198\) 0 0
\(199\) −12.8631 22.2795i −0.911840 1.57935i −0.811463 0.584403i \(-0.801329\pi\)
−0.100377 0.994950i \(-0.532005\pi\)
\(200\) −3.26665 5.65801i −0.230987 0.400082i
\(201\) 0 0
\(202\) −2.82596 −0.198834
\(203\) 12.7074 13.6920i 0.891888 0.960989i
\(204\) 0 0
\(205\) 0.0551286 0.0954856i 0.00385035 0.00666900i
\(206\) −0.576518 0.998559i −0.0401679 0.0695729i
\(207\) 0 0
\(208\) −3.02672 + 5.24244i −0.209866 + 0.363498i
\(209\) 0.0359789 0.00248871
\(210\) 0 0
\(211\) 17.2470 1.18733 0.593667 0.804711i \(-0.297680\pi\)
0.593667 + 0.804711i \(0.297680\pi\)
\(212\) −2.74750 + 4.75882i −0.188699 + 0.326837i
\(213\) 0 0
\(214\) 1.70610 + 2.95505i 0.116627 + 0.202003i
\(215\) 1.90028 3.29139i 0.129598 0.224471i
\(216\) 0 0
\(217\) 9.33600 + 2.13209i 0.633769 + 0.144736i
\(218\) 0.227870 0.0154333
\(219\) 0 0
\(220\) 0.0279452 + 0.0484025i 0.00188407 + 0.00326330i
\(221\) 3.19499 + 5.53388i 0.214918 + 0.372249i
\(222\) 0 0
\(223\) 15.7257 1.05307 0.526537 0.850152i \(-0.323490\pi\)
0.526537 + 0.850152i \(0.323490\pi\)
\(224\) −11.0081 2.51395i −0.735507 0.167970i
\(225\) 0 0
\(226\) −3.02772 + 5.24416i −0.201401 + 0.348836i
\(227\) −3.25181 5.63230i −0.215830 0.373829i 0.737699 0.675130i \(-0.235912\pi\)
−0.953529 + 0.301301i \(0.902579\pi\)
\(228\) 0 0
\(229\) −3.93630 + 6.81788i −0.260118 + 0.450538i −0.966273 0.257519i \(-0.917095\pi\)
0.706155 + 0.708057i \(0.250428\pi\)
\(230\) −0.428906 −0.0282812
\(231\) 0 0
\(232\) −10.7537 −0.706018
\(233\) 11.1395 19.2941i 0.729771 1.26400i −0.227208 0.973846i \(-0.572960\pi\)
0.956980 0.290155i \(-0.0937069\pi\)
\(234\) 0 0
\(235\) −3.36557 5.82933i −0.219545 0.380264i
\(236\) −11.9604 + 20.7161i −0.778557 + 1.34850i
\(237\) 0 0
\(238\) −2.32084 + 2.50065i −0.150438 + 0.162093i
\(239\) −26.5221 −1.71557 −0.857784 0.514009i \(-0.828160\pi\)
−0.857784 + 0.514009i \(0.828160\pi\)
\(240\) 0 0
\(241\) −5.54028 9.59605i −0.356881 0.618136i 0.630557 0.776143i \(-0.282827\pi\)
−0.987438 + 0.158007i \(0.949493\pi\)
\(242\) 2.17961 + 3.77519i 0.140110 + 0.242678i
\(243\) 0 0
\(244\) −4.76872 −0.305286
\(245\) 5.31545 + 2.56140i 0.339592 + 0.163642i
\(246\) 0 0
\(247\) −0.982011 + 1.70089i −0.0624838 + 0.108225i
\(248\) −2.75644 4.77430i −0.175034 0.303168i
\(249\) 0 0
\(250\) 1.55172 2.68765i 0.0981392 0.169982i
\(251\) −3.32163 −0.209659 −0.104830 0.994490i \(-0.533430\pi\)
−0.104830 + 0.994490i \(0.533430\pi\)
\(252\) 0 0
\(253\) −0.0461912 −0.00290401
\(254\) −0.202599 + 0.350912i −0.0127122 + 0.0220182i
\(255\) 0 0
\(256\) −2.43007 4.20900i −0.151879 0.263062i
\(257\) 15.0595 26.0837i 0.939383 1.62706i 0.172758 0.984964i \(-0.444732\pi\)
0.766625 0.642095i \(-0.221935\pi\)
\(258\) 0 0
\(259\) −1.68593 5.46805i −0.104759 0.339768i
\(260\) −3.05096 −0.189212
\(261\) 0 0
\(262\) −3.36534 5.82893i −0.207911 0.360113i
\(263\) −12.7833 22.1414i −0.788253 1.36529i −0.927036 0.374972i \(-0.877652\pi\)
0.138783 0.990323i \(-0.455681\pi\)
\(264\) 0 0
\(265\) −2.51332 −0.154392
\(266\) −1.02229 0.233464i −0.0626808 0.0143146i
\(267\) 0 0
\(268\) 4.16411 7.21245i 0.254364 0.440571i
\(269\) −3.17565 5.50038i −0.193623 0.335364i 0.752825 0.658220i \(-0.228690\pi\)
−0.946448 + 0.322856i \(0.895357\pi\)
\(270\) 0 0
\(271\) −3.93087 + 6.80846i −0.238783 + 0.413585i −0.960365 0.278744i \(-0.910082\pi\)
0.721582 + 0.692329i \(0.243415\pi\)
\(272\) −10.0279 −0.608030
\(273\) 0 0
\(274\) 0.888674 0.0536868
\(275\) 0.0771656 0.133655i 0.00465326 0.00805968i
\(276\) 0 0
\(277\) 2.93784 + 5.08849i 0.176518 + 0.305738i 0.940686 0.339280i \(-0.110183\pi\)
−0.764168 + 0.645018i \(0.776850\pi\)
\(278\) −3.33520 + 5.77674i −0.200032 + 0.346466i
\(279\) 0 0
\(280\) −1.00080 3.24594i −0.0598094 0.193982i
\(281\) −16.7309 −0.998084 −0.499042 0.866578i \(-0.666315\pi\)
−0.499042 + 0.866578i \(0.666315\pi\)
\(282\) 0 0
\(283\) 10.4479 + 18.0962i 0.621060 + 1.07571i 0.989289 + 0.145973i \(0.0466312\pi\)
−0.368228 + 0.929735i \(0.620036\pi\)
\(284\) 2.44173 + 4.22920i 0.144890 + 0.250957i
\(285\) 0 0
\(286\) 0.0280066 0.00165606
\(287\) −0.235423 + 0.253663i −0.0138966 + 0.0149732i
\(288\) 0 0
\(289\) 3.20732 5.55525i 0.188666 0.326779i
\(290\) −1.17938 2.04274i −0.0692554 0.119954i
\(291\) 0 0
\(292\) 5.72499 9.91598i 0.335030 0.580289i
\(293\) 12.1831 0.711744 0.355872 0.934535i \(-0.384184\pi\)
0.355872 + 0.934535i \(0.384184\pi\)
\(294\) 0 0
\(295\) −10.9409 −0.637007
\(296\) −1.64703 + 2.85273i −0.0957315 + 0.165812i
\(297\) 0 0
\(298\) 2.52310 + 4.37013i 0.146159 + 0.253155i
\(299\) 1.26075 2.18368i 0.0729108 0.126285i
\(300\) 0 0
\(301\) −8.11503 + 8.74376i −0.467743 + 0.503982i
\(302\) −4.68744 −0.269732
\(303\) 0 0
\(304\) −1.54109 2.66924i −0.0883873 0.153091i
\(305\) −1.09056 1.88891i −0.0624454 0.108159i
\(306\) 0 0
\(307\) −25.2971 −1.44378 −0.721890 0.692008i \(-0.756726\pi\)
−0.721890 + 0.692008i \(0.756726\pi\)
\(308\) −0.0516880 0.167642i −0.00294520 0.00955228i
\(309\) 0 0
\(310\) 0.604606 1.04721i 0.0343393 0.0594774i
\(311\) 4.94365 + 8.56265i 0.280329 + 0.485543i 0.971466 0.237180i \(-0.0762232\pi\)
−0.691137 + 0.722724i \(0.742890\pi\)
\(312\) 0 0
\(313\) 0.687371 1.19056i 0.0388525 0.0672945i −0.845945 0.533270i \(-0.820963\pi\)
0.884798 + 0.465975i \(0.154296\pi\)
\(314\) 2.92373 0.164996
\(315\) 0 0
\(316\) −19.1162 −1.07537
\(317\) 13.3451 23.1144i 0.749535 1.29823i −0.198511 0.980099i \(-0.563610\pi\)
0.948046 0.318134i \(-0.103056\pi\)
\(318\) 0 0
\(319\) −0.127014 0.219994i −0.00711140 0.0123173i
\(320\) 1.88512 3.26513i 0.105381 0.182526i
\(321\) 0 0
\(322\) 1.31246 + 0.299731i 0.0731407 + 0.0167034i
\(323\) −3.25351 −0.181030
\(324\) 0 0
\(325\) 4.21233 + 7.29597i 0.233658 + 0.404707i
\(326\) 3.57684 + 6.19526i 0.198103 + 0.343124i
\(327\) 0 0
\(328\) 0.199228 0.0110005
\(329\) 6.22502 + 20.1899i 0.343197 + 1.11310i
\(330\) 0 0
\(331\) 18.1868 31.5004i 0.999635 1.73142i 0.476412 0.879222i \(-0.341937\pi\)
0.523223 0.852196i \(-0.324729\pi\)
\(332\) −9.46819 16.3994i −0.519635 0.900034i
\(333\) 0 0
\(334\) 4.48564 7.76935i 0.245443 0.425120i
\(335\) 3.80918 0.208118
\(336\) 0 0
\(337\) 30.0191 1.63524 0.817622 0.575756i \(-0.195292\pi\)
0.817622 + 0.575756i \(0.195292\pi\)
\(338\) 1.81179 3.13811i 0.0985482 0.170690i
\(339\) 0 0
\(340\) −2.52704 4.37696i −0.137048 0.237374i
\(341\) 0.0651132 0.112779i 0.00352608 0.00610735i
\(342\) 0 0
\(343\) −14.4755 11.5525i −0.781601 0.623779i
\(344\) 6.86739 0.370265
\(345\) 0 0
\(346\) 1.36396 + 2.36245i 0.0733271 + 0.127006i
\(347\) 14.1044 + 24.4295i 0.757162 + 1.31144i 0.944292 + 0.329108i \(0.106748\pi\)
−0.187131 + 0.982335i \(0.559919\pi\)
\(348\) 0 0
\(349\) −4.32568 −0.231548 −0.115774 0.993276i \(-0.536935\pi\)
−0.115774 + 0.993276i \(0.536935\pi\)
\(350\) −3.05984 + 3.29690i −0.163555 + 0.176227i
\(351\) 0 0
\(352\) −0.0767749 + 0.132978i −0.00409211 + 0.00708775i
\(353\) −10.1227 17.5330i −0.538776 0.933187i −0.998970 0.0453691i \(-0.985554\pi\)
0.460194 0.887818i \(-0.347780\pi\)
\(354\) 0 0
\(355\) −1.11680 + 1.93436i −0.0592737 + 0.102665i
\(356\) 15.4304 0.817809
\(357\) 0 0
\(358\) −0.246078 −0.0130056
\(359\) 6.57989 11.3967i 0.347273 0.601495i −0.638491 0.769629i \(-0.720441\pi\)
0.985764 + 0.168134i \(0.0537743\pi\)
\(360\) 0 0
\(361\) −0.500000 0.866025i −0.0263158 0.0455803i
\(362\) 1.84507 3.19576i 0.0969747 0.167965i
\(363\) 0 0
\(364\) 9.33600 + 2.13209i 0.489339 + 0.111752i
\(365\) 5.23701 0.274118
\(366\) 0 0
\(367\) −12.2002 21.1314i −0.636848 1.10305i −0.986120 0.166031i \(-0.946905\pi\)
0.349273 0.937021i \(-0.386429\pi\)
\(368\) 1.97851 + 3.42688i 0.103137 + 0.178638i
\(369\) 0 0
\(370\) −0.722527 −0.0375624
\(371\) 7.69081 + 1.75638i 0.399287 + 0.0911864i
\(372\) 0 0
\(373\) −1.23438 + 2.13800i −0.0639136 + 0.110702i −0.896212 0.443627i \(-0.853692\pi\)
0.832298 + 0.554328i \(0.187025\pi\)
\(374\) 0.0231973 + 0.0401788i 0.00119950 + 0.00207760i
\(375\) 0 0
\(376\) 6.08137 10.5332i 0.313623 0.543210i
\(377\) 13.8669 0.714180
\(378\) 0 0
\(379\) −18.7800 −0.964665 −0.482332 0.875988i \(-0.660210\pi\)
−0.482332 + 0.875988i \(0.660210\pi\)
\(380\) 0.776711 1.34530i 0.0398445 0.0690126i
\(381\) 0 0
\(382\) 3.63410 + 6.29445i 0.185937 + 0.322052i
\(383\) 15.8144 27.3914i 0.808081 1.39964i −0.106111 0.994354i \(-0.533840\pi\)
0.914192 0.405282i \(-0.132827\pi\)
\(384\) 0 0
\(385\) 0.0545831 0.0588120i 0.00278181 0.00299734i
\(386\) −6.02449 −0.306639
\(387\) 0 0
\(388\) −2.35121 4.07241i −0.119364 0.206745i
\(389\) −2.16873 3.75636i −0.109959 0.190455i 0.805794 0.592196i \(-0.201739\pi\)
−0.915754 + 0.401741i \(0.868405\pi\)
\(390\) 0 0
\(391\) 4.17700 0.211240
\(392\) 0.794126 + 10.6321i 0.0401094 + 0.537000i
\(393\) 0 0
\(394\) 1.54018 2.66767i 0.0775932 0.134395i
\(395\) −4.37170 7.57201i −0.219964 0.380989i
\(396\) 0 0
\(397\) −0.682778 + 1.18261i −0.0342676 + 0.0593533i −0.882651 0.470030i \(-0.844243\pi\)
0.848383 + 0.529383i \(0.177577\pi\)
\(398\) 10.1963 0.511093
\(399\) 0 0
\(400\) −13.2209 −0.661047
\(401\) 11.3302 19.6246i 0.565806 0.980004i −0.431169 0.902271i \(-0.641899\pi\)
0.996974 0.0777327i \(-0.0247681\pi\)
\(402\) 0 0
\(403\) 3.55441 + 6.15642i 0.177058 + 0.306673i
\(404\) −6.57015 + 11.3798i −0.326877 + 0.566168i
\(405\) 0 0
\(406\) 2.18140 + 7.07503i 0.108261 + 0.351128i
\(407\) −0.0778128 −0.00385704
\(408\) 0 0
\(409\) 13.3916 + 23.1950i 0.662174 + 1.14692i 0.980043 + 0.198785i \(0.0636994\pi\)
−0.317869 + 0.948135i \(0.602967\pi\)
\(410\) 0.0218496 + 0.0378446i 0.00107907 + 0.00186901i
\(411\) 0 0
\(412\) −5.36145 −0.264140
\(413\) 33.4796 + 7.64584i 1.64742 + 0.376227i
\(414\) 0 0
\(415\) 4.33058 7.50078i 0.212580 0.368199i
\(416\) −4.19100 7.25902i −0.205481 0.355903i
\(417\) 0 0
\(418\) −0.00712991 + 0.0123494i −0.000348735 + 0.000604027i
\(419\) −29.9706 −1.46416 −0.732081 0.681218i \(-0.761451\pi\)
−0.732081 + 0.681218i \(0.761451\pi\)
\(420\) 0 0
\(421\) −28.9616 −1.41150 −0.705750 0.708460i \(-0.749390\pi\)
−0.705750 + 0.708460i \(0.749390\pi\)
\(422\) −3.41783 + 5.91986i −0.166377 + 0.288174i
\(423\) 0 0
\(424\) −2.27070 3.93297i −0.110275 0.191002i
\(425\) −6.97796 + 12.0862i −0.338481 + 0.586266i
\(426\) 0 0
\(427\) 2.01713 + 6.54222i 0.0976156 + 0.316600i
\(428\) 15.8662 0.766924
\(429\) 0 0
\(430\) 0.753156 + 1.30450i 0.0363204 + 0.0629088i
\(431\) 10.4379 + 18.0789i 0.502774 + 0.870831i 0.999995 + 0.00320655i \(0.00102068\pi\)
−0.497220 + 0.867624i \(0.665646\pi\)
\(432\) 0 0
\(433\) −7.01266 −0.337007 −0.168503 0.985701i \(-0.553893\pi\)
−0.168503 + 0.985701i \(0.553893\pi\)
\(434\) −2.58193 + 2.78197i −0.123936 + 0.133539i
\(435\) 0 0
\(436\) 0.529782 0.917609i 0.0253719 0.0439455i
\(437\) 0.641921 + 1.11184i 0.0307072 + 0.0531865i
\(438\) 0 0
\(439\) 0.874034 1.51387i 0.0417153 0.0722531i −0.844414 0.535691i \(-0.820051\pi\)
0.886129 + 0.463438i \(0.153384\pi\)
\(440\) −0.0461912 −0.00220208
\(441\) 0 0
\(442\) −2.53259 −0.120463
\(443\) −9.44051 + 16.3514i −0.448532 + 0.776880i −0.998291 0.0584433i \(-0.981386\pi\)
0.549759 + 0.835323i \(0.314720\pi\)
\(444\) 0 0
\(445\) 3.52879 + 6.11204i 0.167281 + 0.289738i
\(446\) −3.11636 + 5.39769i −0.147564 + 0.255588i
\(447\) 0 0
\(448\) −8.05028 + 8.67399i −0.380340 + 0.409808i
\(449\) −19.9572 −0.941839 −0.470920 0.882176i \(-0.656078\pi\)
−0.470920 + 0.882176i \(0.656078\pi\)
\(450\) 0 0
\(451\) 0.00235310 + 0.00407569i 0.000110803 + 0.000191917i
\(452\) 14.0784 + 24.3846i 0.662194 + 1.14695i
\(453\) 0 0
\(454\) 2.57763 0.120974
\(455\) 1.29053 + 4.18562i 0.0605009 + 0.196225i
\(456\) 0 0
\(457\) 10.7787 18.6693i 0.504208 0.873314i −0.495780 0.868448i \(-0.665118\pi\)
0.999988 0.00486577i \(-0.00154883\pi\)
\(458\) −1.56011 2.70219i −0.0728991 0.126265i
\(459\) 0 0
\(460\) −0.997174 + 1.72716i −0.0464935 + 0.0805291i
\(461\) 27.9766 1.30300 0.651500 0.758649i \(-0.274140\pi\)
0.651500 + 0.758649i \(0.274140\pi\)
\(462\) 0 0
\(463\) 38.8491 1.80547 0.902736 0.430195i \(-0.141555\pi\)
0.902736 + 0.430195i \(0.141555\pi\)
\(464\) −10.8808 + 18.8460i −0.505126 + 0.874905i
\(465\) 0 0
\(466\) 4.41500 + 7.64701i 0.204521 + 0.354241i
\(467\) −4.31966 + 7.48187i −0.199890 + 0.346219i −0.948493 0.316799i \(-0.897392\pi\)
0.748603 + 0.663019i \(0.230725\pi\)
\(468\) 0 0
\(469\) −11.6562 2.66196i −0.538232 0.122918i
\(470\) 2.66781 0.123057
\(471\) 0 0
\(472\) −9.88480 17.1210i −0.454985 0.788057i
\(473\) 0.0811114 + 0.140489i 0.00372951 + 0.00645970i
\(474\) 0 0
\(475\) −4.28949 −0.196815
\(476\) 4.67407 + 15.1596i 0.214236 + 0.694839i
\(477\) 0 0
\(478\) 5.25586 9.10341i 0.240397 0.416380i
\(479\) 7.42013 + 12.8521i 0.339035 + 0.587225i 0.984251 0.176774i \(-0.0565663\pi\)
−0.645217 + 0.764000i \(0.723233\pi\)
\(480\) 0 0
\(481\) 2.12383 3.67858i 0.0968383 0.167729i
\(482\) 4.39166 0.200034
\(483\) 0 0
\(484\) 20.2697 0.921349
\(485\) 1.07540 1.86264i 0.0488313 0.0845783i
\(486\) 0 0
\(487\) −8.95213 15.5055i −0.405660 0.702623i 0.588738 0.808324i \(-0.299625\pi\)
−0.994398 + 0.105701i \(0.966291\pi\)
\(488\) 1.97058 3.41314i 0.0892038 0.154506i
\(489\) 0 0
\(490\) −1.93253 + 1.31688i −0.0873030 + 0.0594906i
\(491\) −19.1867 −0.865883 −0.432942 0.901422i \(-0.642524\pi\)
−0.432942 + 0.901422i \(0.642524\pi\)
\(492\) 0 0
\(493\) 11.4856 + 19.8937i 0.517287 + 0.895968i
\(494\) −0.389209 0.674129i −0.0175113 0.0303305i
\(495\) 0 0
\(496\) −11.1560 −0.500919
\(497\) 4.76922 5.13873i 0.213929 0.230504i
\(498\) 0 0
\(499\) −12.2922 + 21.2906i −0.550272 + 0.953100i 0.447982 + 0.894043i \(0.352143\pi\)
−0.998255 + 0.0590574i \(0.981191\pi\)
\(500\) −7.21525 12.4972i −0.322676 0.558891i
\(501\) 0 0
\(502\) 0.658245 1.14011i 0.0293789 0.0508857i
\(503\) −16.7355 −0.746199 −0.373099 0.927791i \(-0.621705\pi\)
−0.373099 + 0.927791i \(0.621705\pi\)
\(504\) 0 0
\(505\) −6.01013 −0.267447
\(506\) 0.00915367 0.0158546i 0.000406930 0.000704824i
\(507\) 0 0
\(508\) 0.942057 + 1.63169i 0.0417970 + 0.0723946i
\(509\) −11.7592 + 20.3675i −0.521217 + 0.902775i 0.478478 + 0.878099i \(0.341189\pi\)
−0.999696 + 0.0246752i \(0.992145\pi\)
\(510\) 0 0
\(511\) −16.0254 3.65977i −0.708922 0.161899i
\(512\) 22.5429 0.996264
\(513\) 0 0
\(514\) 5.96864 + 10.3380i 0.263266 + 0.455989i
\(515\) −1.22611 2.12369i −0.0540291 0.0935811i
\(516\) 0 0
\(517\) 0.287311 0.0126359
\(518\) 2.21095 + 0.504922i 0.0971436 + 0.0221850i
\(519\) 0 0
\(520\) 1.26075 2.18368i 0.0552874 0.0957605i
\(521\) 3.02740 + 5.24361i 0.132633 + 0.229727i 0.924691 0.380719i \(-0.124324\pi\)
−0.792058 + 0.610446i \(0.790990\pi\)
\(522\) 0 0
\(523\) −18.6378 + 32.2816i −0.814973 + 1.41157i 0.0943746 + 0.995537i \(0.469915\pi\)
−0.909347 + 0.416038i \(0.863418\pi\)
\(524\) −31.2966 −1.36720
\(525\) 0 0
\(526\) 10.1330 0.441822
\(527\) −5.88809 + 10.1985i −0.256489 + 0.444252i
\(528\) 0 0
\(529\) 10.6759 + 18.4912i 0.464169 + 0.803963i
\(530\) 0.498062 0.862669i 0.0216344 0.0374719i
\(531\) 0 0
\(532\) −3.31689 + 3.57388i −0.143806 + 0.154947i
\(533\) −0.256903 −0.0111277
\(534\) 0 0
\(535\) 3.62846 + 6.28468i 0.156872 + 0.271711i
\(536\) 3.44147 + 5.96080i 0.148649 + 0.257467i
\(537\) 0 0
\(538\) 2.51726 0.108527
\(539\) −0.208125 + 0.141822i −0.00896458 + 0.00610871i
\(540\) 0 0
\(541\) 2.26300 3.91963i 0.0972938 0.168518i −0.813270 0.581887i \(-0.802315\pi\)
0.910564 + 0.413369i \(0.135648\pi\)
\(542\) −1.55795 2.69846i −0.0669199 0.115909i
\(543\) 0 0
\(544\) 6.94263 12.0250i 0.297663 0.515567i
\(545\) 0.484625 0.0207590
\(546\) 0 0
\(547\) 11.7047 0.500456 0.250228 0.968187i \(-0.419494\pi\)
0.250228 + 0.968187i \(0.419494\pi\)
\(548\) 2.06610 3.57859i 0.0882595 0.152870i
\(549\) 0 0
\(550\) 0.0305837 + 0.0529725i 0.00130409 + 0.00225876i
\(551\) −3.53023 + 6.11453i −0.150393 + 0.260488i
\(552\) 0 0
\(553\) 8.08599 + 26.2256i 0.343851 + 1.11523i
\(554\) −2.32876 −0.0989396
\(555\) 0 0
\(556\) 15.5082 + 26.8610i 0.657694 + 1.13916i
\(557\) 7.63463 + 13.2236i 0.323490 + 0.560300i 0.981206 0.192966i \(-0.0618106\pi\)
−0.657716 + 0.753266i \(0.728477\pi\)
\(558\) 0 0
\(559\) −8.85545 −0.374546
\(560\) −6.70116 1.53037i −0.283176 0.0646697i
\(561\) 0 0
\(562\) 3.31556 5.74271i 0.139858 0.242242i
\(563\) −15.2869 26.4777i −0.644267 1.11590i −0.984470 0.175551i \(-0.943829\pi\)
0.340203 0.940352i \(-0.389504\pi\)
\(564\) 0 0
\(565\) −6.43922 + 11.1531i −0.270900 + 0.469213i
\(566\) −8.28177 −0.348109
\(567\) 0 0
\(568\) −4.03598 −0.169346
\(569\) −4.32265 + 7.48704i −0.181215 + 0.313873i −0.942294 0.334785i \(-0.891336\pi\)
0.761080 + 0.648658i \(0.224670\pi\)
\(570\) 0 0
\(571\) −0.587899 1.01827i −0.0246028 0.0426133i 0.853462 0.521155i \(-0.174499\pi\)
−0.878065 + 0.478542i \(0.841165\pi\)
\(572\) 0.0651132 0.112779i 0.00272252 0.00471555i
\(573\) 0 0
\(574\) −0.0404135 0.131075i −0.00168683 0.00547095i
\(575\) 5.50703 0.229659
\(576\) 0 0
\(577\) 6.17057 + 10.6877i 0.256884 + 0.444936i 0.965406 0.260753i \(-0.0839708\pi\)
−0.708522 + 0.705689i \(0.750637\pi\)
\(578\) 1.27119 + 2.20176i 0.0528744 + 0.0915811i
\(579\) 0 0
\(580\) −10.9679 −0.455416
\(581\) −18.4934 + 19.9263i −0.767237 + 0.826680i
\(582\) 0 0
\(583\) 0.0536390 0.0929055i 0.00222150 0.00384775i
\(584\) 4.73148 + 8.19516i 0.195790 + 0.339118i
\(585\) 0 0
\(586\) −2.41432 + 4.18172i −0.0997345 + 0.172745i
\(587\) −19.9966 −0.825350 −0.412675 0.910878i \(-0.635405\pi\)
−0.412675 + 0.910878i \(0.635405\pi\)
\(588\) 0 0
\(589\) −3.61953 −0.149140
\(590\) 2.16816 3.75536i 0.0892617 0.154606i
\(591\) 0 0
\(592\) 3.33296 + 5.77286i 0.136984 + 0.237263i
\(593\) 5.58702 9.67700i 0.229431 0.397387i −0.728208 0.685356i \(-0.759647\pi\)
0.957640 + 0.287969i \(0.0929800\pi\)
\(594\) 0 0
\(595\) −4.93586 + 5.31828i −0.202351 + 0.218028i
\(596\) 23.4640 0.961125
\(597\) 0 0
\(598\) 0.499682 + 0.865475i 0.0204335 + 0.0353919i
\(599\) −12.0269 20.8313i −0.491407 0.851143i 0.508544 0.861036i \(-0.330184\pi\)
−0.999951 + 0.00989358i \(0.996851\pi\)
\(600\) 0 0
\(601\) 32.2158 1.31411 0.657054 0.753843i \(-0.271802\pi\)
0.657054 + 0.753843i \(0.271802\pi\)
\(602\) −1.39305 4.51814i −0.0567766 0.184146i
\(603\) 0 0
\(604\) −10.8979 + 18.8758i −0.443431 + 0.768045i
\(605\) 4.63549 + 8.02891i 0.188460 + 0.326421i
\(606\) 0 0
\(607\) 1.12862 1.95482i 0.0458092 0.0793438i −0.842212 0.539147i \(-0.818747\pi\)
0.888021 + 0.459803i \(0.152080\pi\)
\(608\) 4.26777 0.173081
\(609\) 0 0
\(610\) 0.864463 0.0350011
\(611\) −7.84188 + 13.5825i −0.317249 + 0.549491i
\(612\) 0 0
\(613\) −6.44356 11.1606i −0.260253 0.450771i 0.706056 0.708156i \(-0.250473\pi\)
−0.966309 + 0.257385i \(0.917139\pi\)
\(614\) 5.01310 8.68294i 0.202312 0.350415i
\(615\) 0 0
\(616\) 0.141346 + 0.0322797i 0.00569500 + 0.00130059i
\(617\) −25.0627 −1.00899 −0.504493 0.863416i \(-0.668321\pi\)
−0.504493 + 0.863416i \(0.668321\pi\)
\(618\) 0 0
\(619\) 8.41827 + 14.5809i 0.338359 + 0.586055i 0.984124 0.177481i \(-0.0567949\pi\)
−0.645765 + 0.763536i \(0.723462\pi\)
\(620\) −2.81133 4.86936i −0.112906 0.195558i
\(621\) 0 0
\(622\) −3.91872 −0.157126
\(623\) −6.52692 21.1690i −0.261495 0.848119i
\(624\) 0 0
\(625\) −7.42361 + 12.8581i −0.296944 + 0.514323i
\(626\) 0.272432 + 0.471865i 0.0108886 + 0.0188595i
\(627\) 0 0
\(628\) 6.79747 11.7736i 0.271248 0.469816i
\(629\) 7.03649 0.280563
\(630\) 0 0
\(631\) −25.8497 −1.02906 −0.514530 0.857472i \(-0.672034\pi\)
−0.514530 + 0.857472i \(0.672034\pi\)
\(632\) 7.89939 13.6821i 0.314221 0.544247i
\(633\) 0 0
\(634\) 5.28918 + 9.16112i 0.210060 + 0.363835i
\(635\) −0.430880 + 0.746305i −0.0170989 + 0.0296162i
\(636\) 0 0
\(637\) −1.02402 13.7100i −0.0405732 0.543208i
\(638\) 0.100681 0.00398599
\(639\) 0 0
\(640\) 4.34452 + 7.52493i 0.171732 + 0.297449i
\(641\) 24.6670 + 42.7244i 0.974286 + 1.68751i 0.682270 + 0.731100i \(0.260993\pi\)
0.292016 + 0.956413i \(0.405674\pi\)
\(642\) 0 0
\(643\) −2.55951 −0.100937 −0.0504686 0.998726i \(-0.516071\pi\)
−0.0504686 + 0.998726i \(0.516071\pi\)
\(644\) 4.25836 4.58829i 0.167803 0.180804i
\(645\) 0 0
\(646\) 0.644747 1.11673i 0.0253672 0.0439373i
\(647\) −17.5916 30.4696i −0.691597 1.19788i −0.971314 0.237799i \(-0.923574\pi\)
0.279717 0.960082i \(-0.409759\pi\)
\(648\) 0 0
\(649\) 0.233501 0.404435i 0.00916571 0.0158755i
\(650\) −3.33902 −0.130967
\(651\) 0 0
\(652\) 33.2635 1.30270
\(653\) −14.0120 + 24.2695i −0.548332 + 0.949739i 0.450057 + 0.893000i \(0.351404\pi\)
−0.998389 + 0.0567392i \(0.981930\pi\)
\(654\) 0 0
\(655\) −7.15725 12.3967i −0.279657 0.484380i
\(656\) 0.201581 0.349149i 0.00787042 0.0136320i
\(657\) 0 0
\(658\) −8.16356 1.86434i −0.318249 0.0726795i
\(659\) −30.0543 −1.17075 −0.585374 0.810763i \(-0.699052\pi\)
−0.585374 + 0.810763i \(0.699052\pi\)
\(660\) 0 0
\(661\) −4.19955 7.27383i −0.163343 0.282919i 0.772722 0.634744i \(-0.218895\pi\)
−0.936066 + 0.351825i \(0.885561\pi\)
\(662\) 7.20811 + 12.4848i 0.280151 + 0.485236i
\(663\) 0 0
\(664\) 15.6502 0.607344
\(665\) −2.17417 0.496522i −0.0843107 0.0192543i
\(666\) 0 0
\(667\) 4.53225 7.85009i 0.175489 0.303957i
\(668\) −20.8576 36.1264i −0.807003 1.39777i
\(669\) 0 0
\(670\) −0.754862 + 1.30746i −0.0291629 + 0.0505115i
\(671\) 0.0930988 0.00359404
\(672\) 0 0
\(673\) 12.5476 0.483673 0.241837 0.970317i \(-0.422250\pi\)
0.241837 + 0.970317i \(0.422250\pi\)
\(674\) −5.94886 + 10.3037i −0.229141 + 0.396885i
\(675\) 0 0
\(676\) −8.42454 14.5917i −0.324021 0.561220i
\(677\) −7.58276 + 13.1337i −0.291429 + 0.504770i −0.974148 0.225911i \(-0.927464\pi\)
0.682719 + 0.730681i \(0.260797\pi\)
\(678\) 0 0
\(679\) −4.59241 + 4.94822i −0.176241 + 0.189895i
\(680\) 4.17700 0.160180
\(681\) 0 0
\(682\) 0.0258069 + 0.0446988i 0.000988197 + 0.00171161i
\(683\) 14.8908 + 25.7916i 0.569781 + 0.986890i 0.996587 + 0.0825467i \(0.0263054\pi\)
−0.426806 + 0.904343i \(0.640361\pi\)
\(684\) 0 0
\(685\) 1.88999 0.0722130
\(686\) 6.83388 2.67918i 0.260919 0.102292i
\(687\) 0 0
\(688\) 6.94850 12.0352i 0.264909 0.458836i
\(689\) 2.92805 + 5.07154i 0.111550 + 0.193210i
\(690\) 0 0
\(691\) 13.9759 24.2070i 0.531668 0.920876i −0.467648 0.883915i \(-0.654899\pi\)
0.999317 0.0369619i \(-0.0117680\pi\)
\(692\) 12.6845 0.482191
\(693\) 0 0
\(694\) −11.1802 −0.424395
\(695\) −7.09316 + 12.2857i −0.269059 + 0.466024i
\(696\) 0 0
\(697\) −0.212787 0.368558i −0.00805989 0.0139601i
\(698\) 0.857216 1.48474i 0.0324461 0.0561983i
\(699\) 0 0
\(700\) 6.16238 + 19.9867i 0.232916 + 0.755426i
\(701\) 3.66534 0.138438 0.0692190 0.997601i \(-0.477949\pi\)
0.0692190 + 0.997601i \(0.477949\pi\)
\(702\) 0 0
\(703\) 1.08137 + 1.87298i 0.0407846 + 0.0706409i
\(704\) 0.0804642 + 0.139368i 0.00303261 + 0.00525263i
\(705\) 0 0
\(706\) 8.02402 0.301988
\(707\) 18.3912 + 4.20005i 0.691671 + 0.157959i
\(708\) 0 0
\(709\) 8.48085 14.6893i 0.318505 0.551667i −0.661671 0.749794i \(-0.730153\pi\)
0.980176 + 0.198127i \(0.0634859\pi\)
\(710\) −0.442631 0.766660i −0.0166117 0.0287722i
\(711\) 0 0
\(712\) −6.37630 + 11.0441i −0.238962 + 0.413894i
\(713\) 4.64690 0.174028
\(714\) 0 0
\(715\) 0.0595632 0.00222754
\(716\) −0.572113 + 0.990928i −0.0213809 + 0.0370327i
\(717\) 0 0
\(718\) 2.60786 + 4.51695i 0.0973246 + 0.168571i
\(719\) −18.9783 + 32.8715i −0.707773 + 1.22590i 0.257909 + 0.966169i \(0.416967\pi\)
−0.965681 + 0.259729i \(0.916367\pi\)
\(720\) 0 0
\(721\) 2.26785 + 7.35540i 0.0844590 + 0.273929i
\(722\) 0.396339 0.0147502
\(723\) 0 0
\(724\) −8.57930 14.8598i −0.318847 0.552260i
\(725\) 15.1429 + 26.2282i 0.562392 + 0.974092i
\(726\) 0 0
\(727\) 32.1265 1.19150 0.595752 0.803168i \(-0.296854\pi\)
0.595752 + 0.803168i \(0.296854\pi\)
\(728\) −5.38393 + 5.80106i −0.199542 + 0.215002i
\(729\) 0 0
\(730\) −1.03782 + 1.79755i −0.0384113 + 0.0665303i
\(731\) −7.33478 12.7042i −0.271287 0.469882i
\(732\) 0 0
\(733\) −7.31092 + 12.6629i −0.270035 + 0.467715i −0.968871 0.247568i \(-0.920369\pi\)
0.698835 + 0.715282i \(0.253702\pi\)
\(734\) 9.67086 0.356958
\(735\) 0 0
\(736\) −5.47914 −0.201964
\(737\) −0.0812952 + 0.140807i −0.00299455 + 0.00518671i
\(738\) 0 0
\(739\) −14.4596 25.0447i −0.531904 0.921286i −0.999306 0.0372406i \(-0.988143\pi\)
0.467402 0.884045i \(-0.345190\pi\)
\(740\) −1.67982 + 2.90954i −0.0617515 + 0.106957i
\(741\) 0 0
\(742\) −2.12694 + 2.29173i −0.0780824 + 0.0841320i
\(743\) −20.8522 −0.764992 −0.382496 0.923957i \(-0.624935\pi\)
−0.382496 + 0.923957i \(0.624935\pi\)
\(744\) 0 0
\(745\) 5.36601 + 9.29420i 0.196595 + 0.340513i
\(746\) −0.489231 0.847372i −0.0179120 0.0310245i
\(747\) 0 0
\(748\) 0.215728 0.00788779
\(749\) −6.71128 21.7670i −0.245225 0.795347i
\(750\) 0 0
\(751\) 16.4962 28.5722i 0.601954 1.04261i −0.390571 0.920573i \(-0.627722\pi\)
0.992525 0.122042i \(-0.0389442\pi\)
\(752\) −12.3064 21.3153i −0.448768 0.777289i
\(753\) 0 0
\(754\) −2.74799 + 4.75966i −0.100076 + 0.173336i
\(755\) −9.96904 −0.362810
\(756\) 0 0
\(757\) 14.8974 0.541455 0.270728 0.962656i \(-0.412736\pi\)
0.270728 + 0.962656i \(0.412736\pi\)
\(758\) 3.72162 6.44604i 0.135175 0.234131i
\(759\) 0 0
\(760\) 0.641921 + 1.11184i 0.0232849 + 0.0403306i
\(761\) −5.78718 + 10.0237i −0.209785 + 0.363358i −0.951647 0.307195i \(-0.900610\pi\)
0.741862 + 0.670553i \(0.233943\pi\)
\(762\) 0 0
\(763\) −1.48296 0.338669i −0.0536869 0.0122606i
\(764\) 33.7961 1.22270
\(765\) 0 0
\(766\) 6.26788 + 10.8563i 0.226468 + 0.392253i
\(767\) 12.7464 + 22.0774i 0.460245 + 0.797168i
\(768\) 0 0
\(769\) −52.4315 −1.89073 −0.945365 0.326015i \(-0.894294\pi\)
−0.945365 + 0.326015i \(0.894294\pi\)
\(770\) 0.00936990 + 0.0303898i 0.000337668 + 0.00109517i
\(771\) 0 0
\(772\) −14.0065 + 24.2600i −0.504105 + 0.873136i
\(773\) 21.6869 + 37.5628i 0.780023 + 1.35104i 0.931927 + 0.362645i \(0.118126\pi\)
−0.151904 + 0.988395i \(0.548541\pi\)
\(774\) 0 0
\(775\) −7.76296 + 13.4458i −0.278854 + 0.482989i
\(776\) 3.88635 0.139512
\(777\) 0 0
\(778\) 1.71911 0.0616329
\(779\) 0.0654023 0.113280i 0.00234328 0.00405868i
\(780\) 0 0
\(781\) −0.0476694 0.0825658i −0.00170574 0.00295444i
\(782\) −0.827752 + 1.43371i −0.0296004 + 0.0512693i
\(783\) 0 0
\(784\) 19.4363 + 9.36592i 0.694152 + 0.334497i
\(785\) 6.21807 0.221932
\(786\) 0 0
\(787\) −10.6928 18.5204i −0.381156 0.660182i 0.610072 0.792346i \(-0.291141\pi\)
−0.991228 + 0.132165i \(0.957807\pi\)
\(788\) −7.16162 12.4043i −0.255122 0.441884i
\(789\) 0 0
\(790\) 3.46535 0.123292
\(791\) 27.4982 29.6287i 0.977725 1.05348i
\(792\) 0 0
\(793\) −2.54104 + 4.40122i −0.0902351 + 0.156292i
\(794\) −0.270611 0.468712i −0.00960363 0.0166340i
\(795\) 0 0
\(796\) 23.7056 41.0593i 0.840222 1.45531i
\(797\) 44.1477 1.56379 0.781897 0.623408i \(-0.214252\pi\)
0.781897 + 0.623408i \(0.214252\pi\)
\(798\) 0 0
\(799\) −25.9811 −0.919144
\(800\) 9.15329 15.8540i 0.323618 0.560522i
\(801\) 0 0
\(802\) 4.49061 + 7.77797i 0.158569 + 0.274650i
\(803\) −0.111768 + 0.193588i −0.00394421 + 0.00683156i
\(804\) 0 0
\(805\) 2.79129 + 0.637456i 0.0983800 + 0.0224674i
\(806\) −2.81750 −0.0992422
\(807\) 0 0
\(808\) −5.42996 9.40497i −0.191025 0.330866i
\(809\) −11.9496 20.6974i −0.420127 0.727681i 0.575825 0.817573i \(-0.304681\pi\)
−0.995951 + 0.0898924i \(0.971348\pi\)
\(810\) 0 0
\(811\) −45.1710 −1.58617 −0.793083 0.609113i \(-0.791526\pi\)
−0.793083 + 0.609113i \(0.791526\pi\)
\(812\) 33.5620 + 7.66465i 1.17779 + 0.268976i
\(813\) 0 0
\(814\) 0.0154201 0.0267084i 0.000540475 0.000936130i
\(815\) 7.60706 + 13.1758i 0.266464 + 0.461529i
\(816\) 0 0
\(817\) 2.25442 3.90477i 0.0788721 0.136610i
\(818\) −10.6152 −0.371153
\(819\) 0 0
\(820\) 0.203195 0.00709587
\(821\) −10.8031 + 18.7115i −0.377030 + 0.653035i −0.990629 0.136583i \(-0.956388\pi\)
0.613599 + 0.789618i \(0.289721\pi\)
\(822\) 0 0
\(823\) 3.65882 + 6.33726i 0.127538 + 0.220903i 0.922722 0.385465i \(-0.125959\pi\)
−0.795184 + 0.606368i \(0.792626\pi\)
\(824\) 2.21551 3.83738i 0.0771810 0.133681i
\(825\) 0 0
\(826\) −9.25898 + 9.97634i −0.322161 + 0.347121i
\(827\) −46.0507 −1.60134 −0.800669 0.599106i \(-0.795523\pi\)
−0.800669 + 0.599106i \(0.795523\pi\)
\(828\) 0 0
\(829\) −16.0223 27.7515i −0.556478 0.963848i −0.997787 0.0664930i \(-0.978819\pi\)
0.441309 0.897355i \(-0.354514\pi\)
\(830\) 1.71637 + 2.97285i 0.0595762 + 0.103189i
\(831\) 0 0
\(832\) −8.78479 −0.304558
\(833\) 18.8204 12.8247i 0.652089 0.444351i
\(834\) 0 0
\(835\) 9.53986 16.5235i 0.330141 0.571820i
\(836\) 0.0331530 + 0.0574227i 0.00114662 + 0.00198601i
\(837\) 0 0
\(838\) 5.93926 10.2871i 0.205168 0.355362i
\(839\) −12.5994 −0.434980 −0.217490 0.976063i \(-0.569787\pi\)
−0.217490 + 0.976063i \(0.569787\pi\)
\(840\) 0 0
\(841\) 20.8500 0.718964
\(842\) 5.73929 9.94075i 0.197789 0.342581i
\(843\) 0 0
\(844\) 15.8924 + 27.5265i 0.547039 + 0.947500i
\(845\) 3.85323 6.67399i 0.132555 0.229592i
\(846\) 0 0
\(847\) −8.57390 27.8081i −0.294603 0.955497i
\(848\) −9.19008 −0.315589
\(849\) 0 0
\(850\) −2.76564 4.79022i −0.0948605 0.164303i
\(851\) −1.38830 2.40461i −0.0475905 0.0824291i
\(852\) 0 0
\(853\) −37.1154 −1.27081 −0.635403 0.772181i \(-0.719166\pi\)
−0.635403 + 0.772181i \(0.719166\pi\)
\(854\) −2.64528 0.604111i −0.0905196 0.0206723i
\(855\) 0 0
\(856\) −6.55640 + 11.3560i −0.224093 + 0.388141i
\(857\) 25.2112 + 43.6670i 0.861197 + 1.49164i 0.870774 + 0.491683i \(0.163618\pi\)
−0.00957724 + 0.999954i \(0.503049\pi\)
\(858\) 0 0
\(859\) −4.92248 + 8.52598i −0.167953 + 0.290903i −0.937700 0.347446i \(-0.887049\pi\)
0.769747 + 0.638349i \(0.220382\pi\)
\(860\) 7.00413 0.238839
\(861\) 0 0
\(862\) −8.27386 −0.281809
\(863\) 16.3611 28.3382i 0.556937 0.964643i −0.440813 0.897599i \(-0.645310\pi\)
0.997750 0.0670442i \(-0.0213568\pi\)
\(864\) 0 0
\(865\) 2.90082 + 5.02437i 0.0986308 + 0.170834i
\(866\) 1.38969 2.40702i 0.0472237 0.0817938i
\(867\) 0 0
\(868\) 5.19989 + 16.8650i 0.176496 + 0.572436i
\(869\) 0.373202 0.0126600
\(870\) 0 0
\(871\) −4.43775 7.68641i −0.150368 0.260444i
\(872\) 0.437843 + 0.758367i 0.0148272 + 0.0256815i
\(873\) 0 0
\(874\) −0.508836 −0.0172116
\(875\) −14.0930 + 15.1848i −0.476429 + 0.513341i
\(876\) 0 0
\(877\) −3.43836 + 5.95541i −0.116105 + 0.201100i −0.918221 0.396069i \(-0.870374\pi\)
0.802116 + 0.597168i \(0.203708\pi\)
\(878\) 0.346413 + 0.600005i 0.0116909 + 0.0202492i
\(879\) 0 0
\(880\) −0.0467368 + 0.0809504i −0.00157550 + 0.00272884i
\(881\) 40.9688 1.38027 0.690137 0.723679i \(-0.257550\pi\)
0.690137 + 0.723679i \(0.257550\pi\)
\(882\) 0 0
\(883\) 3.64432 0.122641 0.0613206 0.998118i \(-0.480469\pi\)
0.0613206 + 0.998118i \(0.480469\pi\)
\(884\) −5.88809 + 10.1985i −0.198038 + 0.343012i
\(885\) 0 0
\(886\) −3.74164 6.48070i −0.125703 0.217724i
\(887\) 3.14427 5.44604i 0.105574 0.182860i −0.808398 0.588636i \(-0.799665\pi\)
0.913973 + 0.405776i \(0.132999\pi\)
\(888\) 0 0
\(889\) 1.84004 1.98260i 0.0617130 0.0664944i
\(890\) −2.79719 −0.0937620
\(891\) 0 0
\(892\) 14.4906 + 25.0985i 0.485181 + 0.840359i
\(893\) −3.99277 6.91568i −0.133613 0.231424i
\(894\) 0 0
\(895\) −0.523348 −0.0174936
\(896\) −8.03571 26.0626i −0.268454 0.870689i
\(897\) 0 0
\(898\) 3.95491 6.85010i 0.131977 0.228591i
\(899\) 12.7777 + 22.1317i 0.426162 + 0.738133i
\(900\) 0 0
\(901\) −4.85049 + 8.40129i −0.161593 + 0.279888i
\(902\) −0.00186525 −6.21060e−5
\(903\) 0 0
\(904\) −23.2705 −0.773966
\(905\) 3.92402 6.79659i 0.130439 0.225926i
\(906\) 0 0
\(907\) 25.8334 + 44.7447i 0.857782 + 1.48572i 0.874039 + 0.485855i \(0.161492\pi\)
−0.0162569 + 0.999868i \(0.505175\pi\)
\(908\) 5.99281 10.3798i 0.198878 0.344467i
\(909\) 0 0
\(910\) −1.69241 0.386501i −0.0561029 0.0128124i
\(911\) 48.0342 1.59144 0.795722 0.605662i \(-0.207091\pi\)
0.795722 + 0.605662i \(0.207091\pi\)
\(912\) 0 0
\(913\) 0.184846 + 0.320162i 0.00611750 + 0.0105958i
\(914\) 4.27203 + 7.39937i 0.141306 + 0.244749i
\(915\) 0 0
\(916\) −14.5086 −0.479376
\(917\) 13.2382 + 42.9360i 0.437164 + 1.41787i
\(918\) 0 0
\(919\) −11.8773 + 20.5720i −0.391794 + 0.678608i −0.992686 0.120722i \(-0.961479\pi\)
0.600892 + 0.799330i \(0.294812\pi\)
\(920\) −0.824124 1.42743i −0.0271706 0.0470608i
\(921\) 0 0
\(922\) −5.54410 + 9.60267i −0.182585 + 0.316247i
\(923\) 5.20437 0.171304
\(924\) 0 0
\(925\) 9.27704 0.305027
\(926\) −7.69870 + 13.3345i −0.252995 + 0.438200i
\(927\) 0 0
\(928\) −15.0662 26.0954i −0.494572 0.856625i
\(929\) −2.86320 + 4.95920i −0.0939384 + 0.162706i −0.909165 0.416436i \(-0.863279\pi\)
0.815227 + 0.579142i \(0.196612\pi\)
\(930\) 0 0
\(931\) 6.30603 + 3.03874i 0.206672 + 0.0995907i
\(932\) 41.0582 1.34491
\(933\) 0 0
\(934\) −1.71205 2.96535i −0.0560199 0.0970293i
\(935\) 0.0493349 + 0.0854506i 0.00161343 + 0.00279453i
\(936\) 0 0
\(937\) −24.1920 −0.790319 −0.395159 0.918613i \(-0.629311\pi\)
−0.395159 + 0.918613i \(0.629311\pi\)
\(938\) 3.22359 3.47334i 0.105254 0.113409i
\(939\) 0 0
\(940\) 6.20246 10.7430i 0.202302 0.350397i
\(941\) 3.07866 + 5.33239i 0.100361 + 0.173831i 0.911834 0.410560i \(-0.134667\pi\)
−0.811472 + 0.584391i \(0.801333\pi\)
\(942\) 0 0
\(943\) −0.0839662 + 0.145434i −0.00273431 + 0.00473597i
\(944\) −40.0062 −1.30209
\(945\) 0 0
\(946\) −0.0642952 −0.00209042
\(947\) −12.7265 + 22.0430i −0.413557 + 0.716301i −0.995276 0.0970888i \(-0.969047\pi\)
0.581719 + 0.813390i \(0.302380\pi\)
\(948\) 0 0
\(949\) −6.10121 10.5676i −0.198054 0.343039i
\(950\) 0.850046 1.47232i 0.0275791 0.0477684i
\(951\) 0 0
\(952\) −12.7817 2.91900i −0.414258 0.0946054i
\(953\) −11.3961 −0.369157 −0.184579 0.982818i \(-0.559092\pi\)
−0.184579 + 0.982818i \(0.559092\pi\)
\(954\) 0 0
\(955\) 7.72885 + 13.3868i 0.250100 + 0.433186i
\(956\) −24.4390 42.3295i −0.790412 1.36903i
\(957\) 0 0
\(958\) −5.88177 −0.190031
\(959\) −5.78343 1.32078i −0.186757 0.0426502i
\(960\) 0 0
\(961\) 8.94952 15.5010i 0.288694 0.500033i
\(962\) 0.841755 + 1.45796i 0.0271393 + 0.0470066i
\(963\) 0 0
\(964\) 10.2103 17.6847i 0.328851 0.569586i
\(965\) −12.8126 −0.412453
\(966\) 0 0
\(967\) 45.9401 1.47733 0.738667 0.674071i \(-0.235456\pi\)
0.738667 + 0.674071i \(0.235456\pi\)
\(968\) −8.37604 + 14.5077i −0.269216 + 0.466296i
\(969\) 0 0
\(970\) 0.426222 + 0.738238i 0.0136852 + 0.0237034i
\(971\) −0.347191 + 0.601352i −0.0111419 + 0.0192983i −0.871543 0.490320i \(-0.836880\pi\)
0.860401 + 0.509618i \(0.170213\pi\)
\(972\) 0 0
\(973\) 30.2909 32.6377i 0.971080 1.04632i
\(974\) 7.09615 0.227375
\(975\) 0 0
\(976\) −3.98770 6.90690i −0.127643 0.221085i
\(977\) −18.3718 31.8208i −0.587765 1.01804i −0.994525 0.104503i \(-0.966675\pi\)
0.406760 0.913535i \(-0.366659\pi\)
\(978\) 0 0
\(979\) −0.301244 −0.00962781
\(980\) 0.809939 + 10.8438i 0.0258725 + 0.346391i
\(981\) 0 0
\(982\) 3.80221 6.58563i 0.121334 0.210156i
\(983\) −6.67886 11.5681i −0.213022 0.368966i 0.739637 0.673006i \(-0.234997\pi\)
−0.952659 + 0.304041i \(0.901664\pi\)
\(984\) 0 0
\(985\) 3.27559 5.67349i 0.104369 0.180772i
\(986\) −9.10440 −0.289943
\(987\) 0 0
\(988\) −3.61953 −0.115152
\(989\) −2.89431 + 5.01310i −0.0920339 + 0.159407i
\(990\) 0 0
\(991\) −20.1635 34.9241i −0.640514 1.10940i −0.985318 0.170728i \(-0.945388\pi\)
0.344805 0.938674i \(-0.387945\pi\)
\(992\) 7.72366 13.3778i 0.245226 0.424745i
\(993\) 0 0
\(994\) 0.818700 + 2.65532i 0.0259676 + 0.0842217i
\(995\) 21.6850 0.687460
\(996\) 0 0
\(997\) 3.94737 + 6.83704i 0.125014 + 0.216531i 0.921739 0.387812i \(-0.126769\pi\)
−0.796724 + 0.604343i \(0.793436\pi\)
\(998\) −4.87185 8.43830i −0.154216 0.267110i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1197.2.j.k.856.2 8
3.2 odd 2 399.2.j.d.58.3 8
7.2 even 3 8379.2.a.br.1.3 4
7.4 even 3 inner 1197.2.j.k.172.2 8
7.5 odd 6 8379.2.a.bt.1.3 4
21.2 odd 6 2793.2.a.bc.1.2 4
21.5 even 6 2793.2.a.bd.1.2 4
21.11 odd 6 399.2.j.d.172.3 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
399.2.j.d.58.3 8 3.2 odd 2
399.2.j.d.172.3 yes 8 21.11 odd 6
1197.2.j.k.172.2 8 7.4 even 3 inner
1197.2.j.k.856.2 8 1.1 even 1 trivial
2793.2.a.bc.1.2 4 21.2 odd 6
2793.2.a.bd.1.2 4 21.5 even 6
8379.2.a.br.1.3 4 7.2 even 3
8379.2.a.bt.1.3 4 7.5 odd 6