Properties

Label 1197.2.j.f.856.2
Level $1197$
Weight $2$
Character 1197.856
Analytic conductor $9.558$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1197,2,Mod(172,1197)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1197.172"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1197, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1197 = 3^{2} \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1197.j (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-2,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.55809312195\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 856.2
Root \(-0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 1197.856
Dual form 1197.2.j.f.172.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 - 1.50000i) q^{2} +(-0.500000 - 0.866025i) q^{4} +(0.866025 - 1.50000i) q^{5} +(2.50000 - 0.866025i) q^{7} +1.73205 q^{8} +(-1.50000 - 2.59808i) q^{10} +(-2.59808 - 4.50000i) q^{11} -4.00000 q^{13} +(0.866025 - 4.50000i) q^{14} +(2.50000 - 4.33013i) q^{16} +(3.46410 + 6.00000i) q^{17} +(-0.500000 + 0.866025i) q^{19} -1.73205 q^{20} -9.00000 q^{22} +(4.33013 - 7.50000i) q^{23} +(1.00000 + 1.73205i) q^{25} +(-3.46410 + 6.00000i) q^{26} +(-2.00000 - 1.73205i) q^{28} -3.46410 q^{29} +(-1.00000 - 1.73205i) q^{31} +(-2.59808 - 4.50000i) q^{32} +12.0000 q^{34} +(0.866025 - 4.50000i) q^{35} +(-4.00000 + 6.92820i) q^{37} +(0.866025 + 1.50000i) q^{38} +(1.50000 - 2.59808i) q^{40} +3.46410 q^{41} -7.00000 q^{43} +(-2.59808 + 4.50000i) q^{44} +(-7.50000 - 12.9904i) q^{46} +(4.33013 - 7.50000i) q^{47} +(5.50000 - 4.33013i) q^{49} +3.46410 q^{50} +(2.00000 + 3.46410i) q^{52} +(1.73205 + 3.00000i) q^{53} -9.00000 q^{55} +(4.33013 - 1.50000i) q^{56} +(-3.00000 + 5.19615i) q^{58} +(3.46410 + 6.00000i) q^{59} +(3.50000 - 6.06218i) q^{61} -3.46410 q^{62} +1.00000 q^{64} +(-3.46410 + 6.00000i) q^{65} +(-4.00000 - 6.92820i) q^{67} +(3.46410 - 6.00000i) q^{68} +(-6.00000 - 5.19615i) q^{70} +3.46410 q^{71} +(3.50000 + 6.06218i) q^{73} +(6.92820 + 12.0000i) q^{74} +1.00000 q^{76} +(-10.3923 - 9.00000i) q^{77} +(-4.00000 + 6.92820i) q^{79} +(-4.33013 - 7.50000i) q^{80} +(3.00000 - 5.19615i) q^{82} -5.19615 q^{83} +12.0000 q^{85} +(-6.06218 + 10.5000i) q^{86} +(-4.50000 - 7.79423i) q^{88} +(-3.46410 + 6.00000i) q^{89} +(-10.0000 + 3.46410i) q^{91} -8.66025 q^{92} +(-7.50000 - 12.9904i) q^{94} +(0.866025 + 1.50000i) q^{95} -10.0000 q^{97} +(-1.73205 - 12.0000i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{4} + 10 q^{7} - 6 q^{10} - 16 q^{13} + 10 q^{16} - 2 q^{19} - 36 q^{22} + 4 q^{25} - 8 q^{28} - 4 q^{31} + 48 q^{34} - 16 q^{37} + 6 q^{40} - 28 q^{43} - 30 q^{46} + 22 q^{49} + 8 q^{52} - 36 q^{55}+ \cdots - 40 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1197\mathbb{Z}\right)^\times\).

\(n\) \(514\) \(533\) \(1009\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 1.50000i 0.612372 1.06066i −0.378467 0.925615i \(-0.623549\pi\)
0.990839 0.135045i \(-0.0431180\pi\)
\(3\) 0 0
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 0.866025 1.50000i 0.387298 0.670820i −0.604787 0.796387i \(-0.706742\pi\)
0.992085 + 0.125567i \(0.0400750\pi\)
\(6\) 0 0
\(7\) 2.50000 0.866025i 0.944911 0.327327i
\(8\) 1.73205 0.612372
\(9\) 0 0
\(10\) −1.50000 2.59808i −0.474342 0.821584i
\(11\) −2.59808 4.50000i −0.783349 1.35680i −0.929980 0.367610i \(-0.880176\pi\)
0.146631 0.989191i \(-0.453157\pi\)
\(12\) 0 0
\(13\) −4.00000 −1.10940 −0.554700 0.832050i \(-0.687167\pi\)
−0.554700 + 0.832050i \(0.687167\pi\)
\(14\) 0.866025 4.50000i 0.231455 1.20268i
\(15\) 0 0
\(16\) 2.50000 4.33013i 0.625000 1.08253i
\(17\) 3.46410 + 6.00000i 0.840168 + 1.45521i 0.889752 + 0.456444i \(0.150877\pi\)
−0.0495842 + 0.998770i \(0.515790\pi\)
\(18\) 0 0
\(19\) −0.500000 + 0.866025i −0.114708 + 0.198680i
\(20\) −1.73205 −0.387298
\(21\) 0 0
\(22\) −9.00000 −1.91881
\(23\) 4.33013 7.50000i 0.902894 1.56386i 0.0791743 0.996861i \(-0.474772\pi\)
0.823720 0.566997i \(-0.191895\pi\)
\(24\) 0 0
\(25\) 1.00000 + 1.73205i 0.200000 + 0.346410i
\(26\) −3.46410 + 6.00000i −0.679366 + 1.17670i
\(27\) 0 0
\(28\) −2.00000 1.73205i −0.377964 0.327327i
\(29\) −3.46410 −0.643268 −0.321634 0.946864i \(-0.604232\pi\)
−0.321634 + 0.946864i \(0.604232\pi\)
\(30\) 0 0
\(31\) −1.00000 1.73205i −0.179605 0.311086i 0.762140 0.647412i \(-0.224149\pi\)
−0.941745 + 0.336327i \(0.890815\pi\)
\(32\) −2.59808 4.50000i −0.459279 0.795495i
\(33\) 0 0
\(34\) 12.0000 2.05798
\(35\) 0.866025 4.50000i 0.146385 0.760639i
\(36\) 0 0
\(37\) −4.00000 + 6.92820i −0.657596 + 1.13899i 0.323640 + 0.946180i \(0.395093\pi\)
−0.981236 + 0.192809i \(0.938240\pi\)
\(38\) 0.866025 + 1.50000i 0.140488 + 0.243332i
\(39\) 0 0
\(40\) 1.50000 2.59808i 0.237171 0.410792i
\(41\) 3.46410 0.541002 0.270501 0.962720i \(-0.412811\pi\)
0.270501 + 0.962720i \(0.412811\pi\)
\(42\) 0 0
\(43\) −7.00000 −1.06749 −0.533745 0.845645i \(-0.679216\pi\)
−0.533745 + 0.845645i \(0.679216\pi\)
\(44\) −2.59808 + 4.50000i −0.391675 + 0.678401i
\(45\) 0 0
\(46\) −7.50000 12.9904i −1.10581 1.91533i
\(47\) 4.33013 7.50000i 0.631614 1.09399i −0.355608 0.934635i \(-0.615726\pi\)
0.987222 0.159352i \(-0.0509405\pi\)
\(48\) 0 0
\(49\) 5.50000 4.33013i 0.785714 0.618590i
\(50\) 3.46410 0.489898
\(51\) 0 0
\(52\) 2.00000 + 3.46410i 0.277350 + 0.480384i
\(53\) 1.73205 + 3.00000i 0.237915 + 0.412082i 0.960116 0.279602i \(-0.0902025\pi\)
−0.722200 + 0.691684i \(0.756869\pi\)
\(54\) 0 0
\(55\) −9.00000 −1.21356
\(56\) 4.33013 1.50000i 0.578638 0.200446i
\(57\) 0 0
\(58\) −3.00000 + 5.19615i −0.393919 + 0.682288i
\(59\) 3.46410 + 6.00000i 0.450988 + 0.781133i 0.998448 0.0556984i \(-0.0177385\pi\)
−0.547460 + 0.836832i \(0.684405\pi\)
\(60\) 0 0
\(61\) 3.50000 6.06218i 0.448129 0.776182i −0.550135 0.835076i \(-0.685424\pi\)
0.998264 + 0.0588933i \(0.0187572\pi\)
\(62\) −3.46410 −0.439941
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −3.46410 + 6.00000i −0.429669 + 0.744208i
\(66\) 0 0
\(67\) −4.00000 6.92820i −0.488678 0.846415i 0.511237 0.859440i \(-0.329187\pi\)
−0.999915 + 0.0130248i \(0.995854\pi\)
\(68\) 3.46410 6.00000i 0.420084 0.727607i
\(69\) 0 0
\(70\) −6.00000 5.19615i −0.717137 0.621059i
\(71\) 3.46410 0.411113 0.205557 0.978645i \(-0.434100\pi\)
0.205557 + 0.978645i \(0.434100\pi\)
\(72\) 0 0
\(73\) 3.50000 + 6.06218i 0.409644 + 0.709524i 0.994850 0.101361i \(-0.0323196\pi\)
−0.585206 + 0.810885i \(0.698986\pi\)
\(74\) 6.92820 + 12.0000i 0.805387 + 1.39497i
\(75\) 0 0
\(76\) 1.00000 0.114708
\(77\) −10.3923 9.00000i −1.18431 1.02565i
\(78\) 0 0
\(79\) −4.00000 + 6.92820i −0.450035 + 0.779484i −0.998388 0.0567635i \(-0.981922\pi\)
0.548352 + 0.836247i \(0.315255\pi\)
\(80\) −4.33013 7.50000i −0.484123 0.838525i
\(81\) 0 0
\(82\) 3.00000 5.19615i 0.331295 0.573819i
\(83\) −5.19615 −0.570352 −0.285176 0.958475i \(-0.592052\pi\)
−0.285176 + 0.958475i \(0.592052\pi\)
\(84\) 0 0
\(85\) 12.0000 1.30158
\(86\) −6.06218 + 10.5000i −0.653701 + 1.13224i
\(87\) 0 0
\(88\) −4.50000 7.79423i −0.479702 0.830868i
\(89\) −3.46410 + 6.00000i −0.367194 + 0.635999i −0.989126 0.147073i \(-0.953015\pi\)
0.621932 + 0.783072i \(0.286348\pi\)
\(90\) 0 0
\(91\) −10.0000 + 3.46410i −1.04828 + 0.363137i
\(92\) −8.66025 −0.902894
\(93\) 0 0
\(94\) −7.50000 12.9904i −0.773566 1.33986i
\(95\) 0.866025 + 1.50000i 0.0888523 + 0.153897i
\(96\) 0 0
\(97\) −10.0000 −1.01535 −0.507673 0.861550i \(-0.669494\pi\)
−0.507673 + 0.861550i \(0.669494\pi\)
\(98\) −1.73205 12.0000i −0.174964 1.21218i
\(99\) 0 0
\(100\) 1.00000 1.73205i 0.100000 0.173205i
\(101\) 4.33013 + 7.50000i 0.430864 + 0.746278i 0.996948 0.0780696i \(-0.0248756\pi\)
−0.566084 + 0.824347i \(0.691542\pi\)
\(102\) 0 0
\(103\) −7.00000 + 12.1244i −0.689730 + 1.19465i 0.282194 + 0.959357i \(0.408938\pi\)
−0.971925 + 0.235291i \(0.924396\pi\)
\(104\) −6.92820 −0.679366
\(105\) 0 0
\(106\) 6.00000 0.582772
\(107\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(108\) 0 0
\(109\) −10.0000 17.3205i −0.957826 1.65900i −0.727764 0.685828i \(-0.759440\pi\)
−0.230063 0.973176i \(-0.573893\pi\)
\(110\) −7.79423 + 13.5000i −0.743151 + 1.28717i
\(111\) 0 0
\(112\) 2.50000 12.9904i 0.236228 1.22748i
\(113\) −10.3923 −0.977626 −0.488813 0.872389i \(-0.662570\pi\)
−0.488813 + 0.872389i \(0.662570\pi\)
\(114\) 0 0
\(115\) −7.50000 12.9904i −0.699379 1.21136i
\(116\) 1.73205 + 3.00000i 0.160817 + 0.278543i
\(117\) 0 0
\(118\) 12.0000 1.10469
\(119\) 13.8564 + 12.0000i 1.27021 + 1.10004i
\(120\) 0 0
\(121\) −8.00000 + 13.8564i −0.727273 + 1.25967i
\(122\) −6.06218 10.5000i −0.548844 0.950625i
\(123\) 0 0
\(124\) −1.00000 + 1.73205i −0.0898027 + 0.155543i
\(125\) 12.1244 1.08444
\(126\) 0 0
\(127\) 20.0000 1.77471 0.887357 0.461084i \(-0.152539\pi\)
0.887357 + 0.461084i \(0.152539\pi\)
\(128\) 6.06218 10.5000i 0.535826 0.928078i
\(129\) 0 0
\(130\) 6.00000 + 10.3923i 0.526235 + 0.911465i
\(131\) −1.73205 + 3.00000i −0.151330 + 0.262111i −0.931717 0.363186i \(-0.881689\pi\)
0.780387 + 0.625297i \(0.215022\pi\)
\(132\) 0 0
\(133\) −0.500000 + 2.59808i −0.0433555 + 0.225282i
\(134\) −13.8564 −1.19701
\(135\) 0 0
\(136\) 6.00000 + 10.3923i 0.514496 + 0.891133i
\(137\) 4.33013 + 7.50000i 0.369948 + 0.640768i 0.989557 0.144142i \(-0.0460423\pi\)
−0.619609 + 0.784910i \(0.712709\pi\)
\(138\) 0 0
\(139\) 17.0000 1.44192 0.720961 0.692976i \(-0.243701\pi\)
0.720961 + 0.692976i \(0.243701\pi\)
\(140\) −4.33013 + 1.50000i −0.365963 + 0.126773i
\(141\) 0 0
\(142\) 3.00000 5.19615i 0.251754 0.436051i
\(143\) 10.3923 + 18.0000i 0.869048 + 1.50524i
\(144\) 0 0
\(145\) −3.00000 + 5.19615i −0.249136 + 0.431517i
\(146\) 12.1244 1.00342
\(147\) 0 0
\(148\) 8.00000 0.657596
\(149\) 0.866025 1.50000i 0.0709476 0.122885i −0.828369 0.560182i \(-0.810731\pi\)
0.899317 + 0.437298i \(0.144064\pi\)
\(150\) 0 0
\(151\) 11.0000 + 19.0526i 0.895167 + 1.55048i 0.833597 + 0.552372i \(0.186277\pi\)
0.0615699 + 0.998103i \(0.480389\pi\)
\(152\) −0.866025 + 1.50000i −0.0702439 + 0.121666i
\(153\) 0 0
\(154\) −22.5000 + 7.79423i −1.81310 + 0.628077i
\(155\) −3.46410 −0.278243
\(156\) 0 0
\(157\) 6.50000 + 11.2583i 0.518756 + 0.898513i 0.999762 + 0.0217953i \(0.00693820\pi\)
−0.481006 + 0.876717i \(0.659728\pi\)
\(158\) 6.92820 + 12.0000i 0.551178 + 0.954669i
\(159\) 0 0
\(160\) −9.00000 −0.711512
\(161\) 4.33013 22.5000i 0.341262 1.77325i
\(162\) 0 0
\(163\) −5.50000 + 9.52628i −0.430793 + 0.746156i −0.996942 0.0781474i \(-0.975100\pi\)
0.566149 + 0.824303i \(0.308433\pi\)
\(164\) −1.73205 3.00000i −0.135250 0.234261i
\(165\) 0 0
\(166\) −4.50000 + 7.79423i −0.349268 + 0.604949i
\(167\) 17.3205 1.34030 0.670151 0.742225i \(-0.266230\pi\)
0.670151 + 0.742225i \(0.266230\pi\)
\(168\) 0 0
\(169\) 3.00000 0.230769
\(170\) 10.3923 18.0000i 0.797053 1.38054i
\(171\) 0 0
\(172\) 3.50000 + 6.06218i 0.266872 + 0.462237i
\(173\) 3.46410 6.00000i 0.263371 0.456172i −0.703765 0.710433i \(-0.748499\pi\)
0.967135 + 0.254262i \(0.0818324\pi\)
\(174\) 0 0
\(175\) 4.00000 + 3.46410i 0.302372 + 0.261861i
\(176\) −25.9808 −1.95837
\(177\) 0 0
\(178\) 6.00000 + 10.3923i 0.449719 + 0.778936i
\(179\) 5.19615 + 9.00000i 0.388379 + 0.672692i 0.992232 0.124404i \(-0.0397019\pi\)
−0.603853 + 0.797096i \(0.706369\pi\)
\(180\) 0 0
\(181\) 14.0000 1.04061 0.520306 0.853980i \(-0.325818\pi\)
0.520306 + 0.853980i \(0.325818\pi\)
\(182\) −3.46410 + 18.0000i −0.256776 + 1.33425i
\(183\) 0 0
\(184\) 7.50000 12.9904i 0.552907 0.957664i
\(185\) 6.92820 + 12.0000i 0.509372 + 0.882258i
\(186\) 0 0
\(187\) 18.0000 31.1769i 1.31629 2.27988i
\(188\) −8.66025 −0.631614
\(189\) 0 0
\(190\) 3.00000 0.217643
\(191\) 2.59808 4.50000i 0.187990 0.325609i −0.756590 0.653890i \(-0.773136\pi\)
0.944580 + 0.328281i \(0.106469\pi\)
\(192\) 0 0
\(193\) −4.00000 6.92820i −0.287926 0.498703i 0.685388 0.728178i \(-0.259632\pi\)
−0.973315 + 0.229475i \(0.926299\pi\)
\(194\) −8.66025 + 15.0000i −0.621770 + 1.07694i
\(195\) 0 0
\(196\) −6.50000 2.59808i −0.464286 0.185577i
\(197\) −15.5885 −1.11063 −0.555316 0.831640i \(-0.687403\pi\)
−0.555316 + 0.831640i \(0.687403\pi\)
\(198\) 0 0
\(199\) 3.50000 + 6.06218i 0.248108 + 0.429736i 0.963001 0.269498i \(-0.0868577\pi\)
−0.714893 + 0.699234i \(0.753524\pi\)
\(200\) 1.73205 + 3.00000i 0.122474 + 0.212132i
\(201\) 0 0
\(202\) 15.0000 1.05540
\(203\) −8.66025 + 3.00000i −0.607831 + 0.210559i
\(204\) 0 0
\(205\) 3.00000 5.19615i 0.209529 0.362915i
\(206\) 12.1244 + 21.0000i 0.844744 + 1.46314i
\(207\) 0 0
\(208\) −10.0000 + 17.3205i −0.693375 + 1.20096i
\(209\) 5.19615 0.359425
\(210\) 0 0
\(211\) −4.00000 −0.275371 −0.137686 0.990476i \(-0.543966\pi\)
−0.137686 + 0.990476i \(0.543966\pi\)
\(212\) 1.73205 3.00000i 0.118958 0.206041i
\(213\) 0 0
\(214\) 0 0
\(215\) −6.06218 + 10.5000i −0.413437 + 0.716094i
\(216\) 0 0
\(217\) −4.00000 3.46410i −0.271538 0.235159i
\(218\) −34.6410 −2.34619
\(219\) 0 0
\(220\) 4.50000 + 7.79423i 0.303390 + 0.525487i
\(221\) −13.8564 24.0000i −0.932083 1.61441i
\(222\) 0 0
\(223\) −10.0000 −0.669650 −0.334825 0.942280i \(-0.608677\pi\)
−0.334825 + 0.942280i \(0.608677\pi\)
\(224\) −10.3923 9.00000i −0.694365 0.601338i
\(225\) 0 0
\(226\) −9.00000 + 15.5885i −0.598671 + 1.03693i
\(227\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(228\) 0 0
\(229\) −1.00000 + 1.73205i −0.0660819 + 0.114457i −0.897173 0.441679i \(-0.854383\pi\)
0.831092 + 0.556136i \(0.187717\pi\)
\(230\) −25.9808 −1.71312
\(231\) 0 0
\(232\) −6.00000 −0.393919
\(233\) 3.46410 6.00000i 0.226941 0.393073i −0.729959 0.683491i \(-0.760461\pi\)
0.956900 + 0.290418i \(0.0937943\pi\)
\(234\) 0 0
\(235\) −7.50000 12.9904i −0.489246 0.847399i
\(236\) 3.46410 6.00000i 0.225494 0.390567i
\(237\) 0 0
\(238\) 30.0000 10.3923i 1.94461 0.673633i
\(239\) 10.3923 0.672222 0.336111 0.941822i \(-0.390888\pi\)
0.336111 + 0.941822i \(0.390888\pi\)
\(240\) 0 0
\(241\) 14.0000 + 24.2487i 0.901819 + 1.56200i 0.825131 + 0.564942i \(0.191101\pi\)
0.0766885 + 0.997055i \(0.475565\pi\)
\(242\) 13.8564 + 24.0000i 0.890724 + 1.54278i
\(243\) 0 0
\(244\) −7.00000 −0.448129
\(245\) −1.73205 12.0000i −0.110657 0.766652i
\(246\) 0 0
\(247\) 2.00000 3.46410i 0.127257 0.220416i
\(248\) −1.73205 3.00000i −0.109985 0.190500i
\(249\) 0 0
\(250\) 10.5000 18.1865i 0.664078 1.15022i
\(251\) 1.73205 0.109326 0.0546630 0.998505i \(-0.482592\pi\)
0.0546630 + 0.998505i \(0.482592\pi\)
\(252\) 0 0
\(253\) −45.0000 −2.82913
\(254\) 17.3205 30.0000i 1.08679 1.88237i
\(255\) 0 0
\(256\) −9.50000 16.4545i −0.593750 1.02841i
\(257\) 12.1244 21.0000i 0.756297 1.30994i −0.188431 0.982086i \(-0.560340\pi\)
0.944727 0.327858i \(-0.106327\pi\)
\(258\) 0 0
\(259\) −4.00000 + 20.7846i −0.248548 + 1.29149i
\(260\) 6.92820 0.429669
\(261\) 0 0
\(262\) 3.00000 + 5.19615i 0.185341 + 0.321019i
\(263\) −12.1244 21.0000i −0.747620 1.29492i −0.948961 0.315394i \(-0.897863\pi\)
0.201341 0.979521i \(-0.435470\pi\)
\(264\) 0 0
\(265\) 6.00000 0.368577
\(266\) 3.46410 + 3.00000i 0.212398 + 0.183942i
\(267\) 0 0
\(268\) −4.00000 + 6.92820i −0.244339 + 0.423207i
\(269\) 3.46410 + 6.00000i 0.211210 + 0.365826i 0.952093 0.305807i \(-0.0989263\pi\)
−0.740883 + 0.671634i \(0.765593\pi\)
\(270\) 0 0
\(271\) −5.50000 + 9.52628i −0.334101 + 0.578680i −0.983312 0.181928i \(-0.941766\pi\)
0.649211 + 0.760609i \(0.275099\pi\)
\(272\) 34.6410 2.10042
\(273\) 0 0
\(274\) 15.0000 0.906183
\(275\) 5.19615 9.00000i 0.313340 0.542720i
\(276\) 0 0
\(277\) 6.50000 + 11.2583i 0.390547 + 0.676448i 0.992522 0.122068i \(-0.0389525\pi\)
−0.601975 + 0.798515i \(0.705619\pi\)
\(278\) 14.7224 25.5000i 0.882993 1.52939i
\(279\) 0 0
\(280\) 1.50000 7.79423i 0.0896421 0.465794i
\(281\) 17.3205 1.03325 0.516627 0.856210i \(-0.327187\pi\)
0.516627 + 0.856210i \(0.327187\pi\)
\(282\) 0 0
\(283\) 15.5000 + 26.8468i 0.921379 + 1.59588i 0.797283 + 0.603606i \(0.206270\pi\)
0.124096 + 0.992270i \(0.460397\pi\)
\(284\) −1.73205 3.00000i −0.102778 0.178017i
\(285\) 0 0
\(286\) 36.0000 2.12872
\(287\) 8.66025 3.00000i 0.511199 0.177084i
\(288\) 0 0
\(289\) −15.5000 + 26.8468i −0.911765 + 1.57922i
\(290\) 5.19615 + 9.00000i 0.305129 + 0.528498i
\(291\) 0 0
\(292\) 3.50000 6.06218i 0.204822 0.354762i
\(293\) −31.1769 −1.82137 −0.910687 0.413096i \(-0.864447\pi\)
−0.910687 + 0.413096i \(0.864447\pi\)
\(294\) 0 0
\(295\) 12.0000 0.698667
\(296\) −6.92820 + 12.0000i −0.402694 + 0.697486i
\(297\) 0 0
\(298\) −1.50000 2.59808i −0.0868927 0.150503i
\(299\) −17.3205 + 30.0000i −1.00167 + 1.73494i
\(300\) 0 0
\(301\) −17.5000 + 6.06218i −1.00868 + 0.349418i
\(302\) 38.1051 2.19270
\(303\) 0 0
\(304\) 2.50000 + 4.33013i 0.143385 + 0.248350i
\(305\) −6.06218 10.5000i −0.347119 0.601228i
\(306\) 0 0
\(307\) 2.00000 0.114146 0.0570730 0.998370i \(-0.481823\pi\)
0.0570730 + 0.998370i \(0.481823\pi\)
\(308\) −2.59808 + 13.5000i −0.148039 + 0.769234i
\(309\) 0 0
\(310\) −3.00000 + 5.19615i −0.170389 + 0.295122i
\(311\) −15.5885 27.0000i −0.883940 1.53103i −0.846923 0.531715i \(-0.821548\pi\)
−0.0370169 0.999315i \(-0.511786\pi\)
\(312\) 0 0
\(313\) −14.5000 + 25.1147i −0.819588 + 1.41957i 0.0863973 + 0.996261i \(0.472465\pi\)
−0.905986 + 0.423308i \(0.860869\pi\)
\(314\) 22.5167 1.27069
\(315\) 0 0
\(316\) 8.00000 0.450035
\(317\) 1.73205 3.00000i 0.0972817 0.168497i −0.813277 0.581877i \(-0.802319\pi\)
0.910559 + 0.413380i \(0.135652\pi\)
\(318\) 0 0
\(319\) 9.00000 + 15.5885i 0.503903 + 0.872786i
\(320\) 0.866025 1.50000i 0.0484123 0.0838525i
\(321\) 0 0
\(322\) −30.0000 25.9808i −1.67183 1.44785i
\(323\) −6.92820 −0.385496
\(324\) 0 0
\(325\) −4.00000 6.92820i −0.221880 0.384308i
\(326\) 9.52628 + 16.5000i 0.527612 + 0.913850i
\(327\) 0 0
\(328\) 6.00000 0.331295
\(329\) 4.33013 22.5000i 0.238728 1.24047i
\(330\) 0 0
\(331\) −7.00000 + 12.1244i −0.384755 + 0.666415i −0.991735 0.128302i \(-0.959047\pi\)
0.606980 + 0.794717i \(0.292381\pi\)
\(332\) 2.59808 + 4.50000i 0.142588 + 0.246970i
\(333\) 0 0
\(334\) 15.0000 25.9808i 0.820763 1.42160i
\(335\) −13.8564 −0.757056
\(336\) 0 0
\(337\) 14.0000 0.762629 0.381314 0.924445i \(-0.375472\pi\)
0.381314 + 0.924445i \(0.375472\pi\)
\(338\) 2.59808 4.50000i 0.141317 0.244768i
\(339\) 0 0
\(340\) −6.00000 10.3923i −0.325396 0.563602i
\(341\) −5.19615 + 9.00000i −0.281387 + 0.487377i
\(342\) 0 0
\(343\) 10.0000 15.5885i 0.539949 0.841698i
\(344\) −12.1244 −0.653701
\(345\) 0 0
\(346\) −6.00000 10.3923i −0.322562 0.558694i
\(347\) 0.866025 + 1.50000i 0.0464907 + 0.0805242i 0.888334 0.459197i \(-0.151863\pi\)
−0.841844 + 0.539721i \(0.818530\pi\)
\(348\) 0 0
\(349\) −10.0000 −0.535288 −0.267644 0.963518i \(-0.586245\pi\)
−0.267644 + 0.963518i \(0.586245\pi\)
\(350\) 8.66025 3.00000i 0.462910 0.160357i
\(351\) 0 0
\(352\) −13.5000 + 23.3827i −0.719552 + 1.24630i
\(353\) 10.3923 + 18.0000i 0.553127 + 0.958043i 0.998047 + 0.0624731i \(0.0198987\pi\)
−0.444920 + 0.895570i \(0.646768\pi\)
\(354\) 0 0
\(355\) 3.00000 5.19615i 0.159223 0.275783i
\(356\) 6.92820 0.367194
\(357\) 0 0
\(358\) 18.0000 0.951330
\(359\) −4.33013 + 7.50000i −0.228535 + 0.395835i −0.957374 0.288850i \(-0.906727\pi\)
0.728839 + 0.684685i \(0.240060\pi\)
\(360\) 0 0
\(361\) −0.500000 0.866025i −0.0263158 0.0455803i
\(362\) 12.1244 21.0000i 0.637242 1.10374i
\(363\) 0 0
\(364\) 8.00000 + 6.92820i 0.419314 + 0.363137i
\(365\) 12.1244 0.634618
\(366\) 0 0
\(367\) −4.00000 6.92820i −0.208798 0.361649i 0.742538 0.669804i \(-0.233622\pi\)
−0.951336 + 0.308155i \(0.900289\pi\)
\(368\) −21.6506 37.5000i −1.12862 1.95482i
\(369\) 0 0
\(370\) 24.0000 1.24770
\(371\) 6.92820 + 6.00000i 0.359694 + 0.311504i
\(372\) 0 0
\(373\) 2.00000 3.46410i 0.103556 0.179364i −0.809591 0.586994i \(-0.800311\pi\)
0.913147 + 0.407630i \(0.133645\pi\)
\(374\) −31.1769 54.0000i −1.61212 2.79227i
\(375\) 0 0
\(376\) 7.50000 12.9904i 0.386783 0.669928i
\(377\) 13.8564 0.713641
\(378\) 0 0
\(379\) −16.0000 −0.821865 −0.410932 0.911666i \(-0.634797\pi\)
−0.410932 + 0.911666i \(0.634797\pi\)
\(380\) 0.866025 1.50000i 0.0444262 0.0769484i
\(381\) 0 0
\(382\) −4.50000 7.79423i −0.230240 0.398787i
\(383\) −17.3205 + 30.0000i −0.885037 + 1.53293i −0.0393649 + 0.999225i \(0.512533\pi\)
−0.845672 + 0.533703i \(0.820800\pi\)
\(384\) 0 0
\(385\) −22.5000 + 7.79423i −1.14671 + 0.397231i
\(386\) −13.8564 −0.705273
\(387\) 0 0
\(388\) 5.00000 + 8.66025i 0.253837 + 0.439658i
\(389\) −13.8564 24.0000i −0.702548 1.21685i −0.967569 0.252606i \(-0.918712\pi\)
0.265022 0.964242i \(-0.414621\pi\)
\(390\) 0 0
\(391\) 60.0000 3.03433
\(392\) 9.52628 7.50000i 0.481150 0.378807i
\(393\) 0 0
\(394\) −13.5000 + 23.3827i −0.680120 + 1.17800i
\(395\) 6.92820 + 12.0000i 0.348596 + 0.603786i
\(396\) 0 0
\(397\) −1.00000 + 1.73205i −0.0501886 + 0.0869291i −0.890028 0.455905i \(-0.849316\pi\)
0.839840 + 0.542834i \(0.182649\pi\)
\(398\) 12.1244 0.607739
\(399\) 0 0
\(400\) 10.0000 0.500000
\(401\) 13.8564 24.0000i 0.691956 1.19850i −0.279240 0.960221i \(-0.590083\pi\)
0.971196 0.238282i \(-0.0765841\pi\)
\(402\) 0 0
\(403\) 4.00000 + 6.92820i 0.199254 + 0.345118i
\(404\) 4.33013 7.50000i 0.215432 0.373139i
\(405\) 0 0
\(406\) −3.00000 + 15.5885i −0.148888 + 0.773642i
\(407\) 41.5692 2.06051
\(408\) 0 0
\(409\) −7.00000 12.1244i −0.346128 0.599511i 0.639430 0.768849i \(-0.279170\pi\)
−0.985558 + 0.169338i \(0.945837\pi\)
\(410\) −5.19615 9.00000i −0.256620 0.444478i
\(411\) 0 0
\(412\) 14.0000 0.689730
\(413\) 13.8564 + 12.0000i 0.681829 + 0.590481i
\(414\) 0 0
\(415\) −4.50000 + 7.79423i −0.220896 + 0.382604i
\(416\) 10.3923 + 18.0000i 0.509525 + 0.882523i
\(417\) 0 0
\(418\) 4.50000 7.79423i 0.220102 0.381228i
\(419\) −15.5885 −0.761546 −0.380773 0.924669i \(-0.624342\pi\)
−0.380773 + 0.924669i \(0.624342\pi\)
\(420\) 0 0
\(421\) 2.00000 0.0974740 0.0487370 0.998812i \(-0.484480\pi\)
0.0487370 + 0.998812i \(0.484480\pi\)
\(422\) −3.46410 + 6.00000i −0.168630 + 0.292075i
\(423\) 0 0
\(424\) 3.00000 + 5.19615i 0.145693 + 0.252347i
\(425\) −6.92820 + 12.0000i −0.336067 + 0.582086i
\(426\) 0 0
\(427\) 3.50000 18.1865i 0.169377 0.880108i
\(428\) 0 0
\(429\) 0 0
\(430\) 10.5000 + 18.1865i 0.506355 + 0.877033i
\(431\) −19.0526 33.0000i −0.917729 1.58955i −0.802855 0.596174i \(-0.796687\pi\)
−0.114874 0.993380i \(-0.536647\pi\)
\(432\) 0 0
\(433\) −4.00000 −0.192228 −0.0961139 0.995370i \(-0.530641\pi\)
−0.0961139 + 0.995370i \(0.530641\pi\)
\(434\) −8.66025 + 3.00000i −0.415705 + 0.144005i
\(435\) 0 0
\(436\) −10.0000 + 17.3205i −0.478913 + 0.829502i
\(437\) 4.33013 + 7.50000i 0.207138 + 0.358774i
\(438\) 0 0
\(439\) 14.0000 24.2487i 0.668184 1.15733i −0.310228 0.950662i \(-0.600405\pi\)
0.978412 0.206666i \(-0.0662612\pi\)
\(440\) −15.5885 −0.743151
\(441\) 0 0
\(442\) −48.0000 −2.28313
\(443\) 1.73205 3.00000i 0.0822922 0.142534i −0.821942 0.569571i \(-0.807109\pi\)
0.904234 + 0.427037i \(0.140443\pi\)
\(444\) 0 0
\(445\) 6.00000 + 10.3923i 0.284427 + 0.492642i
\(446\) −8.66025 + 15.0000i −0.410075 + 0.710271i
\(447\) 0 0
\(448\) 2.50000 0.866025i 0.118114 0.0409159i
\(449\) −20.7846 −0.980886 −0.490443 0.871473i \(-0.663165\pi\)
−0.490443 + 0.871473i \(0.663165\pi\)
\(450\) 0 0
\(451\) −9.00000 15.5885i −0.423793 0.734032i
\(452\) 5.19615 + 9.00000i 0.244406 + 0.423324i
\(453\) 0 0
\(454\) 0 0
\(455\) −3.46410 + 18.0000i −0.162400 + 0.843853i
\(456\) 0 0
\(457\) −11.5000 + 19.9186i −0.537947 + 0.931752i 0.461067 + 0.887365i \(0.347467\pi\)
−0.999014 + 0.0443868i \(0.985867\pi\)
\(458\) 1.73205 + 3.00000i 0.0809334 + 0.140181i
\(459\) 0 0
\(460\) −7.50000 + 12.9904i −0.349689 + 0.605680i
\(461\) 8.66025 0.403348 0.201674 0.979453i \(-0.435362\pi\)
0.201674 + 0.979453i \(0.435362\pi\)
\(462\) 0 0
\(463\) −7.00000 −0.325318 −0.162659 0.986682i \(-0.552007\pi\)
−0.162659 + 0.986682i \(0.552007\pi\)
\(464\) −8.66025 + 15.0000i −0.402042 + 0.696358i
\(465\) 0 0
\(466\) −6.00000 10.3923i −0.277945 0.481414i
\(467\) −18.1865 + 31.5000i −0.841572 + 1.45765i 0.0469925 + 0.998895i \(0.485036\pi\)
−0.888565 + 0.458751i \(0.848297\pi\)
\(468\) 0 0
\(469\) −16.0000 13.8564i −0.738811 0.639829i
\(470\) −25.9808 −1.19840
\(471\) 0 0
\(472\) 6.00000 + 10.3923i 0.276172 + 0.478345i
\(473\) 18.1865 + 31.5000i 0.836218 + 1.44837i
\(474\) 0 0
\(475\) −2.00000 −0.0917663
\(476\) 3.46410 18.0000i 0.158777 0.825029i
\(477\) 0 0
\(478\) 9.00000 15.5885i 0.411650 0.712999i
\(479\) −11.2583 19.5000i −0.514406 0.890978i −0.999860 0.0167156i \(-0.994679\pi\)
0.485454 0.874262i \(-0.338654\pi\)
\(480\) 0 0
\(481\) 16.0000 27.7128i 0.729537 1.26360i
\(482\) 48.4974 2.20900
\(483\) 0 0
\(484\) 16.0000 0.727273
\(485\) −8.66025 + 15.0000i −0.393242 + 0.681115i
\(486\) 0 0
\(487\) −1.00000 1.73205i −0.0453143 0.0784867i 0.842479 0.538730i \(-0.181096\pi\)
−0.887793 + 0.460243i \(0.847762\pi\)
\(488\) 6.06218 10.5000i 0.274422 0.475313i
\(489\) 0 0
\(490\) −19.5000 7.79423i −0.880920 0.352107i
\(491\) −22.5167 −1.01616 −0.508081 0.861309i \(-0.669645\pi\)
−0.508081 + 0.861309i \(0.669645\pi\)
\(492\) 0 0
\(493\) −12.0000 20.7846i −0.540453 0.936092i
\(494\) −3.46410 6.00000i −0.155857 0.269953i
\(495\) 0 0
\(496\) −10.0000 −0.449013
\(497\) 8.66025 3.00000i 0.388465 0.134568i
\(498\) 0 0
\(499\) −2.50000 + 4.33013i −0.111915 + 0.193843i −0.916542 0.399937i \(-0.869032\pi\)
0.804627 + 0.593780i \(0.202365\pi\)
\(500\) −6.06218 10.5000i −0.271109 0.469574i
\(501\) 0 0
\(502\) 1.50000 2.59808i 0.0669483 0.115958i
\(503\) 1.73205 0.0772283 0.0386142 0.999254i \(-0.487706\pi\)
0.0386142 + 0.999254i \(0.487706\pi\)
\(504\) 0 0
\(505\) 15.0000 0.667491
\(506\) −38.9711 + 67.5000i −1.73248 + 3.00074i
\(507\) 0 0
\(508\) −10.0000 17.3205i −0.443678 0.768473i
\(509\) −19.0526 + 33.0000i −0.844490 + 1.46270i 0.0415737 + 0.999135i \(0.486763\pi\)
−0.886064 + 0.463564i \(0.846570\pi\)
\(510\) 0 0
\(511\) 14.0000 + 12.1244i 0.619324 + 0.536350i
\(512\) −8.66025 −0.382733
\(513\) 0 0
\(514\) −21.0000 36.3731i −0.926270 1.60435i
\(515\) 12.1244 + 21.0000i 0.534263 + 0.925371i
\(516\) 0 0
\(517\) −45.0000 −1.97910
\(518\) 27.7128 + 24.0000i 1.21763 + 1.05450i
\(519\) 0 0
\(520\) −6.00000 + 10.3923i −0.263117 + 0.455733i
\(521\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(522\) 0 0
\(523\) −1.00000 + 1.73205i −0.0437269 + 0.0757373i −0.887061 0.461653i \(-0.847256\pi\)
0.843334 + 0.537390i \(0.180590\pi\)
\(524\) 3.46410 0.151330
\(525\) 0 0
\(526\) −42.0000 −1.83129
\(527\) 6.92820 12.0000i 0.301797 0.522728i
\(528\) 0 0
\(529\) −26.0000 45.0333i −1.13043 1.95797i
\(530\) 5.19615 9.00000i 0.225706 0.390935i
\(531\) 0 0
\(532\) 2.50000 0.866025i 0.108389 0.0375470i
\(533\) −13.8564 −0.600188
\(534\) 0 0
\(535\) 0 0
\(536\) −6.92820 12.0000i −0.299253 0.518321i
\(537\) 0 0
\(538\) 12.0000 0.517357
\(539\) −33.7750 13.5000i −1.45479 0.581486i
\(540\) 0 0
\(541\) 12.5000 21.6506i 0.537417 0.930834i −0.461625 0.887075i \(-0.652733\pi\)
0.999042 0.0437584i \(-0.0139332\pi\)
\(542\) 9.52628 + 16.5000i 0.409189 + 0.708736i
\(543\) 0 0
\(544\) 18.0000 31.1769i 0.771744 1.33670i
\(545\) −34.6410 −1.48386
\(546\) 0 0
\(547\) 38.0000 1.62476 0.812381 0.583127i \(-0.198171\pi\)
0.812381 + 0.583127i \(0.198171\pi\)
\(548\) 4.33013 7.50000i 0.184974 0.320384i
\(549\) 0 0
\(550\) −9.00000 15.5885i −0.383761 0.664694i
\(551\) 1.73205 3.00000i 0.0737878 0.127804i
\(552\) 0 0
\(553\) −4.00000 + 20.7846i −0.170097 + 0.883852i
\(554\) 22.5167 0.956641
\(555\) 0 0
\(556\) −8.50000 14.7224i −0.360480 0.624370i
\(557\) 9.52628 + 16.5000i 0.403641 + 0.699127i 0.994162 0.107895i \(-0.0344110\pi\)
−0.590521 + 0.807022i \(0.701078\pi\)
\(558\) 0 0
\(559\) 28.0000 1.18427
\(560\) −17.3205 15.0000i −0.731925 0.633866i
\(561\) 0 0
\(562\) 15.0000 25.9808i 0.632737 1.09593i
\(563\) −10.3923 18.0000i −0.437983 0.758610i 0.559550 0.828796i \(-0.310974\pi\)
−0.997534 + 0.0701867i \(0.977640\pi\)
\(564\) 0 0
\(565\) −9.00000 + 15.5885i −0.378633 + 0.655811i
\(566\) 53.6936 2.25691
\(567\) 0 0
\(568\) 6.00000 0.251754
\(569\) −15.5885 + 27.0000i −0.653502 + 1.13190i 0.328765 + 0.944412i \(0.393368\pi\)
−0.982267 + 0.187487i \(0.939966\pi\)
\(570\) 0 0
\(571\) 12.5000 + 21.6506i 0.523109 + 0.906051i 0.999638 + 0.0268925i \(0.00856117\pi\)
−0.476530 + 0.879158i \(0.658105\pi\)
\(572\) 10.3923 18.0000i 0.434524 0.752618i
\(573\) 0 0
\(574\) 3.00000 15.5885i 0.125218 0.650650i
\(575\) 17.3205 0.722315
\(576\) 0 0
\(577\) −8.50000 14.7224i −0.353860 0.612903i 0.633062 0.774101i \(-0.281798\pi\)
−0.986922 + 0.161198i \(0.948464\pi\)
\(578\) 26.8468 + 46.5000i 1.11668 + 1.93415i
\(579\) 0 0
\(580\) 6.00000 0.249136
\(581\) −12.9904 + 4.50000i −0.538932 + 0.186691i
\(582\) 0 0
\(583\) 9.00000 15.5885i 0.372742 0.645608i
\(584\) 6.06218 + 10.5000i 0.250855 + 0.434493i
\(585\) 0 0
\(586\) −27.0000 + 46.7654i −1.11536 + 1.93186i
\(587\) 3.46410 0.142979 0.0714894 0.997441i \(-0.477225\pi\)
0.0714894 + 0.997441i \(0.477225\pi\)
\(588\) 0 0
\(589\) 2.00000 0.0824086
\(590\) 10.3923 18.0000i 0.427844 0.741048i
\(591\) 0 0
\(592\) 20.0000 + 34.6410i 0.821995 + 1.42374i
\(593\) 4.33013 7.50000i 0.177817 0.307988i −0.763316 0.646026i \(-0.776430\pi\)
0.941133 + 0.338038i \(0.109763\pi\)
\(594\) 0 0
\(595\) 30.0000 10.3923i 1.22988 0.426043i
\(596\) −1.73205 −0.0709476
\(597\) 0 0
\(598\) 30.0000 + 51.9615i 1.22679 + 2.12486i
\(599\) −8.66025 15.0000i −0.353848 0.612883i 0.633072 0.774093i \(-0.281794\pi\)
−0.986920 + 0.161210i \(0.948460\pi\)
\(600\) 0 0
\(601\) −40.0000 −1.63163 −0.815817 0.578310i \(-0.803712\pi\)
−0.815817 + 0.578310i \(0.803712\pi\)
\(602\) −6.06218 + 31.5000i −0.247076 + 1.28384i
\(603\) 0 0
\(604\) 11.0000 19.0526i 0.447584 0.775238i
\(605\) 13.8564 + 24.0000i 0.563343 + 0.975739i
\(606\) 0 0
\(607\) −10.0000 + 17.3205i −0.405887 + 0.703018i −0.994424 0.105453i \(-0.966371\pi\)
0.588537 + 0.808470i \(0.299704\pi\)
\(608\) 5.19615 0.210732
\(609\) 0 0
\(610\) −21.0000 −0.850265
\(611\) −17.3205 + 30.0000i −0.700713 + 1.21367i
\(612\) 0 0
\(613\) −19.0000 32.9090i −0.767403 1.32918i −0.938967 0.344008i \(-0.888215\pi\)
0.171564 0.985173i \(-0.445118\pi\)
\(614\) 1.73205 3.00000i 0.0698999 0.121070i
\(615\) 0 0
\(616\) −18.0000 15.5885i −0.725241 0.628077i
\(617\) −19.0526 −0.767027 −0.383514 0.923535i \(-0.625286\pi\)
−0.383514 + 0.923535i \(0.625286\pi\)
\(618\) 0 0
\(619\) −20.5000 35.5070i −0.823965 1.42715i −0.902708 0.430254i \(-0.858424\pi\)
0.0787435 0.996895i \(-0.474909\pi\)
\(620\) 1.73205 + 3.00000i 0.0695608 + 0.120483i
\(621\) 0 0
\(622\) −54.0000 −2.16520
\(623\) −3.46410 + 18.0000i −0.138786 + 0.721155i
\(624\) 0 0
\(625\) 5.50000 9.52628i 0.220000 0.381051i
\(626\) 25.1147 + 43.5000i 1.00379 + 1.73861i
\(627\) 0 0
\(628\) 6.50000 11.2583i 0.259378 0.449256i
\(629\) −55.4256 −2.20996
\(630\) 0 0
\(631\) −13.0000 −0.517522 −0.258761 0.965941i \(-0.583314\pi\)
−0.258761 + 0.965941i \(0.583314\pi\)
\(632\) −6.92820 + 12.0000i −0.275589 + 0.477334i
\(633\) 0 0
\(634\) −3.00000 5.19615i −0.119145 0.206366i
\(635\) 17.3205 30.0000i 0.687343 1.19051i
\(636\) 0 0
\(637\) −22.0000 + 17.3205i −0.871672 + 0.686264i
\(638\) 31.1769 1.23431
\(639\) 0 0
\(640\) −10.5000 18.1865i −0.415049 0.718886i
\(641\) −6.92820 12.0000i −0.273648 0.473972i 0.696145 0.717901i \(-0.254897\pi\)
−0.969793 + 0.243929i \(0.921564\pi\)
\(642\) 0 0
\(643\) 32.0000 1.26196 0.630978 0.775800i \(-0.282654\pi\)
0.630978 + 0.775800i \(0.282654\pi\)
\(644\) −21.6506 + 7.50000i −0.853155 + 0.295541i
\(645\) 0 0
\(646\) −6.00000 + 10.3923i −0.236067 + 0.408880i
\(647\) −12.9904 22.5000i −0.510705 0.884566i −0.999923 0.0124050i \(-0.996051\pi\)
0.489218 0.872161i \(-0.337282\pi\)
\(648\) 0 0
\(649\) 18.0000 31.1769i 0.706562 1.22380i
\(650\) −13.8564 −0.543493
\(651\) 0 0
\(652\) 11.0000 0.430793
\(653\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(654\) 0 0
\(655\) 3.00000 + 5.19615i 0.117220 + 0.203030i
\(656\) 8.66025 15.0000i 0.338126 0.585652i
\(657\) 0 0
\(658\) −30.0000 25.9808i −1.16952 1.01284i
\(659\) 17.3205 0.674711 0.337356 0.941377i \(-0.390468\pi\)
0.337356 + 0.941377i \(0.390468\pi\)
\(660\) 0 0
\(661\) −4.00000 6.92820i −0.155582 0.269476i 0.777689 0.628649i \(-0.216392\pi\)
−0.933271 + 0.359174i \(0.883059\pi\)
\(662\) 12.1244 + 21.0000i 0.471226 + 0.816188i
\(663\) 0 0
\(664\) −9.00000 −0.349268
\(665\) 3.46410 + 3.00000i 0.134332 + 0.116335i
\(666\) 0 0
\(667\) −15.0000 + 25.9808i −0.580802 + 1.00598i
\(668\) −8.66025 15.0000i −0.335075 0.580367i
\(669\) 0 0
\(670\) −12.0000 + 20.7846i −0.463600 + 0.802980i
\(671\) −36.3731 −1.40417
\(672\) 0 0
\(673\) −4.00000 −0.154189 −0.0770943 0.997024i \(-0.524564\pi\)
−0.0770943 + 0.997024i \(0.524564\pi\)
\(674\) 12.1244 21.0000i 0.467013 0.808890i
\(675\) 0 0
\(676\) −1.50000 2.59808i −0.0576923 0.0999260i
\(677\) 10.3923 18.0000i 0.399409 0.691796i −0.594244 0.804285i \(-0.702549\pi\)
0.993653 + 0.112488i \(0.0358821\pi\)
\(678\) 0 0
\(679\) −25.0000 + 8.66025i −0.959412 + 0.332350i
\(680\) 20.7846 0.797053
\(681\) 0 0
\(682\) 9.00000 + 15.5885i 0.344628 + 0.596913i
\(683\) −5.19615 9.00000i −0.198825 0.344375i 0.749323 0.662205i \(-0.230379\pi\)
−0.948148 + 0.317830i \(0.897046\pi\)
\(684\) 0 0
\(685\) 15.0000 0.573121
\(686\) −14.7224 28.5000i −0.562105 1.08814i
\(687\) 0 0
\(688\) −17.5000 + 30.3109i −0.667181 + 1.15559i
\(689\) −6.92820 12.0000i −0.263944 0.457164i
\(690\) 0 0
\(691\) 2.00000 3.46410i 0.0760836 0.131781i −0.825473 0.564441i \(-0.809092\pi\)
0.901557 + 0.432660i \(0.142425\pi\)
\(692\) −6.92820 −0.263371
\(693\) 0 0
\(694\) 3.00000 0.113878
\(695\) 14.7224 25.5000i 0.558454 0.967270i
\(696\) 0 0
\(697\) 12.0000 + 20.7846i 0.454532 + 0.787273i
\(698\) −8.66025 + 15.0000i −0.327795 + 0.567758i
\(699\) 0 0
\(700\) 1.00000 5.19615i 0.0377964 0.196396i
\(701\) −1.73205 −0.0654187 −0.0327093 0.999465i \(-0.510414\pi\)
−0.0327093 + 0.999465i \(0.510414\pi\)
\(702\) 0 0
\(703\) −4.00000 6.92820i −0.150863 0.261302i
\(704\) −2.59808 4.50000i −0.0979187 0.169600i
\(705\) 0 0
\(706\) 36.0000 1.35488
\(707\) 17.3205 + 15.0000i 0.651405 + 0.564133i
\(708\) 0 0
\(709\) −8.50000 + 14.7224i −0.319224 + 0.552913i −0.980326 0.197383i \(-0.936756\pi\)
0.661102 + 0.750296i \(0.270089\pi\)
\(710\) −5.19615 9.00000i −0.195008 0.337764i
\(711\) 0 0
\(712\) −6.00000 + 10.3923i −0.224860 + 0.389468i
\(713\) −17.3205 −0.648658
\(714\) 0 0
\(715\) 36.0000 1.34632
\(716\) 5.19615 9.00000i 0.194189 0.336346i
\(717\) 0 0
\(718\) 7.50000 + 12.9904i 0.279898 + 0.484797i
\(719\) −1.73205 + 3.00000i −0.0645946 + 0.111881i −0.896514 0.443015i \(-0.853909\pi\)
0.831919 + 0.554896i \(0.187242\pi\)
\(720\) 0 0
\(721\) −7.00000 + 36.3731i −0.260694 + 1.35460i
\(722\) −1.73205 −0.0644603
\(723\) 0 0
\(724\) −7.00000 12.1244i −0.260153 0.450598i
\(725\) −3.46410 6.00000i −0.128654 0.222834i
\(726\) 0 0
\(727\) 11.0000 0.407967 0.203984 0.978974i \(-0.434611\pi\)
0.203984 + 0.978974i \(0.434611\pi\)
\(728\) −17.3205 + 6.00000i −0.641941 + 0.222375i
\(729\) 0 0
\(730\) 10.5000 18.1865i 0.388622 0.673114i
\(731\) −24.2487 42.0000i −0.896871 1.55343i
\(732\) 0 0
\(733\) −1.00000 + 1.73205i −0.0369358 + 0.0639748i −0.883902 0.467671i \(-0.845093\pi\)
0.846967 + 0.531646i \(0.178426\pi\)
\(734\) −13.8564 −0.511449
\(735\) 0 0
\(736\) −45.0000 −1.65872
\(737\) −20.7846 + 36.0000i −0.765611 + 1.32608i
\(738\) 0 0
\(739\) −16.0000 27.7128i −0.588570 1.01943i −0.994420 0.105493i \(-0.966358\pi\)
0.405851 0.913939i \(-0.366975\pi\)
\(740\) 6.92820 12.0000i 0.254686 0.441129i
\(741\) 0 0
\(742\) 15.0000 5.19615i 0.550667 0.190757i
\(743\) 34.6410 1.27086 0.635428 0.772160i \(-0.280824\pi\)
0.635428 + 0.772160i \(0.280824\pi\)
\(744\) 0 0
\(745\) −1.50000 2.59808i −0.0549557 0.0951861i
\(746\) −3.46410 6.00000i −0.126830 0.219676i
\(747\) 0 0
\(748\) −36.0000 −1.31629
\(749\) 0 0
\(750\) 0 0
\(751\) 2.00000 3.46410i 0.0729810 0.126407i −0.827225 0.561870i \(-0.810082\pi\)
0.900207 + 0.435463i \(0.143415\pi\)
\(752\) −21.6506 37.5000i −0.789517 1.36748i
\(753\) 0 0
\(754\) 12.0000 20.7846i 0.437014 0.756931i
\(755\) 38.1051 1.38679
\(756\) 0 0
\(757\) 41.0000 1.49017 0.745085 0.666969i \(-0.232409\pi\)
0.745085 + 0.666969i \(0.232409\pi\)
\(758\) −13.8564 + 24.0000i −0.503287 + 0.871719i
\(759\) 0 0
\(760\) 1.50000 + 2.59808i 0.0544107 + 0.0942421i
\(761\) 7.79423 13.5000i 0.282541 0.489375i −0.689469 0.724315i \(-0.742156\pi\)
0.972010 + 0.234940i \(0.0754895\pi\)
\(762\) 0 0
\(763\) −40.0000 34.6410i −1.44810 1.25409i
\(764\) −5.19615 −0.187990
\(765\) 0 0
\(766\) 30.0000 + 51.9615i 1.08394 + 1.87745i
\(767\) −13.8564 24.0000i −0.500326 0.866590i
\(768\) 0 0
\(769\) 5.00000 0.180305 0.0901523 0.995928i \(-0.471265\pi\)
0.0901523 + 0.995928i \(0.471265\pi\)
\(770\) −7.79423 + 40.5000i −0.280885 + 1.45952i
\(771\) 0 0
\(772\) −4.00000 + 6.92820i −0.143963 + 0.249351i
\(773\) 17.3205 + 30.0000i 0.622975 + 1.07903i 0.988929 + 0.148392i \(0.0474097\pi\)
−0.365953 + 0.930633i \(0.619257\pi\)
\(774\) 0 0
\(775\) 2.00000 3.46410i 0.0718421 0.124434i
\(776\) −17.3205 −0.621770
\(777\) 0 0
\(778\) −48.0000 −1.72088
\(779\) −1.73205 + 3.00000i −0.0620572 + 0.107486i
\(780\) 0 0
\(781\) −9.00000 15.5885i −0.322045 0.557799i
\(782\) 51.9615 90.0000i 1.85814 3.21839i
\(783\) 0 0
\(784\) −5.00000 34.6410i −0.178571 1.23718i
\(785\) 22.5167 0.803654
\(786\) 0 0
\(787\) −16.0000 27.7128i −0.570338 0.987855i −0.996531 0.0832226i \(-0.973479\pi\)
0.426193 0.904632i \(-0.359855\pi\)
\(788\) 7.79423 + 13.5000i 0.277658 + 0.480918i
\(789\) 0 0
\(790\) 24.0000 0.853882
\(791\) −25.9808 + 9.00000i −0.923770 + 0.320003i
\(792\) 0 0
\(793\) −14.0000 + 24.2487i −0.497155 + 0.861097i
\(794\) 1.73205 + 3.00000i 0.0614682 + 0.106466i
\(795\) 0 0
\(796\) 3.50000 6.06218i 0.124054 0.214868i
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) 60.0000 2.12265
\(800\) 5.19615 9.00000i 0.183712 0.318198i
\(801\) 0 0
\(802\) −24.0000 41.5692i −0.847469 1.46786i
\(803\) 18.1865 31.5000i 0.641789 1.11161i
\(804\) 0 0
\(805\) −30.0000 25.9808i −1.05736 0.915702i
\(806\) 13.8564 0.488071
\(807\) 0 0
\(808\) 7.50000 + 12.9904i 0.263849 + 0.457000i
\(809\) 2.59808 + 4.50000i 0.0913435 + 0.158212i 0.908077 0.418804i \(-0.137551\pi\)
−0.816733 + 0.577016i \(0.804217\pi\)
\(810\) 0 0
\(811\) −22.0000 −0.772524 −0.386262 0.922389i \(-0.626234\pi\)
−0.386262 + 0.922389i \(0.626234\pi\)
\(812\) 6.92820 + 6.00000i 0.243132 + 0.210559i
\(813\) 0 0
\(814\) 36.0000 62.3538i 1.26180 2.18550i
\(815\) 9.52628 + 16.5000i 0.333691 + 0.577970i
\(816\) 0 0
\(817\) 3.50000 6.06218i 0.122449 0.212089i
\(818\) −24.2487 −0.847836
\(819\) 0 0
\(820\) −6.00000 −0.209529
\(821\) 25.1147 43.5000i 0.876510 1.51816i 0.0213653 0.999772i \(-0.493199\pi\)
0.855145 0.518389i \(-0.173468\pi\)
\(822\) 0 0
\(823\) −20.5000 35.5070i −0.714585 1.23770i −0.963119 0.269075i \(-0.913282\pi\)
0.248534 0.968623i \(-0.420051\pi\)
\(824\) −12.1244 + 21.0000i −0.422372 + 0.731570i
\(825\) 0 0
\(826\) 30.0000 10.3923i 1.04383 0.361595i
\(827\) 27.7128 0.963669 0.481834 0.876262i \(-0.339971\pi\)
0.481834 + 0.876262i \(0.339971\pi\)
\(828\) 0 0
\(829\) 14.0000 + 24.2487i 0.486240 + 0.842193i 0.999875 0.0158163i \(-0.00503471\pi\)
−0.513635 + 0.858009i \(0.671701\pi\)
\(830\) 7.79423 + 13.5000i 0.270542 + 0.468592i
\(831\) 0 0
\(832\) −4.00000 −0.138675
\(833\) 45.0333 + 18.0000i 1.56031 + 0.623663i
\(834\) 0 0
\(835\) 15.0000 25.9808i 0.519096 0.899101i
\(836\) −2.59808 4.50000i −0.0898563 0.155636i
\(837\) 0 0
\(838\) −13.5000 + 23.3827i −0.466350 + 0.807741i
\(839\) −27.7128 −0.956753 −0.478376 0.878155i \(-0.658774\pi\)
−0.478376 + 0.878155i \(0.658774\pi\)
\(840\) 0 0
\(841\) −17.0000 −0.586207
\(842\) 1.73205 3.00000i 0.0596904 0.103387i
\(843\) 0 0
\(844\) 2.00000 + 3.46410i 0.0688428 + 0.119239i
\(845\) 2.59808 4.50000i 0.0893765 0.154805i
\(846\) 0 0
\(847\) −8.00000 + 41.5692i −0.274883 + 1.42834i
\(848\) 17.3205 0.594789
\(849\) 0 0
\(850\) 12.0000 + 20.7846i 0.411597 + 0.712906i
\(851\) 34.6410 + 60.0000i 1.18748 + 2.05677i
\(852\) 0 0
\(853\) 35.0000 1.19838 0.599189 0.800608i \(-0.295490\pi\)
0.599189 + 0.800608i \(0.295490\pi\)
\(854\) −24.2487 21.0000i −0.829774 0.718605i
\(855\) 0 0
\(856\) 0 0
\(857\) −17.3205 30.0000i −0.591657 1.02478i −0.994009 0.109295i \(-0.965141\pi\)
0.402352 0.915485i \(-0.368193\pi\)
\(858\) 0 0
\(859\) 18.5000 32.0429i 0.631212 1.09329i −0.356092 0.934451i \(-0.615891\pi\)
0.987304 0.158840i \(-0.0507755\pi\)
\(860\) 12.1244 0.413437
\(861\) 0 0
\(862\) −66.0000 −2.24797
\(863\) −5.19615 + 9.00000i −0.176879 + 0.306364i −0.940810 0.338935i \(-0.889933\pi\)
0.763931 + 0.645298i \(0.223267\pi\)
\(864\) 0 0
\(865\) −6.00000 10.3923i −0.204006 0.353349i
\(866\) −3.46410 + 6.00000i −0.117715 + 0.203888i
\(867\) 0 0
\(868\) −1.00000 + 5.19615i −0.0339422 + 0.176369i
\(869\) 41.5692 1.41014
\(870\) 0 0
\(871\) 16.0000 + 27.7128i 0.542139 + 0.939013i
\(872\) −17.3205 30.0000i −0.586546 1.01593i
\(873\) 0 0
\(874\) 15.0000 0.507383
\(875\) 30.3109 10.5000i 1.02470 0.354965i
\(876\) 0 0
\(877\) 14.0000 24.2487i 0.472746 0.818821i −0.526767 0.850010i \(-0.676596\pi\)
0.999514 + 0.0311889i \(0.00992933\pi\)
\(878\) −24.2487 42.0000i −0.818354 1.41743i
\(879\) 0 0
\(880\) −22.5000 + 38.9711i −0.758475 + 1.31372i
\(881\) 20.7846 0.700251 0.350126 0.936703i \(-0.386139\pi\)
0.350126 + 0.936703i \(0.386139\pi\)
\(882\) 0 0
\(883\) 20.0000 0.673054 0.336527 0.941674i \(-0.390748\pi\)
0.336527 + 0.941674i \(0.390748\pi\)
\(884\) −13.8564 + 24.0000i −0.466041 + 0.807207i
\(885\) 0 0
\(886\) −3.00000 5.19615i −0.100787 0.174568i
\(887\) 1.73205 3.00000i 0.0581566 0.100730i −0.835481 0.549519i \(-0.814811\pi\)
0.893638 + 0.448789i \(0.148144\pi\)
\(888\) 0 0
\(889\) 50.0000 17.3205i 1.67695 0.580911i
\(890\) 20.7846 0.696702
\(891\) 0 0
\(892\) 5.00000 + 8.66025i 0.167412 + 0.289967i
\(893\) 4.33013 + 7.50000i 0.144902 + 0.250978i
\(894\) 0 0
\(895\) 18.0000 0.601674
\(896\) 6.06218 31.5000i 0.202523 1.05234i
\(897\) 0 0
\(898\) −18.0000 + 31.1769i −0.600668 + 1.04039i
\(899\) 3.46410 + 6.00000i 0.115534 + 0.200111i
\(900\) 0 0
\(901\) −12.0000 + 20.7846i −0.399778 + 0.692436i
\(902\) −31.1769 −1.03808
\(903\) 0 0
\(904\) −18.0000 −0.598671
\(905\) 12.1244 21.0000i 0.403027 0.698064i
\(906\) 0 0
\(907\) 5.00000 + 8.66025i 0.166022 + 0.287559i 0.937018 0.349281i \(-0.113574\pi\)
−0.770996 + 0.636841i \(0.780241\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 24.0000 + 20.7846i 0.795592 + 0.689003i
\(911\) 31.1769 1.03294 0.516469 0.856306i \(-0.327246\pi\)
0.516469 + 0.856306i \(0.327246\pi\)
\(912\) 0 0
\(913\) 13.5000 + 23.3827i 0.446785 + 0.773854i
\(914\) 19.9186 + 34.5000i 0.658848 + 1.14116i
\(915\) 0 0
\(916\) 2.00000 0.0660819
\(917\) −1.73205 + 9.00000i −0.0571974 + 0.297206i
\(918\) 0 0
\(919\) −8.50000 + 14.7224i −0.280389 + 0.485648i −0.971481 0.237119i \(-0.923797\pi\)
0.691091 + 0.722767i \(0.257130\pi\)
\(920\) −12.9904 22.5000i −0.428280 0.741803i
\(921\) 0 0
\(922\) 7.50000 12.9904i 0.246999 0.427815i
\(923\) −13.8564 −0.456089
\(924\) 0 0
\(925\) −16.0000 −0.526077
\(926\) −6.06218 + 10.5000i −0.199216 + 0.345051i
\(927\) 0 0
\(928\) 9.00000 + 15.5885i 0.295439 + 0.511716i
\(929\) 21.6506 37.5000i 0.710334 1.23034i −0.254397 0.967100i \(-0.581877\pi\)
0.964732 0.263235i \(-0.0847896\pi\)
\(930\) 0 0
\(931\) 1.00000 + 6.92820i 0.0327737 + 0.227063i
\(932\) −6.92820 −0.226941
\(933\) 0 0
\(934\) 31.5000 + 54.5596i 1.03071 + 1.78524i
\(935\) −31.1769 54.0000i −1.01959 1.76599i
\(936\) 0 0
\(937\) −43.0000 −1.40475 −0.702374 0.711808i \(-0.747877\pi\)
−0.702374 + 0.711808i \(0.747877\pi\)
\(938\) −34.6410 + 12.0000i −1.13107 + 0.391814i
\(939\) 0 0
\(940\) −7.50000 + 12.9904i −0.244623 + 0.423700i
\(941\) 1.73205 + 3.00000i 0.0564632 + 0.0977972i 0.892875 0.450304i \(-0.148684\pi\)
−0.836412 + 0.548101i \(0.815351\pi\)
\(942\) 0 0
\(943\) 15.0000 25.9808i 0.488467 0.846050i
\(944\) 34.6410 1.12747
\(945\) 0 0
\(946\) 63.0000 2.04831
\(947\) 8.66025 15.0000i 0.281420 0.487435i −0.690314 0.723510i \(-0.742528\pi\)
0.971735 + 0.236075i \(0.0758611\pi\)
\(948\) 0 0
\(949\) −14.0000 24.2487i −0.454459 0.787146i
\(950\) −1.73205 + 3.00000i −0.0561951 + 0.0973329i
\(951\) 0 0
\(952\) 24.0000 + 20.7846i 0.777844 + 0.673633i
\(953\) −48.4974 −1.57099 −0.785493 0.618871i \(-0.787590\pi\)
−0.785493 + 0.618871i \(0.787590\pi\)
\(954\) 0 0
\(955\) −4.50000 7.79423i −0.145617 0.252215i
\(956\) −5.19615 9.00000i −0.168056 0.291081i
\(957\) 0 0
\(958\) −39.0000 −1.26003
\(959\) 17.3205 + 15.0000i 0.559308 + 0.484375i
\(960\) 0 0
\(961\) 13.5000 23.3827i 0.435484 0.754280i
\(962\) −27.7128 48.0000i −0.893497 1.54758i
\(963\) 0 0
\(964\) 14.0000 24.2487i 0.450910 0.780998i
\(965\) −13.8564 −0.446054
\(966\) 0 0
\(967\) 8.00000 0.257263 0.128631 0.991692i \(-0.458942\pi\)
0.128631 + 0.991692i \(0.458942\pi\)
\(968\) −13.8564 + 24.0000i −0.445362 + 0.771389i
\(969\) 0 0
\(970\) 15.0000 + 25.9808i 0.481621 + 0.834192i
\(971\) −6.92820 + 12.0000i −0.222337 + 0.385098i −0.955517 0.294936i \(-0.904702\pi\)
0.733180 + 0.680034i \(0.238035\pi\)
\(972\) 0 0
\(973\) 42.5000 14.7224i 1.36249 0.471979i
\(974\) −3.46410 −0.110997
\(975\) 0 0
\(976\) −17.5000 30.3109i −0.560161 0.970228i
\(977\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(978\) 0 0
\(979\) 36.0000 1.15056
\(980\) −9.52628 + 7.50000i −0.304306 + 0.239579i
\(981\) 0 0
\(982\) −19.5000 + 33.7750i −0.622270 + 1.07780i
\(983\) −22.5167 39.0000i −0.718170 1.24391i −0.961724 0.274020i \(-0.911647\pi\)
0.243554 0.969887i \(-0.421687\pi\)
\(984\) 0 0
\(985\) −13.5000 + 23.3827i −0.430146 + 0.745034i
\(986\) −41.5692 −1.32383
\(987\) 0 0
\(988\) −4.00000 −0.127257
\(989\) −30.3109 + 52.5000i −0.963830 + 1.66940i
\(990\) 0 0
\(991\) 26.0000 + 45.0333i 0.825917 + 1.43053i 0.901216 + 0.433370i \(0.142676\pi\)
−0.0752991 + 0.997161i \(0.523991\pi\)
\(992\) −5.19615 + 9.00000i −0.164978 + 0.285750i
\(993\) 0 0
\(994\) 3.00000 15.5885i 0.0951542 0.494436i
\(995\) 12.1244 0.384368
\(996\) 0 0
\(997\) −19.0000 32.9090i −0.601736 1.04224i −0.992558 0.121771i \(-0.961143\pi\)
0.390822 0.920466i \(-0.372191\pi\)
\(998\) 4.33013 + 7.50000i 0.137068 + 0.237408i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1197.2.j.f.856.2 yes 4
3.2 odd 2 inner 1197.2.j.f.856.1 yes 4
7.2 even 3 8379.2.a.be.1.1 2
7.4 even 3 inner 1197.2.j.f.172.2 yes 4
7.5 odd 6 8379.2.a.bb.1.1 2
21.2 odd 6 8379.2.a.be.1.2 2
21.5 even 6 8379.2.a.bb.1.2 2
21.11 odd 6 inner 1197.2.j.f.172.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1197.2.j.f.172.1 4 21.11 odd 6 inner
1197.2.j.f.172.2 yes 4 7.4 even 3 inner
1197.2.j.f.856.1 yes 4 3.2 odd 2 inner
1197.2.j.f.856.2 yes 4 1.1 even 1 trivial
8379.2.a.bb.1.1 2 7.5 odd 6
8379.2.a.bb.1.2 2 21.5 even 6
8379.2.a.be.1.1 2 7.2 even 3
8379.2.a.be.1.2 2 21.2 odd 6