Properties

Label 1197.2.j.k.172.2
Level $1197$
Weight $2$
Character 1197.172
Analytic conductor $9.558$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1197,2,Mod(172,1197)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1197.172"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1197, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1197 = 3^{2} \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1197.j (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.55809312195\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.310217769.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 4x^{6} - 2x^{5} + 15x^{4} - 4x^{3} + 5x^{2} + x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 399)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 172.2
Root \(-0.198169 - 0.343239i\) of defining polynomial
Character \(\chi\) \(=\) 1197.172
Dual form 1197.2.j.k.856.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.198169 - 0.343239i) q^{2} +(0.921458 - 1.59601i) q^{4} +(-0.421458 - 0.729986i) q^{5} +(1.79981 + 1.93925i) q^{7} -1.52310 q^{8} +(-0.167040 + 0.289322i) q^{10} +(-0.0179894 + 0.0311586i) q^{11} +1.96402 q^{13} +(0.308961 - 1.00206i) q^{14} +(-1.54109 - 2.66924i) q^{16} +(1.62676 - 2.81763i) q^{17} +(-0.500000 - 0.866025i) q^{19} -1.55342 q^{20} +0.0142598 q^{22} +(0.641921 + 1.11184i) q^{23} +(2.14475 - 3.71481i) q^{25} +(-0.389209 - 0.674129i) q^{26} +(4.75351 - 1.08558i) q^{28} +7.06045 q^{29} +(1.80976 - 3.13460i) q^{31} +(-2.13389 + 3.69600i) q^{32} -1.28949 q^{34} +(0.657084 - 2.13115i) q^{35} +(1.08137 + 1.87298i) q^{37} +(-0.198169 + 0.343239i) q^{38} +(0.641921 + 1.11184i) q^{40} -0.130805 q^{41} -4.50884 q^{43} +(0.0331530 + 0.0574227i) q^{44} +(0.254418 - 0.440665i) q^{46} +(-3.99277 - 6.91568i) q^{47} +(-0.521390 + 6.98056i) q^{49} -1.70009 q^{50} +(1.80976 - 3.13460i) q^{52} +(1.49085 - 2.58222i) q^{53} +0.0303272 q^{55} +(-2.74128 - 2.95366i) q^{56} +(-1.39916 - 2.42342i) q^{58} +(6.48994 - 11.2409i) q^{59} +(-1.29380 - 2.24092i) q^{61} -1.43456 q^{62} -4.47286 q^{64} +(-0.827752 - 1.43371i) q^{65} +(-2.25952 + 3.91361i) q^{67} +(-2.99798 - 5.19265i) q^{68} +(-0.861707 + 0.196791i) q^{70} +2.64985 q^{71} +(-3.10649 + 5.38059i) q^{73} +(0.428588 - 0.742336i) q^{74} -1.84292 q^{76} +(-0.0928019 + 0.0211935i) q^{77} +(-5.18641 - 8.98312i) q^{79} +(-1.29900 + 2.24994i) q^{80} +(0.0259214 + 0.0448973i) q^{82} -10.2752 q^{83} -2.74244 q^{85} +(0.893513 + 1.54761i) q^{86} +(0.0273996 - 0.0474576i) q^{88} +(4.18641 + 7.25107i) q^{89} +(3.53486 + 3.80873i) q^{91} +2.36601 q^{92} +(-1.58249 + 2.74095i) q^{94} +(-0.421458 + 0.729986i) q^{95} -2.55162 q^{97} +(2.49932 - 1.20437i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{5} + 2 q^{7} + 6 q^{8} + 3 q^{10} - 2 q^{11} + 12 q^{13} - 2 q^{14} + 4 q^{16} - 2 q^{17} - 4 q^{19} - 24 q^{20} - 12 q^{22} + 5 q^{23} + 4 q^{25} - 6 q^{26} + 8 q^{28} + 8 q^{29} - 17 q^{31}+ \cdots - 27 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1197\mathbb{Z}\right)^\times\).

\(n\) \(514\) \(533\) \(1009\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.198169 0.343239i −0.140127 0.242707i 0.787417 0.616420i \(-0.211418\pi\)
−0.927544 + 0.373713i \(0.878084\pi\)
\(3\) 0 0
\(4\) 0.921458 1.59601i 0.460729 0.798006i
\(5\) −0.421458 0.729986i −0.188482 0.326460i 0.756263 0.654268i \(-0.227023\pi\)
−0.944744 + 0.327808i \(0.893690\pi\)
\(6\) 0 0
\(7\) 1.79981 + 1.93925i 0.680263 + 0.732968i
\(8\) −1.52310 −0.538496
\(9\) 0 0
\(10\) −0.167040 + 0.289322i −0.0528227 + 0.0914916i
\(11\) −0.0179894 + 0.0311586i −0.00542402 + 0.00939468i −0.868725 0.495295i \(-0.835060\pi\)
0.863301 + 0.504690i \(0.168393\pi\)
\(12\) 0 0
\(13\) 1.96402 0.544721 0.272361 0.962195i \(-0.412196\pi\)
0.272361 + 0.962195i \(0.412196\pi\)
\(14\) 0.308961 1.00206i 0.0825732 0.267813i
\(15\) 0 0
\(16\) −1.54109 2.66924i −0.385271 0.667309i
\(17\) 1.62676 2.81763i 0.394547 0.683375i −0.598497 0.801125i \(-0.704235\pi\)
0.993043 + 0.117751i \(0.0375684\pi\)
\(18\) 0 0
\(19\) −0.500000 0.866025i −0.114708 0.198680i
\(20\) −1.55342 −0.347356
\(21\) 0 0
\(22\) 0.0142598 0.00304020
\(23\) 0.641921 + 1.11184i 0.133850 + 0.231834i 0.925157 0.379584i \(-0.123933\pi\)
−0.791308 + 0.611418i \(0.790599\pi\)
\(24\) 0 0
\(25\) 2.14475 3.71481i 0.428949 0.742962i
\(26\) −0.389209 0.674129i −0.0763301 0.132208i
\(27\) 0 0
\(28\) 4.75351 1.08558i 0.898330 0.205154i
\(29\) 7.06045 1.31109 0.655546 0.755155i \(-0.272438\pi\)
0.655546 + 0.755155i \(0.272438\pi\)
\(30\) 0 0
\(31\) 1.80976 3.13460i 0.325043 0.562991i −0.656478 0.754345i \(-0.727955\pi\)
0.981521 + 0.191354i \(0.0612879\pi\)
\(32\) −2.13389 + 3.69600i −0.377221 + 0.653367i
\(33\) 0 0
\(34\) −1.28949 −0.221146
\(35\) 0.657084 2.13115i 0.111068 0.360230i
\(36\) 0 0
\(37\) 1.08137 + 1.87298i 0.177776 + 0.307917i 0.941118 0.338077i \(-0.109776\pi\)
−0.763343 + 0.645994i \(0.776443\pi\)
\(38\) −0.198169 + 0.343239i −0.0321473 + 0.0556808i
\(39\) 0 0
\(40\) 0.641921 + 1.11184i 0.101497 + 0.175797i
\(41\) −0.130805 −0.0204282 −0.0102141 0.999948i \(-0.503251\pi\)
−0.0102141 + 0.999948i \(0.503251\pi\)
\(42\) 0 0
\(43\) −4.50884 −0.687591 −0.343796 0.939045i \(-0.611713\pi\)
−0.343796 + 0.939045i \(0.611713\pi\)
\(44\) 0.0331530 + 0.0574227i 0.00499801 + 0.00865680i
\(45\) 0 0
\(46\) 0.254418 0.440665i 0.0375119 0.0649725i
\(47\) −3.99277 6.91568i −0.582405 1.00876i −0.995193 0.0979283i \(-0.968778\pi\)
0.412788 0.910827i \(-0.364555\pi\)
\(48\) 0 0
\(49\) −0.521390 + 6.98056i −0.0744842 + 0.997222i
\(50\) −1.70009 −0.240429
\(51\) 0 0
\(52\) 1.80976 3.13460i 0.250969 0.434691i
\(53\) 1.49085 2.58222i 0.204783 0.354695i −0.745280 0.666751i \(-0.767684\pi\)
0.950064 + 0.312056i \(0.101018\pi\)
\(54\) 0 0
\(55\) 0.0303272 0.00408931
\(56\) −2.74128 2.95366i −0.366319 0.394700i
\(57\) 0 0
\(58\) −1.39916 2.42342i −0.183719 0.318211i
\(59\) 6.48994 11.2409i 0.844919 1.46344i −0.0407734 0.999168i \(-0.512982\pi\)
0.885692 0.464273i \(-0.153685\pi\)
\(60\) 0 0
\(61\) −1.29380 2.24092i −0.165654 0.286921i 0.771234 0.636552i \(-0.219640\pi\)
−0.936887 + 0.349632i \(0.886307\pi\)
\(62\) −1.43456 −0.182189
\(63\) 0 0
\(64\) −4.47286 −0.559107
\(65\) −0.827752 1.43371i −0.102670 0.177830i
\(66\) 0 0
\(67\) −2.25952 + 3.91361i −0.276045 + 0.478124i −0.970398 0.241511i \(-0.922357\pi\)
0.694353 + 0.719634i \(0.255690\pi\)
\(68\) −2.99798 5.19265i −0.363558 0.629701i
\(69\) 0 0
\(70\) −0.861707 + 0.196791i −0.102994 + 0.0235210i
\(71\) 2.64985 0.314480 0.157240 0.987560i \(-0.449740\pi\)
0.157240 + 0.987560i \(0.449740\pi\)
\(72\) 0 0
\(73\) −3.10649 + 5.38059i −0.363587 + 0.629751i −0.988548 0.150905i \(-0.951781\pi\)
0.624961 + 0.780656i \(0.285115\pi\)
\(74\) 0.428588 0.742336i 0.0498223 0.0862948i
\(75\) 0 0
\(76\) −1.84292 −0.211397
\(77\) −0.0928019 + 0.0211935i −0.0105758 + 0.00241522i
\(78\) 0 0
\(79\) −5.18641 8.98312i −0.583516 1.01068i −0.995059 0.0992892i \(-0.968343\pi\)
0.411542 0.911391i \(-0.364990\pi\)
\(80\) −1.29900 + 2.24994i −0.145233 + 0.251551i
\(81\) 0 0
\(82\) 0.0259214 + 0.0448973i 0.00286255 + 0.00495807i
\(83\) −10.2752 −1.12785 −0.563927 0.825825i \(-0.690710\pi\)
−0.563927 + 0.825825i \(0.690710\pi\)
\(84\) 0 0
\(85\) −2.74244 −0.297459
\(86\) 0.893513 + 1.54761i 0.0963499 + 0.166883i
\(87\) 0 0
\(88\) 0.0273996 0.0474576i 0.00292081 0.00505899i
\(89\) 4.18641 + 7.25107i 0.443758 + 0.768612i 0.997965 0.0637675i \(-0.0203116\pi\)
−0.554207 + 0.832379i \(0.686978\pi\)
\(90\) 0 0
\(91\) 3.53486 + 3.80873i 0.370554 + 0.399263i
\(92\) 2.36601 0.246674
\(93\) 0 0
\(94\) −1.58249 + 2.74095i −0.163221 + 0.282707i
\(95\) −0.421458 + 0.729986i −0.0432407 + 0.0748950i
\(96\) 0 0
\(97\) −2.55162 −0.259077 −0.129539 0.991574i \(-0.541350\pi\)
−0.129539 + 0.991574i \(0.541350\pi\)
\(98\) 2.49932 1.20437i 0.252470 0.121660i
\(99\) 0 0
\(100\) −3.95259 6.84608i −0.395259 0.684608i
\(101\) 3.56508 6.17491i 0.354739 0.614426i −0.632334 0.774696i \(-0.717903\pi\)
0.987073 + 0.160270i \(0.0512363\pi\)
\(102\) 0 0
\(103\) −1.45461 2.51946i −0.143327 0.248250i 0.785420 0.618963i \(-0.212447\pi\)
−0.928748 + 0.370713i \(0.879113\pi\)
\(104\) −2.99139 −0.293330
\(105\) 0 0
\(106\) −1.18176 −0.114783
\(107\) 4.30466 + 7.45588i 0.416147 + 0.720788i 0.995548 0.0942550i \(-0.0300469\pi\)
−0.579401 + 0.815042i \(0.696714\pi\)
\(108\) 0 0
\(109\) −0.287469 + 0.497911i −0.0275346 + 0.0476913i −0.879464 0.475965i \(-0.842099\pi\)
0.851930 + 0.523656i \(0.175432\pi\)
\(110\) −0.00600991 0.0104095i −0.000573023 0.000992505i
\(111\) 0 0
\(112\) 2.40267 7.79266i 0.227031 0.736337i
\(113\) 15.2784 1.43727 0.718637 0.695385i \(-0.244766\pi\)
0.718637 + 0.695385i \(0.244766\pi\)
\(114\) 0 0
\(115\) 0.541085 0.937187i 0.0504564 0.0873931i
\(116\) 6.50591 11.2686i 0.604058 1.04626i
\(117\) 0 0
\(118\) −5.14443 −0.473583
\(119\) 8.39193 1.91649i 0.769287 0.175685i
\(120\) 0 0
\(121\) 5.49935 + 9.52516i 0.499941 + 0.865923i
\(122\) −0.512782 + 0.888164i −0.0464251 + 0.0804106i
\(123\) 0 0
\(124\) −3.33524 5.77681i −0.299513 0.518772i
\(125\) −7.83026 −0.700360
\(126\) 0 0
\(127\) 1.02235 0.0907193 0.0453597 0.998971i \(-0.485557\pi\)
0.0453597 + 0.998971i \(0.485557\pi\)
\(128\) 5.15416 + 8.92726i 0.455567 + 0.789066i
\(129\) 0 0
\(130\) −0.328070 + 0.568234i −0.0287736 + 0.0498374i
\(131\) −8.49106 14.7070i −0.741868 1.28495i −0.951644 0.307203i \(-0.900607\pi\)
0.209776 0.977749i \(-0.432726\pi\)
\(132\) 0 0
\(133\) 0.779537 2.52830i 0.0675945 0.219232i
\(134\) 1.79107 0.154725
\(135\) 0 0
\(136\) −2.47771 + 4.29151i −0.212462 + 0.367994i
\(137\) −1.12111 + 1.94181i −0.0957825 + 0.165900i −0.909935 0.414751i \(-0.863869\pi\)
0.814152 + 0.580651i \(0.197202\pi\)
\(138\) 0 0
\(139\) 16.8301 1.42751 0.713753 0.700397i \(-0.246994\pi\)
0.713753 + 0.700397i \(0.246994\pi\)
\(140\) −2.79586 3.01248i −0.236293 0.254601i
\(141\) 0 0
\(142\) −0.525119 0.909533i −0.0440670 0.0763263i
\(143\) −0.0353316 + 0.0611962i −0.00295458 + 0.00511748i
\(144\) 0 0
\(145\) −2.97568 5.15403i −0.247117 0.428019i
\(146\) 2.46244 0.203793
\(147\) 0 0
\(148\) 3.98574 0.327626
\(149\) 6.36601 + 11.0263i 0.521524 + 0.903306i 0.999687 + 0.0250347i \(0.00796962\pi\)
−0.478163 + 0.878271i \(0.658697\pi\)
\(150\) 0 0
\(151\) 5.91342 10.2424i 0.481228 0.833511i −0.518540 0.855053i \(-0.673524\pi\)
0.999768 + 0.0215425i \(0.00685771\pi\)
\(152\) 0.761548 + 1.31904i 0.0617697 + 0.106988i
\(153\) 0 0
\(154\) 0.0256649 + 0.0276534i 0.00206814 + 0.00222837i
\(155\) −3.05096 −0.245059
\(156\) 0 0
\(157\) −3.68843 + 6.38855i −0.294369 + 0.509862i −0.974838 0.222915i \(-0.928443\pi\)
0.680469 + 0.732777i \(0.261776\pi\)
\(158\) −2.05557 + 3.56036i −0.163533 + 0.283247i
\(159\) 0 0
\(160\) 3.59737 0.284397
\(161\) −1.00080 + 3.24594i −0.0788743 + 0.255816i
\(162\) 0 0
\(163\) 9.02470 + 15.6312i 0.706869 + 1.22433i 0.966013 + 0.258494i \(0.0832263\pi\)
−0.259144 + 0.965839i \(0.583440\pi\)
\(164\) −0.120531 + 0.208766i −0.00941188 + 0.0163019i
\(165\) 0 0
\(166\) 2.03624 + 3.52686i 0.158043 + 0.273738i
\(167\) −22.6354 −1.75158 −0.875790 0.482693i \(-0.839659\pi\)
−0.875790 + 0.482693i \(0.839659\pi\)
\(168\) 0 0
\(169\) −9.14262 −0.703279
\(170\) 0.543467 + 0.941312i 0.0416820 + 0.0721954i
\(171\) 0 0
\(172\) −4.15470 + 7.19616i −0.316793 + 0.548702i
\(173\) 3.44141 + 5.96070i 0.261646 + 0.453183i 0.966679 0.255990i \(-0.0824015\pi\)
−0.705034 + 0.709174i \(0.749068\pi\)
\(174\) 0 0
\(175\) 11.0641 2.52674i 0.836366 0.191003i
\(176\) 0.110893 0.00835888
\(177\) 0 0
\(178\) 1.65923 2.87388i 0.124365 0.215406i
\(179\) 0.310439 0.537696i 0.0232033 0.0401893i −0.854191 0.519960i \(-0.825947\pi\)
0.877394 + 0.479771i \(0.159280\pi\)
\(180\) 0 0
\(181\) −9.31058 −0.692050 −0.346025 0.938225i \(-0.612469\pi\)
−0.346025 + 0.938225i \(0.612469\pi\)
\(182\) 0.606805 1.96808i 0.0449794 0.145883i
\(183\) 0 0
\(184\) −0.977707 1.69344i −0.0720775 0.124842i
\(185\) 0.911502 1.57877i 0.0670150 0.116073i
\(186\) 0 0
\(187\) 0.0585289 + 0.101375i 0.00428006 + 0.00741328i
\(188\) −14.7167 −1.07332
\(189\) 0 0
\(190\) 0.334080 0.0242367
\(191\) 9.16919 + 15.8815i 0.663459 + 1.14915i 0.979701 + 0.200466i \(0.0642457\pi\)
−0.316241 + 0.948679i \(0.602421\pi\)
\(192\) 0 0
\(193\) 7.60019 13.1639i 0.547074 0.947559i −0.451400 0.892322i \(-0.649075\pi\)
0.998473 0.0552373i \(-0.0175915\pi\)
\(194\) 0.505652 + 0.875814i 0.0363037 + 0.0628798i
\(195\) 0 0
\(196\) 10.6606 + 7.26443i 0.761472 + 0.518888i
\(197\) −7.77205 −0.553736 −0.276868 0.960908i \(-0.589296\pi\)
−0.276868 + 0.960908i \(0.589296\pi\)
\(198\) 0 0
\(199\) −12.8631 + 22.2795i −0.911840 + 1.57935i −0.100377 + 0.994950i \(0.532005\pi\)
−0.811463 + 0.584403i \(0.801329\pi\)
\(200\) −3.26665 + 5.65801i −0.230987 + 0.400082i
\(201\) 0 0
\(202\) −2.82596 −0.198834
\(203\) 12.7074 + 13.6920i 0.891888 + 0.960989i
\(204\) 0 0
\(205\) 0.0551286 + 0.0954856i 0.00385035 + 0.00666900i
\(206\) −0.576518 + 0.998559i −0.0401679 + 0.0695729i
\(207\) 0 0
\(208\) −3.02672 5.24244i −0.209866 0.363498i
\(209\) 0.0359789 0.00248871
\(210\) 0 0
\(211\) 17.2470 1.18733 0.593667 0.804711i \(-0.297680\pi\)
0.593667 + 0.804711i \(0.297680\pi\)
\(212\) −2.74750 4.75882i −0.188699 0.326837i
\(213\) 0 0
\(214\) 1.70610 2.95505i 0.116627 0.202003i
\(215\) 1.90028 + 3.29139i 0.129598 + 0.224471i
\(216\) 0 0
\(217\) 9.33600 2.13209i 0.633769 0.144736i
\(218\) 0.227870 0.0154333
\(219\) 0 0
\(220\) 0.0279452 0.0484025i 0.00188407 0.00326330i
\(221\) 3.19499 5.53388i 0.214918 0.372249i
\(222\) 0 0
\(223\) 15.7257 1.05307 0.526537 0.850152i \(-0.323490\pi\)
0.526537 + 0.850152i \(0.323490\pi\)
\(224\) −11.0081 + 2.51395i −0.735507 + 0.167970i
\(225\) 0 0
\(226\) −3.02772 5.24416i −0.201401 0.348836i
\(227\) −3.25181 + 5.63230i −0.215830 + 0.373829i −0.953529 0.301301i \(-0.902579\pi\)
0.737699 + 0.675130i \(0.235912\pi\)
\(228\) 0 0
\(229\) −3.93630 6.81788i −0.260118 0.450538i 0.706155 0.708057i \(-0.250428\pi\)
−0.966273 + 0.257519i \(0.917095\pi\)
\(230\) −0.428906 −0.0282812
\(231\) 0 0
\(232\) −10.7537 −0.706018
\(233\) 11.1395 + 19.2941i 0.729771 + 1.26400i 0.956980 + 0.290155i \(0.0937069\pi\)
−0.227208 + 0.973846i \(0.572960\pi\)
\(234\) 0 0
\(235\) −3.36557 + 5.82933i −0.219545 + 0.380264i
\(236\) −11.9604 20.7161i −0.778557 1.34850i
\(237\) 0 0
\(238\) −2.32084 2.50065i −0.150438 0.162093i
\(239\) −26.5221 −1.71557 −0.857784 0.514009i \(-0.828160\pi\)
−0.857784 + 0.514009i \(0.828160\pi\)
\(240\) 0 0
\(241\) −5.54028 + 9.59605i −0.356881 + 0.618136i −0.987438 0.158007i \(-0.949493\pi\)
0.630557 + 0.776143i \(0.282827\pi\)
\(242\) 2.17961 3.77519i 0.140110 0.242678i
\(243\) 0 0
\(244\) −4.76872 −0.305286
\(245\) 5.31545 2.56140i 0.339592 0.163642i
\(246\) 0 0
\(247\) −0.982011 1.70089i −0.0624838 0.108225i
\(248\) −2.75644 + 4.77430i −0.175034 + 0.303168i
\(249\) 0 0
\(250\) 1.55172 + 2.68765i 0.0981392 + 0.169982i
\(251\) −3.32163 −0.209659 −0.104830 0.994490i \(-0.533430\pi\)
−0.104830 + 0.994490i \(0.533430\pi\)
\(252\) 0 0
\(253\) −0.0461912 −0.00290401
\(254\) −0.202599 0.350912i −0.0127122 0.0220182i
\(255\) 0 0
\(256\) −2.43007 + 4.20900i −0.151879 + 0.263062i
\(257\) 15.0595 + 26.0837i 0.939383 + 1.62706i 0.766625 + 0.642095i \(0.221935\pi\)
0.172758 + 0.984964i \(0.444732\pi\)
\(258\) 0 0
\(259\) −1.68593 + 5.46805i −0.104759 + 0.339768i
\(260\) −3.05096 −0.189212
\(261\) 0 0
\(262\) −3.36534 + 5.82893i −0.207911 + 0.360113i
\(263\) −12.7833 + 22.1414i −0.788253 + 1.36529i 0.138783 + 0.990323i \(0.455681\pi\)
−0.927036 + 0.374972i \(0.877652\pi\)
\(264\) 0 0
\(265\) −2.51332 −0.154392
\(266\) −1.02229 + 0.233464i −0.0626808 + 0.0143146i
\(267\) 0 0
\(268\) 4.16411 + 7.21245i 0.254364 + 0.440571i
\(269\) −3.17565 + 5.50038i −0.193623 + 0.335364i −0.946448 0.322856i \(-0.895357\pi\)
0.752825 + 0.658220i \(0.228690\pi\)
\(270\) 0 0
\(271\) −3.93087 6.80846i −0.238783 0.413585i 0.721582 0.692329i \(-0.243415\pi\)
−0.960365 + 0.278744i \(0.910082\pi\)
\(272\) −10.0279 −0.608030
\(273\) 0 0
\(274\) 0.888674 0.0536868
\(275\) 0.0771656 + 0.133655i 0.00465326 + 0.00805968i
\(276\) 0 0
\(277\) 2.93784 5.08849i 0.176518 0.305738i −0.764168 0.645018i \(-0.776850\pi\)
0.940686 + 0.339280i \(0.110183\pi\)
\(278\) −3.33520 5.77674i −0.200032 0.346466i
\(279\) 0 0
\(280\) −1.00080 + 3.24594i −0.0598094 + 0.193982i
\(281\) −16.7309 −0.998084 −0.499042 0.866578i \(-0.666315\pi\)
−0.499042 + 0.866578i \(0.666315\pi\)
\(282\) 0 0
\(283\) 10.4479 18.0962i 0.621060 1.07571i −0.368228 0.929735i \(-0.620036\pi\)
0.989289 0.145973i \(-0.0466312\pi\)
\(284\) 2.44173 4.22920i 0.144890 0.250957i
\(285\) 0 0
\(286\) 0.0280066 0.00165606
\(287\) −0.235423 0.253663i −0.0138966 0.0149732i
\(288\) 0 0
\(289\) 3.20732 + 5.55525i 0.188666 + 0.326779i
\(290\) −1.17938 + 2.04274i −0.0692554 + 0.119954i
\(291\) 0 0
\(292\) 5.72499 + 9.91598i 0.335030 + 0.580289i
\(293\) 12.1831 0.711744 0.355872 0.934535i \(-0.384184\pi\)
0.355872 + 0.934535i \(0.384184\pi\)
\(294\) 0 0
\(295\) −10.9409 −0.637007
\(296\) −1.64703 2.85273i −0.0957315 0.165812i
\(297\) 0 0
\(298\) 2.52310 4.37013i 0.146159 0.253155i
\(299\) 1.26075 + 2.18368i 0.0729108 + 0.126285i
\(300\) 0 0
\(301\) −8.11503 8.74376i −0.467743 0.503982i
\(302\) −4.68744 −0.269732
\(303\) 0 0
\(304\) −1.54109 + 2.66924i −0.0883873 + 0.153091i
\(305\) −1.09056 + 1.88891i −0.0624454 + 0.108159i
\(306\) 0 0
\(307\) −25.2971 −1.44378 −0.721890 0.692008i \(-0.756726\pi\)
−0.721890 + 0.692008i \(0.756726\pi\)
\(308\) −0.0516880 + 0.167642i −0.00294520 + 0.00955228i
\(309\) 0 0
\(310\) 0.604606 + 1.04721i 0.0343393 + 0.0594774i
\(311\) 4.94365 8.56265i 0.280329 0.485543i −0.691137 0.722724i \(-0.742890\pi\)
0.971466 + 0.237180i \(0.0762232\pi\)
\(312\) 0 0
\(313\) 0.687371 + 1.19056i 0.0388525 + 0.0672945i 0.884798 0.465975i \(-0.154296\pi\)
−0.845945 + 0.533270i \(0.820963\pi\)
\(314\) 2.92373 0.164996
\(315\) 0 0
\(316\) −19.1162 −1.07537
\(317\) 13.3451 + 23.1144i 0.749535 + 1.29823i 0.948046 + 0.318134i \(0.103056\pi\)
−0.198511 + 0.980099i \(0.563610\pi\)
\(318\) 0 0
\(319\) −0.127014 + 0.219994i −0.00711140 + 0.0123173i
\(320\) 1.88512 + 3.26513i 0.105381 + 0.182526i
\(321\) 0 0
\(322\) 1.31246 0.299731i 0.0731407 0.0167034i
\(323\) −3.25351 −0.181030
\(324\) 0 0
\(325\) 4.21233 7.29597i 0.233658 0.404707i
\(326\) 3.57684 6.19526i 0.198103 0.343124i
\(327\) 0 0
\(328\) 0.199228 0.0110005
\(329\) 6.22502 20.1899i 0.343197 1.11310i
\(330\) 0 0
\(331\) 18.1868 + 31.5004i 0.999635 + 1.73142i 0.523223 + 0.852196i \(0.324729\pi\)
0.476412 + 0.879222i \(0.341937\pi\)
\(332\) −9.46819 + 16.3994i −0.519635 + 0.900034i
\(333\) 0 0
\(334\) 4.48564 + 7.76935i 0.245443 + 0.425120i
\(335\) 3.80918 0.208118
\(336\) 0 0
\(337\) 30.0191 1.63524 0.817622 0.575756i \(-0.195292\pi\)
0.817622 + 0.575756i \(0.195292\pi\)
\(338\) 1.81179 + 3.13811i 0.0985482 + 0.170690i
\(339\) 0 0
\(340\) −2.52704 + 4.37696i −0.137048 + 0.237374i
\(341\) 0.0651132 + 0.112779i 0.00352608 + 0.00610735i
\(342\) 0 0
\(343\) −14.4755 + 11.5525i −0.781601 + 0.623779i
\(344\) 6.86739 0.370265
\(345\) 0 0
\(346\) 1.36396 2.36245i 0.0733271 0.127006i
\(347\) 14.1044 24.4295i 0.757162 1.31144i −0.187131 0.982335i \(-0.559919\pi\)
0.944292 0.329108i \(-0.106748\pi\)
\(348\) 0 0
\(349\) −4.32568 −0.231548 −0.115774 0.993276i \(-0.536935\pi\)
−0.115774 + 0.993276i \(0.536935\pi\)
\(350\) −3.05984 3.29690i −0.163555 0.176227i
\(351\) 0 0
\(352\) −0.0767749 0.132978i −0.00409211 0.00708775i
\(353\) −10.1227 + 17.5330i −0.538776 + 0.933187i 0.460194 + 0.887818i \(0.347780\pi\)
−0.998970 + 0.0453691i \(0.985554\pi\)
\(354\) 0 0
\(355\) −1.11680 1.93436i −0.0592737 0.102665i
\(356\) 15.4304 0.817809
\(357\) 0 0
\(358\) −0.246078 −0.0130056
\(359\) 6.57989 + 11.3967i 0.347273 + 0.601495i 0.985764 0.168134i \(-0.0537743\pi\)
−0.638491 + 0.769629i \(0.720441\pi\)
\(360\) 0 0
\(361\) −0.500000 + 0.866025i −0.0263158 + 0.0455803i
\(362\) 1.84507 + 3.19576i 0.0969747 + 0.167965i
\(363\) 0 0
\(364\) 9.33600 2.13209i 0.489339 0.111752i
\(365\) 5.23701 0.274118
\(366\) 0 0
\(367\) −12.2002 + 21.1314i −0.636848 + 1.10305i 0.349273 + 0.937021i \(0.386429\pi\)
−0.986120 + 0.166031i \(0.946905\pi\)
\(368\) 1.97851 3.42688i 0.103137 0.178638i
\(369\) 0 0
\(370\) −0.722527 −0.0375624
\(371\) 7.69081 1.75638i 0.399287 0.0911864i
\(372\) 0 0
\(373\) −1.23438 2.13800i −0.0639136 0.110702i 0.832298 0.554328i \(-0.187025\pi\)
−0.896212 + 0.443627i \(0.853692\pi\)
\(374\) 0.0231973 0.0401788i 0.00119950 0.00207760i
\(375\) 0 0
\(376\) 6.08137 + 10.5332i 0.313623 + 0.543210i
\(377\) 13.8669 0.714180
\(378\) 0 0
\(379\) −18.7800 −0.964665 −0.482332 0.875988i \(-0.660210\pi\)
−0.482332 + 0.875988i \(0.660210\pi\)
\(380\) 0.776711 + 1.34530i 0.0398445 + 0.0690126i
\(381\) 0 0
\(382\) 3.63410 6.29445i 0.185937 0.322052i
\(383\) 15.8144 + 27.3914i 0.808081 + 1.39964i 0.914192 + 0.405282i \(0.132827\pi\)
−0.106111 + 0.994354i \(0.533840\pi\)
\(384\) 0 0
\(385\) 0.0545831 + 0.0588120i 0.00278181 + 0.00299734i
\(386\) −6.02449 −0.306639
\(387\) 0 0
\(388\) −2.35121 + 4.07241i −0.119364 + 0.206745i
\(389\) −2.16873 + 3.75636i −0.109959 + 0.190455i −0.915754 0.401741i \(-0.868405\pi\)
0.805794 + 0.592196i \(0.201739\pi\)
\(390\) 0 0
\(391\) 4.17700 0.211240
\(392\) 0.794126 10.6321i 0.0401094 0.537000i
\(393\) 0 0
\(394\) 1.54018 + 2.66767i 0.0775932 + 0.134395i
\(395\) −4.37170 + 7.57201i −0.219964 + 0.380989i
\(396\) 0 0
\(397\) −0.682778 1.18261i −0.0342676 0.0593533i 0.848383 0.529383i \(-0.177577\pi\)
−0.882651 + 0.470030i \(0.844243\pi\)
\(398\) 10.1963 0.511093
\(399\) 0 0
\(400\) −13.2209 −0.661047
\(401\) 11.3302 + 19.6246i 0.565806 + 0.980004i 0.996974 + 0.0777327i \(0.0247681\pi\)
−0.431169 + 0.902271i \(0.641899\pi\)
\(402\) 0 0
\(403\) 3.55441 6.15642i 0.177058 0.306673i
\(404\) −6.57015 11.3798i −0.326877 0.566168i
\(405\) 0 0
\(406\) 2.18140 7.07503i 0.108261 0.351128i
\(407\) −0.0778128 −0.00385704
\(408\) 0 0
\(409\) 13.3916 23.1950i 0.662174 1.14692i −0.317869 0.948135i \(-0.602967\pi\)
0.980043 0.198785i \(-0.0636994\pi\)
\(410\) 0.0218496 0.0378446i 0.00107907 0.00186901i
\(411\) 0 0
\(412\) −5.36145 −0.264140
\(413\) 33.4796 7.64584i 1.64742 0.376227i
\(414\) 0 0
\(415\) 4.33058 + 7.50078i 0.212580 + 0.368199i
\(416\) −4.19100 + 7.25902i −0.205481 + 0.355903i
\(417\) 0 0
\(418\) −0.00712991 0.0123494i −0.000348735 0.000604027i
\(419\) −29.9706 −1.46416 −0.732081 0.681218i \(-0.761451\pi\)
−0.732081 + 0.681218i \(0.761451\pi\)
\(420\) 0 0
\(421\) −28.9616 −1.41150 −0.705750 0.708460i \(-0.749390\pi\)
−0.705750 + 0.708460i \(0.749390\pi\)
\(422\) −3.41783 5.91986i −0.166377 0.288174i
\(423\) 0 0
\(424\) −2.27070 + 3.93297i −0.110275 + 0.191002i
\(425\) −6.97796 12.0862i −0.338481 0.586266i
\(426\) 0 0
\(427\) 2.01713 6.54222i 0.0976156 0.316600i
\(428\) 15.8662 0.766924
\(429\) 0 0
\(430\) 0.753156 1.30450i 0.0363204 0.0629088i
\(431\) 10.4379 18.0789i 0.502774 0.870831i −0.497220 0.867624i \(-0.665646\pi\)
0.999995 0.00320655i \(-0.00102068\pi\)
\(432\) 0 0
\(433\) −7.01266 −0.337007 −0.168503 0.985701i \(-0.553893\pi\)
−0.168503 + 0.985701i \(0.553893\pi\)
\(434\) −2.58193 2.78197i −0.123936 0.133539i
\(435\) 0 0
\(436\) 0.529782 + 0.917609i 0.0253719 + 0.0439455i
\(437\) 0.641921 1.11184i 0.0307072 0.0531865i
\(438\) 0 0
\(439\) 0.874034 + 1.51387i 0.0417153 + 0.0722531i 0.886129 0.463438i \(-0.153384\pi\)
−0.844414 + 0.535691i \(0.820051\pi\)
\(440\) −0.0461912 −0.00220208
\(441\) 0 0
\(442\) −2.53259 −0.120463
\(443\) −9.44051 16.3514i −0.448532 0.776880i 0.549759 0.835323i \(-0.314720\pi\)
−0.998291 + 0.0584433i \(0.981386\pi\)
\(444\) 0 0
\(445\) 3.52879 6.11204i 0.167281 0.289738i
\(446\) −3.11636 5.39769i −0.147564 0.255588i
\(447\) 0 0
\(448\) −8.05028 8.67399i −0.380340 0.409808i
\(449\) −19.9572 −0.941839 −0.470920 0.882176i \(-0.656078\pi\)
−0.470920 + 0.882176i \(0.656078\pi\)
\(450\) 0 0
\(451\) 0.00235310 0.00407569i 0.000110803 0.000191917i
\(452\) 14.0784 24.3846i 0.662194 1.14695i
\(453\) 0 0
\(454\) 2.57763 0.120974
\(455\) 1.29053 4.18562i 0.0605009 0.196225i
\(456\) 0 0
\(457\) 10.7787 + 18.6693i 0.504208 + 0.873314i 0.999988 + 0.00486577i \(0.00154883\pi\)
−0.495780 + 0.868448i \(0.665118\pi\)
\(458\) −1.56011 + 2.70219i −0.0728991 + 0.126265i
\(459\) 0 0
\(460\) −0.997174 1.72716i −0.0464935 0.0805291i
\(461\) 27.9766 1.30300 0.651500 0.758649i \(-0.274140\pi\)
0.651500 + 0.758649i \(0.274140\pi\)
\(462\) 0 0
\(463\) 38.8491 1.80547 0.902736 0.430195i \(-0.141555\pi\)
0.902736 + 0.430195i \(0.141555\pi\)
\(464\) −10.8808 18.8460i −0.505126 0.874905i
\(465\) 0 0
\(466\) 4.41500 7.64701i 0.204521 0.354241i
\(467\) −4.31966 7.48187i −0.199890 0.346219i 0.748603 0.663019i \(-0.230725\pi\)
−0.948493 + 0.316799i \(0.897392\pi\)
\(468\) 0 0
\(469\) −11.6562 + 2.66196i −0.538232 + 0.122918i
\(470\) 2.66781 0.123057
\(471\) 0 0
\(472\) −9.88480 + 17.1210i −0.454985 + 0.788057i
\(473\) 0.0811114 0.140489i 0.00372951 0.00645970i
\(474\) 0 0
\(475\) −4.28949 −0.196815
\(476\) 4.67407 15.1596i 0.214236 0.694839i
\(477\) 0 0
\(478\) 5.25586 + 9.10341i 0.240397 + 0.416380i
\(479\) 7.42013 12.8521i 0.339035 0.587225i −0.645217 0.764000i \(-0.723233\pi\)
0.984251 + 0.176774i \(0.0565663\pi\)
\(480\) 0 0
\(481\) 2.12383 + 3.67858i 0.0968383 + 0.167729i
\(482\) 4.39166 0.200034
\(483\) 0 0
\(484\) 20.2697 0.921349
\(485\) 1.07540 + 1.86264i 0.0488313 + 0.0845783i
\(486\) 0 0
\(487\) −8.95213 + 15.5055i −0.405660 + 0.702623i −0.994398 0.105701i \(-0.966291\pi\)
0.588738 + 0.808324i \(0.299625\pi\)
\(488\) 1.97058 + 3.41314i 0.0892038 + 0.154506i
\(489\) 0 0
\(490\) −1.93253 1.31688i −0.0873030 0.0594906i
\(491\) −19.1867 −0.865883 −0.432942 0.901422i \(-0.642524\pi\)
−0.432942 + 0.901422i \(0.642524\pi\)
\(492\) 0 0
\(493\) 11.4856 19.8937i 0.517287 0.895968i
\(494\) −0.389209 + 0.674129i −0.0175113 + 0.0303305i
\(495\) 0 0
\(496\) −11.1560 −0.500919
\(497\) 4.76922 + 5.13873i 0.213929 + 0.230504i
\(498\) 0 0
\(499\) −12.2922 21.2906i −0.550272 0.953100i −0.998255 0.0590574i \(-0.981191\pi\)
0.447982 0.894043i \(-0.352143\pi\)
\(500\) −7.21525 + 12.4972i −0.322676 + 0.558891i
\(501\) 0 0
\(502\) 0.658245 + 1.14011i 0.0293789 + 0.0508857i
\(503\) −16.7355 −0.746199 −0.373099 0.927791i \(-0.621705\pi\)
−0.373099 + 0.927791i \(0.621705\pi\)
\(504\) 0 0
\(505\) −6.01013 −0.267447
\(506\) 0.00915367 + 0.0158546i 0.000406930 + 0.000704824i
\(507\) 0 0
\(508\) 0.942057 1.63169i 0.0417970 0.0723946i
\(509\) −11.7592 20.3675i −0.521217 0.902775i −0.999696 0.0246752i \(-0.992145\pi\)
0.478478 0.878099i \(-0.341189\pi\)
\(510\) 0 0
\(511\) −16.0254 + 3.65977i −0.708922 + 0.161899i
\(512\) 22.5429 0.996264
\(513\) 0 0
\(514\) 5.96864 10.3380i 0.263266 0.455989i
\(515\) −1.22611 + 2.12369i −0.0540291 + 0.0935811i
\(516\) 0 0
\(517\) 0.287311 0.0126359
\(518\) 2.21095 0.504922i 0.0971436 0.0221850i
\(519\) 0 0
\(520\) 1.26075 + 2.18368i 0.0552874 + 0.0957605i
\(521\) 3.02740 5.24361i 0.132633 0.229727i −0.792058 0.610446i \(-0.790990\pi\)
0.924691 + 0.380719i \(0.124324\pi\)
\(522\) 0 0
\(523\) −18.6378 32.2816i −0.814973 1.41157i −0.909347 0.416038i \(-0.863418\pi\)
0.0943746 0.995537i \(-0.469915\pi\)
\(524\) −31.2966 −1.36720
\(525\) 0 0
\(526\) 10.1330 0.441822
\(527\) −5.88809 10.1985i −0.256489 0.444252i
\(528\) 0 0
\(529\) 10.6759 18.4912i 0.464169 0.803963i
\(530\) 0.498062 + 0.862669i 0.0216344 + 0.0374719i
\(531\) 0 0
\(532\) −3.31689 3.57388i −0.143806 0.154947i
\(533\) −0.256903 −0.0111277
\(534\) 0 0
\(535\) 3.62846 6.28468i 0.156872 0.271711i
\(536\) 3.44147 5.96080i 0.148649 0.257467i
\(537\) 0 0
\(538\) 2.51726 0.108527
\(539\) −0.208125 0.141822i −0.00896458 0.00610871i
\(540\) 0 0
\(541\) 2.26300 + 3.91963i 0.0972938 + 0.168518i 0.910564 0.413369i \(-0.135648\pi\)
−0.813270 + 0.581887i \(0.802315\pi\)
\(542\) −1.55795 + 2.69846i −0.0669199 + 0.115909i
\(543\) 0 0
\(544\) 6.94263 + 12.0250i 0.297663 + 0.515567i
\(545\) 0.484625 0.0207590
\(546\) 0 0
\(547\) 11.7047 0.500456 0.250228 0.968187i \(-0.419494\pi\)
0.250228 + 0.968187i \(0.419494\pi\)
\(548\) 2.06610 + 3.57859i 0.0882595 + 0.152870i
\(549\) 0 0
\(550\) 0.0305837 0.0529725i 0.00130409 0.00225876i
\(551\) −3.53023 6.11453i −0.150393 0.260488i
\(552\) 0 0
\(553\) 8.08599 26.2256i 0.343851 1.11523i
\(554\) −2.32876 −0.0989396
\(555\) 0 0
\(556\) 15.5082 26.8610i 0.657694 1.13916i
\(557\) 7.63463 13.2236i 0.323490 0.560300i −0.657716 0.753266i \(-0.728477\pi\)
0.981206 + 0.192966i \(0.0618106\pi\)
\(558\) 0 0
\(559\) −8.85545 −0.374546
\(560\) −6.70116 + 1.53037i −0.283176 + 0.0646697i
\(561\) 0 0
\(562\) 3.31556 + 5.74271i 0.139858 + 0.242242i
\(563\) −15.2869 + 26.4777i −0.644267 + 1.11590i 0.340203 + 0.940352i \(0.389504\pi\)
−0.984470 + 0.175551i \(0.943829\pi\)
\(564\) 0 0
\(565\) −6.43922 11.1531i −0.270900 0.469213i
\(566\) −8.28177 −0.348109
\(567\) 0 0
\(568\) −4.03598 −0.169346
\(569\) −4.32265 7.48704i −0.181215 0.313873i 0.761080 0.648658i \(-0.224670\pi\)
−0.942294 + 0.334785i \(0.891336\pi\)
\(570\) 0 0
\(571\) −0.587899 + 1.01827i −0.0246028 + 0.0426133i −0.878065 0.478542i \(-0.841165\pi\)
0.853462 + 0.521155i \(0.174499\pi\)
\(572\) 0.0651132 + 0.112779i 0.00272252 + 0.00471555i
\(573\) 0 0
\(574\) −0.0404135 + 0.131075i −0.00168683 + 0.00547095i
\(575\) 5.50703 0.229659
\(576\) 0 0
\(577\) 6.17057 10.6877i 0.256884 0.444936i −0.708522 0.705689i \(-0.750637\pi\)
0.965406 + 0.260753i \(0.0839708\pi\)
\(578\) 1.27119 2.20176i 0.0528744 0.0915811i
\(579\) 0 0
\(580\) −10.9679 −0.455416
\(581\) −18.4934 19.9263i −0.767237 0.826680i
\(582\) 0 0
\(583\) 0.0536390 + 0.0929055i 0.00222150 + 0.00384775i
\(584\) 4.73148 8.19516i 0.195790 0.339118i
\(585\) 0 0
\(586\) −2.41432 4.18172i −0.0997345 0.172745i
\(587\) −19.9966 −0.825350 −0.412675 0.910878i \(-0.635405\pi\)
−0.412675 + 0.910878i \(0.635405\pi\)
\(588\) 0 0
\(589\) −3.61953 −0.149140
\(590\) 2.16816 + 3.75536i 0.0892617 + 0.154606i
\(591\) 0 0
\(592\) 3.33296 5.77286i 0.136984 0.237263i
\(593\) 5.58702 + 9.67700i 0.229431 + 0.397387i 0.957640 0.287969i \(-0.0929800\pi\)
−0.728208 + 0.685356i \(0.759647\pi\)
\(594\) 0 0
\(595\) −4.93586 5.31828i −0.202351 0.218028i
\(596\) 23.4640 0.961125
\(597\) 0 0
\(598\) 0.499682 0.865475i 0.0204335 0.0353919i
\(599\) −12.0269 + 20.8313i −0.491407 + 0.851143i −0.999951 0.00989358i \(-0.996851\pi\)
0.508544 + 0.861036i \(0.330184\pi\)
\(600\) 0 0
\(601\) 32.2158 1.31411 0.657054 0.753843i \(-0.271802\pi\)
0.657054 + 0.753843i \(0.271802\pi\)
\(602\) −1.39305 + 4.51814i −0.0567766 + 0.184146i
\(603\) 0 0
\(604\) −10.8979 18.8758i −0.443431 0.768045i
\(605\) 4.63549 8.02891i 0.188460 0.326421i
\(606\) 0 0
\(607\) 1.12862 + 1.95482i 0.0458092 + 0.0793438i 0.888021 0.459803i \(-0.152080\pi\)
−0.842212 + 0.539147i \(0.818747\pi\)
\(608\) 4.26777 0.173081
\(609\) 0 0
\(610\) 0.864463 0.0350011
\(611\) −7.84188 13.5825i −0.317249 0.549491i
\(612\) 0 0
\(613\) −6.44356 + 11.1606i −0.260253 + 0.450771i −0.966309 0.257385i \(-0.917139\pi\)
0.706056 + 0.708156i \(0.250473\pi\)
\(614\) 5.01310 + 8.68294i 0.202312 + 0.350415i
\(615\) 0 0
\(616\) 0.141346 0.0322797i 0.00569500 0.00130059i
\(617\) −25.0627 −1.00899 −0.504493 0.863416i \(-0.668321\pi\)
−0.504493 + 0.863416i \(0.668321\pi\)
\(618\) 0 0
\(619\) 8.41827 14.5809i 0.338359 0.586055i −0.645765 0.763536i \(-0.723462\pi\)
0.984124 + 0.177481i \(0.0567949\pi\)
\(620\) −2.81133 + 4.86936i −0.112906 + 0.195558i
\(621\) 0 0
\(622\) −3.91872 −0.157126
\(623\) −6.52692 + 21.1690i −0.261495 + 0.848119i
\(624\) 0 0
\(625\) −7.42361 12.8581i −0.296944 0.514323i
\(626\) 0.272432 0.471865i 0.0108886 0.0188595i
\(627\) 0 0
\(628\) 6.79747 + 11.7736i 0.271248 + 0.469816i
\(629\) 7.03649 0.280563
\(630\) 0 0
\(631\) −25.8497 −1.02906 −0.514530 0.857472i \(-0.672034\pi\)
−0.514530 + 0.857472i \(0.672034\pi\)
\(632\) 7.89939 + 13.6821i 0.314221 + 0.544247i
\(633\) 0 0
\(634\) 5.28918 9.16112i 0.210060 0.363835i
\(635\) −0.430880 0.746305i −0.0170989 0.0296162i
\(636\) 0 0
\(637\) −1.02402 + 13.7100i −0.0405732 + 0.543208i
\(638\) 0.100681 0.00398599
\(639\) 0 0
\(640\) 4.34452 7.52493i 0.171732 0.297449i
\(641\) 24.6670 42.7244i 0.974286 1.68751i 0.292016 0.956413i \(-0.405674\pi\)
0.682270 0.731100i \(-0.260993\pi\)
\(642\) 0 0
\(643\) −2.55951 −0.100937 −0.0504686 0.998726i \(-0.516071\pi\)
−0.0504686 + 0.998726i \(0.516071\pi\)
\(644\) 4.25836 + 4.58829i 0.167803 + 0.180804i
\(645\) 0 0
\(646\) 0.644747 + 1.11673i 0.0253672 + 0.0439373i
\(647\) −17.5916 + 30.4696i −0.691597 + 1.19788i 0.279717 + 0.960082i \(0.409759\pi\)
−0.971314 + 0.237799i \(0.923574\pi\)
\(648\) 0 0
\(649\) 0.233501 + 0.404435i 0.00916571 + 0.0158755i
\(650\) −3.33902 −0.130967
\(651\) 0 0
\(652\) 33.2635 1.30270
\(653\) −14.0120 24.2695i −0.548332 0.949739i −0.998389 0.0567392i \(-0.981930\pi\)
0.450057 0.893000i \(-0.351404\pi\)
\(654\) 0 0
\(655\) −7.15725 + 12.3967i −0.279657 + 0.484380i
\(656\) 0.201581 + 0.349149i 0.00787042 + 0.0136320i
\(657\) 0 0
\(658\) −8.16356 + 1.86434i −0.318249 + 0.0726795i
\(659\) −30.0543 −1.17075 −0.585374 0.810763i \(-0.699052\pi\)
−0.585374 + 0.810763i \(0.699052\pi\)
\(660\) 0 0
\(661\) −4.19955 + 7.27383i −0.163343 + 0.282919i −0.936066 0.351825i \(-0.885561\pi\)
0.772722 + 0.634744i \(0.218895\pi\)
\(662\) 7.20811 12.4848i 0.280151 0.485236i
\(663\) 0 0
\(664\) 15.6502 0.607344
\(665\) −2.17417 + 0.496522i −0.0843107 + 0.0192543i
\(666\) 0 0
\(667\) 4.53225 + 7.85009i 0.175489 + 0.303957i
\(668\) −20.8576 + 36.1264i −0.807003 + 1.39777i
\(669\) 0 0
\(670\) −0.754862 1.30746i −0.0291629 0.0505115i
\(671\) 0.0930988 0.00359404
\(672\) 0 0
\(673\) 12.5476 0.483673 0.241837 0.970317i \(-0.422250\pi\)
0.241837 + 0.970317i \(0.422250\pi\)
\(674\) −5.94886 10.3037i −0.229141 0.396885i
\(675\) 0 0
\(676\) −8.42454 + 14.5917i −0.324021 + 0.561220i
\(677\) −7.58276 13.1337i −0.291429 0.504770i 0.682719 0.730681i \(-0.260797\pi\)
−0.974148 + 0.225911i \(0.927464\pi\)
\(678\) 0 0
\(679\) −4.59241 4.94822i −0.176241 0.189895i
\(680\) 4.17700 0.160180
\(681\) 0 0
\(682\) 0.0258069 0.0446988i 0.000988197 0.00171161i
\(683\) 14.8908 25.7916i 0.569781 0.986890i −0.426806 0.904343i \(-0.640361\pi\)
0.996587 0.0825467i \(-0.0263054\pi\)
\(684\) 0 0
\(685\) 1.88999 0.0722130
\(686\) 6.83388 + 2.67918i 0.260919 + 0.102292i
\(687\) 0 0
\(688\) 6.94850 + 12.0352i 0.264909 + 0.458836i
\(689\) 2.92805 5.07154i 0.111550 0.193210i
\(690\) 0 0
\(691\) 13.9759 + 24.2070i 0.531668 + 0.920876i 0.999317 + 0.0369619i \(0.0117680\pi\)
−0.467648 + 0.883915i \(0.654899\pi\)
\(692\) 12.6845 0.482191
\(693\) 0 0
\(694\) −11.1802 −0.424395
\(695\) −7.09316 12.2857i −0.269059 0.466024i
\(696\) 0 0
\(697\) −0.212787 + 0.368558i −0.00805989 + 0.0139601i
\(698\) 0.857216 + 1.48474i 0.0324461 + 0.0561983i
\(699\) 0 0
\(700\) 6.16238 19.9867i 0.232916 0.755426i
\(701\) 3.66534 0.138438 0.0692190 0.997601i \(-0.477949\pi\)
0.0692190 + 0.997601i \(0.477949\pi\)
\(702\) 0 0
\(703\) 1.08137 1.87298i 0.0407846 0.0706409i
\(704\) 0.0804642 0.139368i 0.00303261 0.00525263i
\(705\) 0 0
\(706\) 8.02402 0.301988
\(707\) 18.3912 4.20005i 0.691671 0.157959i
\(708\) 0 0
\(709\) 8.48085 + 14.6893i 0.318505 + 0.551667i 0.980176 0.198127i \(-0.0634859\pi\)
−0.661671 + 0.749794i \(0.730153\pi\)
\(710\) −0.442631 + 0.766660i −0.0166117 + 0.0287722i
\(711\) 0 0
\(712\) −6.37630 11.0441i −0.238962 0.413894i
\(713\) 4.64690 0.174028
\(714\) 0 0
\(715\) 0.0595632 0.00222754
\(716\) −0.572113 0.990928i −0.0213809 0.0370327i
\(717\) 0 0
\(718\) 2.60786 4.51695i 0.0973246 0.168571i
\(719\) −18.9783 32.8715i −0.707773 1.22590i −0.965681 0.259729i \(-0.916367\pi\)
0.257909 0.966169i \(-0.416967\pi\)
\(720\) 0 0
\(721\) 2.26785 7.35540i 0.0844590 0.273929i
\(722\) 0.396339 0.0147502
\(723\) 0 0
\(724\) −8.57930 + 14.8598i −0.318847 + 0.552260i
\(725\) 15.1429 26.2282i 0.562392 0.974092i
\(726\) 0 0
\(727\) 32.1265 1.19150 0.595752 0.803168i \(-0.296854\pi\)
0.595752 + 0.803168i \(0.296854\pi\)
\(728\) −5.38393 5.80106i −0.199542 0.215002i
\(729\) 0 0
\(730\) −1.03782 1.79755i −0.0384113 0.0665303i
\(731\) −7.33478 + 12.7042i −0.271287 + 0.469882i
\(732\) 0 0
\(733\) −7.31092 12.6629i −0.270035 0.467715i 0.698835 0.715282i \(-0.253702\pi\)
−0.968871 + 0.247568i \(0.920369\pi\)
\(734\) 9.67086 0.356958
\(735\) 0 0
\(736\) −5.47914 −0.201964
\(737\) −0.0812952 0.140807i −0.00299455 0.00518671i
\(738\) 0 0
\(739\) −14.4596 + 25.0447i −0.531904 + 0.921286i 0.467402 + 0.884045i \(0.345190\pi\)
−0.999306 + 0.0372406i \(0.988143\pi\)
\(740\) −1.67982 2.90954i −0.0617515 0.106957i
\(741\) 0 0
\(742\) −2.12694 2.29173i −0.0780824 0.0841320i
\(743\) −20.8522 −0.764992 −0.382496 0.923957i \(-0.624935\pi\)
−0.382496 + 0.923957i \(0.624935\pi\)
\(744\) 0 0
\(745\) 5.36601 9.29420i 0.196595 0.340513i
\(746\) −0.489231 + 0.847372i −0.0179120 + 0.0310245i
\(747\) 0 0
\(748\) 0.215728 0.00788779
\(749\) −6.71128 + 21.7670i −0.245225 + 0.795347i
\(750\) 0 0
\(751\) 16.4962 + 28.5722i 0.601954 + 1.04261i 0.992525 + 0.122042i \(0.0389442\pi\)
−0.390571 + 0.920573i \(0.627722\pi\)
\(752\) −12.3064 + 21.3153i −0.448768 + 0.777289i
\(753\) 0 0
\(754\) −2.74799 4.75966i −0.100076 0.173336i
\(755\) −9.96904 −0.362810
\(756\) 0 0
\(757\) 14.8974 0.541455 0.270728 0.962656i \(-0.412736\pi\)
0.270728 + 0.962656i \(0.412736\pi\)
\(758\) 3.72162 + 6.44604i 0.135175 + 0.234131i
\(759\) 0 0
\(760\) 0.641921 1.11184i 0.0232849 0.0403306i
\(761\) −5.78718 10.0237i −0.209785 0.363358i 0.741862 0.670553i \(-0.233943\pi\)
−0.951647 + 0.307195i \(0.900610\pi\)
\(762\) 0 0
\(763\) −1.48296 + 0.338669i −0.0536869 + 0.0122606i
\(764\) 33.7961 1.22270
\(765\) 0 0
\(766\) 6.26788 10.8563i 0.226468 0.392253i
\(767\) 12.7464 22.0774i 0.460245 0.797168i
\(768\) 0 0
\(769\) −52.4315 −1.89073 −0.945365 0.326015i \(-0.894294\pi\)
−0.945365 + 0.326015i \(0.894294\pi\)
\(770\) 0.00936990 0.0303898i 0.000337668 0.00109517i
\(771\) 0 0
\(772\) −14.0065 24.2600i −0.504105 0.873136i
\(773\) 21.6869 37.5628i 0.780023 1.35104i −0.151904 0.988395i \(-0.548541\pi\)
0.931927 0.362645i \(-0.118126\pi\)
\(774\) 0 0
\(775\) −7.76296 13.4458i −0.278854 0.482989i
\(776\) 3.88635 0.139512
\(777\) 0 0
\(778\) 1.71911 0.0616329
\(779\) 0.0654023 + 0.113280i 0.00234328 + 0.00405868i
\(780\) 0 0
\(781\) −0.0476694 + 0.0825658i −0.00170574 + 0.00295444i
\(782\) −0.827752 1.43371i −0.0296004 0.0512693i
\(783\) 0 0
\(784\) 19.4363 9.36592i 0.694152 0.334497i
\(785\) 6.21807 0.221932
\(786\) 0 0
\(787\) −10.6928 + 18.5204i −0.381156 + 0.660182i −0.991228 0.132165i \(-0.957807\pi\)
0.610072 + 0.792346i \(0.291141\pi\)
\(788\) −7.16162 + 12.4043i −0.255122 + 0.441884i
\(789\) 0 0
\(790\) 3.46535 0.123292
\(791\) 27.4982 + 29.6287i 0.977725 + 1.05348i
\(792\) 0 0
\(793\) −2.54104 4.40122i −0.0902351 0.156292i
\(794\) −0.270611 + 0.468712i −0.00960363 + 0.0166340i
\(795\) 0 0
\(796\) 23.7056 + 41.0593i 0.840222 + 1.45531i
\(797\) 44.1477 1.56379 0.781897 0.623408i \(-0.214252\pi\)
0.781897 + 0.623408i \(0.214252\pi\)
\(798\) 0 0
\(799\) −25.9811 −0.919144
\(800\) 9.15329 + 15.8540i 0.323618 + 0.560522i
\(801\) 0 0
\(802\) 4.49061 7.77797i 0.158569 0.274650i
\(803\) −0.111768 0.193588i −0.00394421 0.00683156i
\(804\) 0 0
\(805\) 2.79129 0.637456i 0.0983800 0.0224674i
\(806\) −2.81750 −0.0992422
\(807\) 0 0
\(808\) −5.42996 + 9.40497i −0.191025 + 0.330866i
\(809\) −11.9496 + 20.6974i −0.420127 + 0.727681i −0.995951 0.0898924i \(-0.971348\pi\)
0.575825 + 0.817573i \(0.304681\pi\)
\(810\) 0 0
\(811\) −45.1710 −1.58617 −0.793083 0.609113i \(-0.791526\pi\)
−0.793083 + 0.609113i \(0.791526\pi\)
\(812\) 33.5620 7.66465i 1.17779 0.268976i
\(813\) 0 0
\(814\) 0.0154201 + 0.0267084i 0.000540475 + 0.000936130i
\(815\) 7.60706 13.1758i 0.266464 0.461529i
\(816\) 0 0
\(817\) 2.25442 + 3.90477i 0.0788721 + 0.136610i
\(818\) −10.6152 −0.371153
\(819\) 0 0
\(820\) 0.203195 0.00709587
\(821\) −10.8031 18.7115i −0.377030 0.653035i 0.613599 0.789618i \(-0.289721\pi\)
−0.990629 + 0.136583i \(0.956388\pi\)
\(822\) 0 0
\(823\) 3.65882 6.33726i 0.127538 0.220903i −0.795184 0.606368i \(-0.792626\pi\)
0.922722 + 0.385465i \(0.125959\pi\)
\(824\) 2.21551 + 3.83738i 0.0771810 + 0.133681i
\(825\) 0 0
\(826\) −9.25898 9.97634i −0.322161 0.347121i
\(827\) −46.0507 −1.60134 −0.800669 0.599106i \(-0.795523\pi\)
−0.800669 + 0.599106i \(0.795523\pi\)
\(828\) 0 0
\(829\) −16.0223 + 27.7515i −0.556478 + 0.963848i 0.441309 + 0.897355i \(0.354514\pi\)
−0.997787 + 0.0664930i \(0.978819\pi\)
\(830\) 1.71637 2.97285i 0.0595762 0.103189i
\(831\) 0 0
\(832\) −8.78479 −0.304558
\(833\) 18.8204 + 12.8247i 0.652089 + 0.444351i
\(834\) 0 0
\(835\) 9.53986 + 16.5235i 0.330141 + 0.571820i
\(836\) 0.0331530 0.0574227i 0.00114662 0.00198601i
\(837\) 0 0
\(838\) 5.93926 + 10.2871i 0.205168 + 0.355362i
\(839\) −12.5994 −0.434980 −0.217490 0.976063i \(-0.569787\pi\)
−0.217490 + 0.976063i \(0.569787\pi\)
\(840\) 0 0
\(841\) 20.8500 0.718964
\(842\) 5.73929 + 9.94075i 0.197789 + 0.342581i
\(843\) 0 0
\(844\) 15.8924 27.5265i 0.547039 0.947500i
\(845\) 3.85323 + 6.67399i 0.132555 + 0.229592i
\(846\) 0 0
\(847\) −8.57390 + 27.8081i −0.294603 + 0.955497i
\(848\) −9.19008 −0.315589
\(849\) 0 0
\(850\) −2.76564 + 4.79022i −0.0948605 + 0.164303i
\(851\) −1.38830 + 2.40461i −0.0475905 + 0.0824291i
\(852\) 0 0
\(853\) −37.1154 −1.27081 −0.635403 0.772181i \(-0.719166\pi\)
−0.635403 + 0.772181i \(0.719166\pi\)
\(854\) −2.64528 + 0.604111i −0.0905196 + 0.0206723i
\(855\) 0 0
\(856\) −6.55640 11.3560i −0.224093 0.388141i
\(857\) 25.2112 43.6670i 0.861197 1.49164i −0.00957724 0.999954i \(-0.503049\pi\)
0.870774 0.491683i \(-0.163618\pi\)
\(858\) 0 0
\(859\) −4.92248 8.52598i −0.167953 0.290903i 0.769747 0.638349i \(-0.220382\pi\)
−0.937700 + 0.347446i \(0.887049\pi\)
\(860\) 7.00413 0.238839
\(861\) 0 0
\(862\) −8.27386 −0.281809
\(863\) 16.3611 + 28.3382i 0.556937 + 0.964643i 0.997750 + 0.0670442i \(0.0213568\pi\)
−0.440813 + 0.897599i \(0.645310\pi\)
\(864\) 0 0
\(865\) 2.90082 5.02437i 0.0986308 0.170834i
\(866\) 1.38969 + 2.40702i 0.0472237 + 0.0817938i
\(867\) 0 0
\(868\) 5.19989 16.8650i 0.176496 0.572436i
\(869\) 0.373202 0.0126600
\(870\) 0 0
\(871\) −4.43775 + 7.68641i −0.150368 + 0.260444i
\(872\) 0.437843 0.758367i 0.0148272 0.0256815i
\(873\) 0 0
\(874\) −0.508836 −0.0172116
\(875\) −14.0930 15.1848i −0.476429 0.513341i
\(876\) 0 0
\(877\) −3.43836 5.95541i −0.116105 0.201100i 0.802116 0.597168i \(-0.203708\pi\)
−0.918221 + 0.396069i \(0.870374\pi\)
\(878\) 0.346413 0.600005i 0.0116909 0.0202492i
\(879\) 0 0
\(880\) −0.0467368 0.0809504i −0.00157550 0.00272884i
\(881\) 40.9688 1.38027 0.690137 0.723679i \(-0.257550\pi\)
0.690137 + 0.723679i \(0.257550\pi\)
\(882\) 0 0
\(883\) 3.64432 0.122641 0.0613206 0.998118i \(-0.480469\pi\)
0.0613206 + 0.998118i \(0.480469\pi\)
\(884\) −5.88809 10.1985i −0.198038 0.343012i
\(885\) 0 0
\(886\) −3.74164 + 6.48070i −0.125703 + 0.217724i
\(887\) 3.14427 + 5.44604i 0.105574 + 0.182860i 0.913973 0.405776i \(-0.132999\pi\)
−0.808398 + 0.588636i \(0.799665\pi\)
\(888\) 0 0
\(889\) 1.84004 + 1.98260i 0.0617130 + 0.0664944i
\(890\) −2.79719 −0.0937620
\(891\) 0 0
\(892\) 14.4906 25.0985i 0.485181 0.840359i
\(893\) −3.99277 + 6.91568i −0.133613 + 0.231424i
\(894\) 0 0
\(895\) −0.523348 −0.0174936
\(896\) −8.03571 + 26.0626i −0.268454 + 0.870689i
\(897\) 0 0
\(898\) 3.95491 + 6.85010i 0.131977 + 0.228591i
\(899\) 12.7777 22.1317i 0.426162 0.738133i
\(900\) 0 0
\(901\) −4.85049 8.40129i −0.161593 0.279888i
\(902\) −0.00186525 −6.21060e−5
\(903\) 0 0
\(904\) −23.2705 −0.773966
\(905\) 3.92402 + 6.79659i 0.130439 + 0.225926i
\(906\) 0 0
\(907\) 25.8334 44.7447i 0.857782 1.48572i −0.0162569 0.999868i \(-0.505175\pi\)
0.874039 0.485855i \(-0.161492\pi\)
\(908\) 5.99281 + 10.3798i 0.198878 + 0.344467i
\(909\) 0 0
\(910\) −1.69241 + 0.386501i −0.0561029 + 0.0128124i
\(911\) 48.0342 1.59144 0.795722 0.605662i \(-0.207091\pi\)
0.795722 + 0.605662i \(0.207091\pi\)
\(912\) 0 0
\(913\) 0.184846 0.320162i 0.00611750 0.0105958i
\(914\) 4.27203 7.39937i 0.141306 0.244749i
\(915\) 0 0
\(916\) −14.5086 −0.479376
\(917\) 13.2382 42.9360i 0.437164 1.41787i
\(918\) 0 0
\(919\) −11.8773 20.5720i −0.391794 0.678608i 0.600892 0.799330i \(-0.294812\pi\)
−0.992686 + 0.120722i \(0.961479\pi\)
\(920\) −0.824124 + 1.42743i −0.0271706 + 0.0470608i
\(921\) 0 0
\(922\) −5.54410 9.60267i −0.182585 0.316247i
\(923\) 5.20437 0.171304
\(924\) 0 0
\(925\) 9.27704 0.305027
\(926\) −7.69870 13.3345i −0.252995 0.438200i
\(927\) 0 0
\(928\) −15.0662 + 26.0954i −0.494572 + 0.856625i
\(929\) −2.86320 4.95920i −0.0939384 0.162706i 0.815227 0.579142i \(-0.196612\pi\)
−0.909165 + 0.416436i \(0.863279\pi\)
\(930\) 0 0
\(931\) 6.30603 3.03874i 0.206672 0.0995907i
\(932\) 41.0582 1.34491
\(933\) 0 0
\(934\) −1.71205 + 2.96535i −0.0560199 + 0.0970293i
\(935\) 0.0493349 0.0854506i 0.00161343 0.00279453i
\(936\) 0 0
\(937\) −24.1920 −0.790319 −0.395159 0.918613i \(-0.629311\pi\)
−0.395159 + 0.918613i \(0.629311\pi\)
\(938\) 3.22359 + 3.47334i 0.105254 + 0.113409i
\(939\) 0 0
\(940\) 6.20246 + 10.7430i 0.202302 + 0.350397i
\(941\) 3.07866 5.33239i 0.100361 0.173831i −0.811472 0.584391i \(-0.801333\pi\)
0.911834 + 0.410560i \(0.134667\pi\)
\(942\) 0 0
\(943\) −0.0839662 0.145434i −0.00273431 0.00473597i
\(944\) −40.0062 −1.30209
\(945\) 0 0
\(946\) −0.0642952 −0.00209042
\(947\) −12.7265 22.0430i −0.413557 0.716301i 0.581719 0.813390i \(-0.302380\pi\)
−0.995276 + 0.0970888i \(0.969047\pi\)
\(948\) 0 0
\(949\) −6.10121 + 10.5676i −0.198054 + 0.343039i
\(950\) 0.850046 + 1.47232i 0.0275791 + 0.0477684i
\(951\) 0 0
\(952\) −12.7817 + 2.91900i −0.414258 + 0.0946054i
\(953\) −11.3961 −0.369157 −0.184579 0.982818i \(-0.559092\pi\)
−0.184579 + 0.982818i \(0.559092\pi\)
\(954\) 0 0
\(955\) 7.72885 13.3868i 0.250100 0.433186i
\(956\) −24.4390 + 42.3295i −0.790412 + 1.36903i
\(957\) 0 0
\(958\) −5.88177 −0.190031
\(959\) −5.78343 + 1.32078i −0.186757 + 0.0426502i
\(960\) 0 0
\(961\) 8.94952 + 15.5010i 0.288694 + 0.500033i
\(962\) 0.841755 1.45796i 0.0271393 0.0470066i
\(963\) 0 0
\(964\) 10.2103 + 17.6847i 0.328851 + 0.569586i
\(965\) −12.8126 −0.412453
\(966\) 0 0
\(967\) 45.9401 1.47733 0.738667 0.674071i \(-0.235456\pi\)
0.738667 + 0.674071i \(0.235456\pi\)
\(968\) −8.37604 14.5077i −0.269216 0.466296i
\(969\) 0 0
\(970\) 0.426222 0.738238i 0.0136852 0.0237034i
\(971\) −0.347191 0.601352i −0.0111419 0.0192983i 0.860401 0.509618i \(-0.170213\pi\)
−0.871543 + 0.490320i \(0.836880\pi\)
\(972\) 0 0
\(973\) 30.2909 + 32.6377i 0.971080 + 1.04632i
\(974\) 7.09615 0.227375
\(975\) 0 0
\(976\) −3.98770 + 6.90690i −0.127643 + 0.221085i
\(977\) −18.3718 + 31.8208i −0.587765 + 1.01804i 0.406760 + 0.913535i \(0.366659\pi\)
−0.994525 + 0.104503i \(0.966675\pi\)
\(978\) 0 0
\(979\) −0.301244 −0.00962781
\(980\) 0.809939 10.8438i 0.0258725 0.346391i
\(981\) 0 0
\(982\) 3.80221 + 6.58563i 0.121334 + 0.210156i
\(983\) −6.67886 + 11.5681i −0.213022 + 0.368966i −0.952659 0.304041i \(-0.901664\pi\)
0.739637 + 0.673006i \(0.234997\pi\)
\(984\) 0 0
\(985\) 3.27559 + 5.67349i 0.104369 + 0.180772i
\(986\) −9.10440 −0.289943
\(987\) 0 0
\(988\) −3.61953 −0.115152
\(989\) −2.89431 5.01310i −0.0920339 0.159407i
\(990\) 0 0
\(991\) −20.1635 + 34.9241i −0.640514 + 1.10940i 0.344805 + 0.938674i \(0.387945\pi\)
−0.985318 + 0.170728i \(0.945388\pi\)
\(992\) 7.72366 + 13.3778i 0.245226 + 0.424745i
\(993\) 0 0
\(994\) 0.818700 2.65532i 0.0259676 0.0842217i
\(995\) 21.6850 0.687460
\(996\) 0 0
\(997\) 3.94737 6.83704i 0.125014 0.216531i −0.796724 0.604343i \(-0.793436\pi\)
0.921739 + 0.387812i \(0.126769\pi\)
\(998\) −4.87185 + 8.43830i −0.154216 + 0.267110i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1197.2.j.k.172.2 8
3.2 odd 2 399.2.j.d.172.3 yes 8
7.2 even 3 inner 1197.2.j.k.856.2 8
7.3 odd 6 8379.2.a.bt.1.3 4
7.4 even 3 8379.2.a.br.1.3 4
21.2 odd 6 399.2.j.d.58.3 8
21.11 odd 6 2793.2.a.bc.1.2 4
21.17 even 6 2793.2.a.bd.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
399.2.j.d.58.3 8 21.2 odd 6
399.2.j.d.172.3 yes 8 3.2 odd 2
1197.2.j.k.172.2 8 1.1 even 1 trivial
1197.2.j.k.856.2 8 7.2 even 3 inner
2793.2.a.bc.1.2 4 21.11 odd 6
2793.2.a.bd.1.2 4 21.17 even 6
8379.2.a.br.1.3 4 7.4 even 3
8379.2.a.bt.1.3 4 7.3 odd 6