Properties

Label 1197.2.j.e.856.2
Level $1197$
Weight $2$
Character 1197.856
Analytic conductor $9.558$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1197,2,Mod(172,1197)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1197.172"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1197, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1197 = 3^{2} \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1197.j (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-2,0,-2,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.55809312195\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 133)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 856.2
Root \(0.707107 - 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 1197.856
Dual form 1197.2.j.e.172.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.207107 - 0.358719i) q^{2} +(0.914214 + 1.58346i) q^{4} +(0.500000 - 0.866025i) q^{5} +(-2.62132 - 0.358719i) q^{7} +1.58579 q^{8} +(-0.207107 - 0.358719i) q^{10} +(1.20711 + 2.09077i) q^{11} +6.24264 q^{13} +(-0.671573 + 0.866025i) q^{14} +(-1.50000 + 2.59808i) q^{16} +(-2.00000 - 3.46410i) q^{17} +(0.500000 - 0.866025i) q^{19} +1.82843 q^{20} +1.00000 q^{22} +(-4.20711 + 7.28692i) q^{23} +(2.00000 + 3.46410i) q^{25} +(1.29289 - 2.23936i) q^{26} +(-1.82843 - 4.47871i) q^{28} +9.41421 q^{29} +(-1.12132 - 1.94218i) q^{31} +(2.20711 + 3.82282i) q^{32} -1.65685 q^{34} +(-1.62132 + 2.09077i) q^{35} +(2.53553 - 4.39167i) q^{37} +(-0.207107 - 0.358719i) q^{38} +(0.792893 - 1.37333i) q^{40} +8.82843 q^{41} -6.07107 q^{43} +(-2.20711 + 3.82282i) q^{44} +(1.74264 + 3.01834i) q^{46} +(-0.792893 + 1.37333i) q^{47} +(6.74264 + 1.88064i) q^{49} +1.65685 q^{50} +(5.70711 + 9.88500i) q^{52} +(2.12132 + 3.67423i) q^{53} +2.41421 q^{55} +(-4.15685 - 0.568852i) q^{56} +(1.94975 - 3.37706i) q^{58} +(0.585786 + 1.01461i) q^{59} +(-3.08579 + 5.34474i) q^{61} -0.928932 q^{62} -4.17157 q^{64} +(3.12132 - 5.40629i) q^{65} +(-3.41421 - 5.91359i) q^{67} +(3.65685 - 6.33386i) q^{68} +(0.414214 + 1.01461i) q^{70} +5.75736 q^{71} +(6.57107 + 11.3814i) q^{73} +(-1.05025 - 1.81909i) q^{74} +1.82843 q^{76} +(-2.41421 - 5.91359i) q^{77} +(0.707107 - 1.22474i) q^{79} +(1.50000 + 2.59808i) q^{80} +(1.82843 - 3.16693i) q^{82} -0.757359 q^{83} -4.00000 q^{85} +(-1.25736 + 2.17781i) q^{86} +(1.91421 + 3.31552i) q^{88} +(-4.29289 + 7.43551i) q^{89} +(-16.3640 - 2.23936i) q^{91} -15.3848 q^{92} +(0.328427 + 0.568852i) q^{94} +(-0.500000 - 0.866025i) q^{95} -8.82843 q^{97} +(2.07107 - 2.02922i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} - 2 q^{4} + 2 q^{5} - 2 q^{7} + 12 q^{8} + 2 q^{10} + 2 q^{11} + 8 q^{13} - 14 q^{14} - 6 q^{16} - 8 q^{17} + 2 q^{19} - 4 q^{20} + 4 q^{22} - 14 q^{23} + 8 q^{25} + 8 q^{26} + 4 q^{28} + 32 q^{29}+ \cdots - 20 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1197\mathbb{Z}\right)^\times\).

\(n\) \(514\) \(533\) \(1009\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.207107 0.358719i 0.146447 0.253653i −0.783465 0.621436i \(-0.786550\pi\)
0.929912 + 0.367783i \(0.119883\pi\)
\(3\) 0 0
\(4\) 0.914214 + 1.58346i 0.457107 + 0.791732i
\(5\) 0.500000 0.866025i 0.223607 0.387298i −0.732294 0.680989i \(-0.761550\pi\)
0.955901 + 0.293691i \(0.0948835\pi\)
\(6\) 0 0
\(7\) −2.62132 0.358719i −0.990766 0.135583i
\(8\) 1.58579 0.560660
\(9\) 0 0
\(10\) −0.207107 0.358719i −0.0654929 0.113437i
\(11\) 1.20711 + 2.09077i 0.363956 + 0.630391i 0.988608 0.150513i \(-0.0480924\pi\)
−0.624652 + 0.780903i \(0.714759\pi\)
\(12\) 0 0
\(13\) 6.24264 1.73140 0.865699 0.500566i \(-0.166875\pi\)
0.865699 + 0.500566i \(0.166875\pi\)
\(14\) −0.671573 + 0.866025i −0.179485 + 0.231455i
\(15\) 0 0
\(16\) −1.50000 + 2.59808i −0.375000 + 0.649519i
\(17\) −2.00000 3.46410i −0.485071 0.840168i 0.514782 0.857321i \(-0.327873\pi\)
−0.999853 + 0.0171533i \(0.994540\pi\)
\(18\) 0 0
\(19\) 0.500000 0.866025i 0.114708 0.198680i
\(20\) 1.82843 0.408849
\(21\) 0 0
\(22\) 1.00000 0.213201
\(23\) −4.20711 + 7.28692i −0.877242 + 1.51943i −0.0228877 + 0.999738i \(0.507286\pi\)
−0.854355 + 0.519690i \(0.826047\pi\)
\(24\) 0 0
\(25\) 2.00000 + 3.46410i 0.400000 + 0.692820i
\(26\) 1.29289 2.23936i 0.253557 0.439174i
\(27\) 0 0
\(28\) −1.82843 4.47871i −0.345540 0.846397i
\(29\) 9.41421 1.74818 0.874088 0.485768i \(-0.161460\pi\)
0.874088 + 0.485768i \(0.161460\pi\)
\(30\) 0 0
\(31\) −1.12132 1.94218i −0.201395 0.348827i 0.747583 0.664168i \(-0.231214\pi\)
−0.948978 + 0.315342i \(0.897881\pi\)
\(32\) 2.20711 + 3.82282i 0.390165 + 0.675786i
\(33\) 0 0
\(34\) −1.65685 −0.284148
\(35\) −1.62132 + 2.09077i −0.274053 + 0.353405i
\(36\) 0 0
\(37\) 2.53553 4.39167i 0.416839 0.721987i −0.578780 0.815483i \(-0.696471\pi\)
0.995620 + 0.0934968i \(0.0298045\pi\)
\(38\) −0.207107 0.358719i −0.0335972 0.0581920i
\(39\) 0 0
\(40\) 0.792893 1.37333i 0.125367 0.217143i
\(41\) 8.82843 1.37877 0.689384 0.724396i \(-0.257881\pi\)
0.689384 + 0.724396i \(0.257881\pi\)
\(42\) 0 0
\(43\) −6.07107 −0.925829 −0.462915 0.886403i \(-0.653196\pi\)
−0.462915 + 0.886403i \(0.653196\pi\)
\(44\) −2.20711 + 3.82282i −0.332734 + 0.576312i
\(45\) 0 0
\(46\) 1.74264 + 3.01834i 0.256938 + 0.445030i
\(47\) −0.792893 + 1.37333i −0.115655 + 0.200321i −0.918042 0.396484i \(-0.870230\pi\)
0.802386 + 0.596805i \(0.203563\pi\)
\(48\) 0 0
\(49\) 6.74264 + 1.88064i 0.963234 + 0.268662i
\(50\) 1.65685 0.234315
\(51\) 0 0
\(52\) 5.70711 + 9.88500i 0.791433 + 1.37080i
\(53\) 2.12132 + 3.67423i 0.291386 + 0.504695i 0.974138 0.225955i \(-0.0725503\pi\)
−0.682752 + 0.730650i \(0.739217\pi\)
\(54\) 0 0
\(55\) 2.41421 0.325532
\(56\) −4.15685 0.568852i −0.555483 0.0760161i
\(57\) 0 0
\(58\) 1.94975 3.37706i 0.256014 0.443430i
\(59\) 0.585786 + 1.01461i 0.0762629 + 0.132091i 0.901635 0.432498i \(-0.142368\pi\)
−0.825372 + 0.564589i \(0.809035\pi\)
\(60\) 0 0
\(61\) −3.08579 + 5.34474i −0.395094 + 0.684324i −0.993113 0.117158i \(-0.962621\pi\)
0.598019 + 0.801482i \(0.295955\pi\)
\(62\) −0.928932 −0.117975
\(63\) 0 0
\(64\) −4.17157 −0.521447
\(65\) 3.12132 5.40629i 0.387152 0.670567i
\(66\) 0 0
\(67\) −3.41421 5.91359i −0.417113 0.722460i 0.578535 0.815657i \(-0.303625\pi\)
−0.995648 + 0.0931973i \(0.970291\pi\)
\(68\) 3.65685 6.33386i 0.443459 0.768093i
\(69\) 0 0
\(70\) 0.414214 + 1.01461i 0.0495080 + 0.121269i
\(71\) 5.75736 0.683273 0.341636 0.939832i \(-0.389019\pi\)
0.341636 + 0.939832i \(0.389019\pi\)
\(72\) 0 0
\(73\) 6.57107 + 11.3814i 0.769085 + 1.33209i 0.938059 + 0.346474i \(0.112621\pi\)
−0.168974 + 0.985620i \(0.554045\pi\)
\(74\) −1.05025 1.81909i −0.122089 0.211465i
\(75\) 0 0
\(76\) 1.82843 0.209735
\(77\) −2.41421 5.91359i −0.275125 0.673916i
\(78\) 0 0
\(79\) 0.707107 1.22474i 0.0795557 0.137795i −0.823503 0.567312i \(-0.807983\pi\)
0.903058 + 0.429518i \(0.141317\pi\)
\(80\) 1.50000 + 2.59808i 0.167705 + 0.290474i
\(81\) 0 0
\(82\) 1.82843 3.16693i 0.201916 0.349729i
\(83\) −0.757359 −0.0831310 −0.0415655 0.999136i \(-0.513235\pi\)
−0.0415655 + 0.999136i \(0.513235\pi\)
\(84\) 0 0
\(85\) −4.00000 −0.433861
\(86\) −1.25736 + 2.17781i −0.135585 + 0.234839i
\(87\) 0 0
\(88\) 1.91421 + 3.31552i 0.204056 + 0.353435i
\(89\) −4.29289 + 7.43551i −0.455046 + 0.788162i −0.998691 0.0511528i \(-0.983710\pi\)
0.543645 + 0.839315i \(0.317044\pi\)
\(90\) 0 0
\(91\) −16.3640 2.23936i −1.71541 0.234748i
\(92\) −15.3848 −1.60397
\(93\) 0 0
\(94\) 0.328427 + 0.568852i 0.0338747 + 0.0586727i
\(95\) −0.500000 0.866025i −0.0512989 0.0888523i
\(96\) 0 0
\(97\) −8.82843 −0.896391 −0.448195 0.893936i \(-0.647933\pi\)
−0.448195 + 0.893936i \(0.647933\pi\)
\(98\) 2.07107 2.02922i 0.209209 0.204983i
\(99\) 0 0
\(100\) −3.65685 + 6.33386i −0.365685 + 0.633386i
\(101\) −2.15685 3.73578i −0.214615 0.371724i 0.738538 0.674211i \(-0.235516\pi\)
−0.953153 + 0.302487i \(0.902183\pi\)
\(102\) 0 0
\(103\) 3.00000 5.19615i 0.295599 0.511992i −0.679525 0.733652i \(-0.737814\pi\)
0.975124 + 0.221660i \(0.0711475\pi\)
\(104\) 9.89949 0.970725
\(105\) 0 0
\(106\) 1.75736 0.170690
\(107\) 2.94975 5.10911i 0.285163 0.493917i −0.687486 0.726198i \(-0.741286\pi\)
0.972649 + 0.232281i \(0.0746190\pi\)
\(108\) 0 0
\(109\) −0.828427 1.43488i −0.0793489 0.137436i 0.823620 0.567142i \(-0.191951\pi\)
−0.902969 + 0.429705i \(0.858617\pi\)
\(110\) 0.500000 0.866025i 0.0476731 0.0825723i
\(111\) 0 0
\(112\) 4.86396 6.27231i 0.459601 0.592678i
\(113\) −8.24264 −0.775402 −0.387701 0.921785i \(-0.626731\pi\)
−0.387701 + 0.921785i \(0.626731\pi\)
\(114\) 0 0
\(115\) 4.20711 + 7.28692i 0.392315 + 0.679509i
\(116\) 8.60660 + 14.9071i 0.799103 + 1.38409i
\(117\) 0 0
\(118\) 0.485281 0.0446738
\(119\) 4.00000 + 9.79796i 0.366679 + 0.898177i
\(120\) 0 0
\(121\) 2.58579 4.47871i 0.235071 0.407156i
\(122\) 1.27817 + 2.21386i 0.115720 + 0.200434i
\(123\) 0 0
\(124\) 2.05025 3.55114i 0.184118 0.318902i
\(125\) 9.00000 0.804984
\(126\) 0 0
\(127\) −4.24264 −0.376473 −0.188237 0.982124i \(-0.560277\pi\)
−0.188237 + 0.982124i \(0.560277\pi\)
\(128\) −5.27817 + 9.14207i −0.466529 + 0.808052i
\(129\) 0 0
\(130\) −1.29289 2.23936i −0.113394 0.196405i
\(131\) 10.2426 17.7408i 0.894904 1.55002i 0.0609799 0.998139i \(-0.480577\pi\)
0.833924 0.551880i \(-0.186089\pi\)
\(132\) 0 0
\(133\) −1.62132 + 2.09077i −0.140586 + 0.181293i
\(134\) −2.82843 −0.244339
\(135\) 0 0
\(136\) −3.17157 5.49333i −0.271960 0.471049i
\(137\) −7.08579 12.2729i −0.605380 1.04855i −0.991991 0.126306i \(-0.959688\pi\)
0.386612 0.922243i \(-0.373645\pi\)
\(138\) 0 0
\(139\) 8.07107 0.684579 0.342290 0.939595i \(-0.388798\pi\)
0.342290 + 0.939595i \(0.388798\pi\)
\(140\) −4.79289 0.655892i −0.405073 0.0554330i
\(141\) 0 0
\(142\) 1.19239 2.06528i 0.100063 0.173314i
\(143\) 7.53553 + 13.0519i 0.630153 + 1.09146i
\(144\) 0 0
\(145\) 4.70711 8.15295i 0.390904 0.677065i
\(146\) 5.44365 0.450520
\(147\) 0 0
\(148\) 9.27208 0.762160
\(149\) −2.91421 + 5.04757i −0.238742 + 0.413513i −0.960353 0.278785i \(-0.910068\pi\)
0.721612 + 0.692298i \(0.243402\pi\)
\(150\) 0 0
\(151\) −2.65685 4.60181i −0.216212 0.374490i 0.737435 0.675418i \(-0.236037\pi\)
−0.953647 + 0.300928i \(0.902703\pi\)
\(152\) 0.792893 1.37333i 0.0643121 0.111392i
\(153\) 0 0
\(154\) −2.62132 0.358719i −0.211232 0.0289064i
\(155\) −2.24264 −0.180133
\(156\) 0 0
\(157\) −5.91421 10.2437i −0.472006 0.817538i 0.527481 0.849567i \(-0.323136\pi\)
−0.999487 + 0.0320289i \(0.989803\pi\)
\(158\) −0.292893 0.507306i −0.0233013 0.0403591i
\(159\) 0 0
\(160\) 4.41421 0.348974
\(161\) 13.6421 17.5922i 1.07515 1.38646i
\(162\) 0 0
\(163\) −9.03553 + 15.6500i −0.707718 + 1.22580i 0.257984 + 0.966149i \(0.416942\pi\)
−0.965702 + 0.259654i \(0.916392\pi\)
\(164\) 8.07107 + 13.9795i 0.630245 + 1.09162i
\(165\) 0 0
\(166\) −0.156854 + 0.271680i −0.0121743 + 0.0210864i
\(167\) 1.07107 0.0828817 0.0414409 0.999141i \(-0.486805\pi\)
0.0414409 + 0.999141i \(0.486805\pi\)
\(168\) 0 0
\(169\) 25.9706 1.99774
\(170\) −0.828427 + 1.43488i −0.0635375 + 0.110050i
\(171\) 0 0
\(172\) −5.55025 9.61332i −0.423203 0.733009i
\(173\) 7.65685 13.2621i 0.582140 1.00830i −0.413086 0.910692i \(-0.635549\pi\)
0.995225 0.0976036i \(-0.0311177\pi\)
\(174\) 0 0
\(175\) −4.00000 9.79796i −0.302372 0.740656i
\(176\) −7.24264 −0.545935
\(177\) 0 0
\(178\) 1.77817 + 3.07989i 0.133280 + 0.230847i
\(179\) −10.8995 18.8785i −0.814667 1.41104i −0.909567 0.415557i \(-0.863587\pi\)
0.0949006 0.995487i \(-0.469747\pi\)
\(180\) 0 0
\(181\) −9.89949 −0.735824 −0.367912 0.929861i \(-0.619927\pi\)
−0.367912 + 0.929861i \(0.619927\pi\)
\(182\) −4.19239 + 5.40629i −0.310760 + 0.400741i
\(183\) 0 0
\(184\) −6.67157 + 11.5555i −0.491835 + 0.851883i
\(185\) −2.53553 4.39167i −0.186416 0.322882i
\(186\) 0 0
\(187\) 4.82843 8.36308i 0.353090 0.611569i
\(188\) −2.89949 −0.211467
\(189\) 0 0
\(190\) −0.414214 −0.0300502
\(191\) 2.79289 4.83743i 0.202087 0.350024i −0.747114 0.664696i \(-0.768561\pi\)
0.949201 + 0.314672i \(0.101894\pi\)
\(192\) 0 0
\(193\) 5.94975 + 10.3053i 0.428272 + 0.741789i 0.996720 0.0809303i \(-0.0257891\pi\)
−0.568448 + 0.822719i \(0.692456\pi\)
\(194\) −1.82843 + 3.16693i −0.131273 + 0.227372i
\(195\) 0 0
\(196\) 3.18629 + 12.3960i 0.227592 + 0.885431i
\(197\) −21.4853 −1.53076 −0.765381 0.643577i \(-0.777450\pi\)
−0.765381 + 0.643577i \(0.777450\pi\)
\(198\) 0 0
\(199\) −0.964466 1.67050i −0.0683692 0.118419i 0.829814 0.558039i \(-0.188446\pi\)
−0.898184 + 0.439621i \(0.855113\pi\)
\(200\) 3.17157 + 5.49333i 0.224264 + 0.388437i
\(201\) 0 0
\(202\) −1.78680 −0.125719
\(203\) −24.6777 3.37706i −1.73203 0.237023i
\(204\) 0 0
\(205\) 4.41421 7.64564i 0.308302 0.533995i
\(206\) −1.24264 2.15232i −0.0865789 0.149959i
\(207\) 0 0
\(208\) −9.36396 + 16.2189i −0.649274 + 1.12458i
\(209\) 2.41421 0.166995
\(210\) 0 0
\(211\) −6.82843 −0.470088 −0.235044 0.971985i \(-0.575523\pi\)
−0.235044 + 0.971985i \(0.575523\pi\)
\(212\) −3.87868 + 6.71807i −0.266389 + 0.461399i
\(213\) 0 0
\(214\) −1.22183 2.11626i −0.0835223 0.144665i
\(215\) −3.03553 + 5.25770i −0.207022 + 0.358572i
\(216\) 0 0
\(217\) 2.24264 + 5.49333i 0.152240 + 0.372911i
\(218\) −0.686292 −0.0464815
\(219\) 0 0
\(220\) 2.20711 + 3.82282i 0.148803 + 0.257735i
\(221\) −12.4853 21.6251i −0.839851 1.45466i
\(222\) 0 0
\(223\) −6.24264 −0.418038 −0.209019 0.977912i \(-0.567027\pi\)
−0.209019 + 0.977912i \(0.567027\pi\)
\(224\) −4.41421 10.8126i −0.294937 0.722445i
\(225\) 0 0
\(226\) −1.70711 + 2.95680i −0.113555 + 0.196683i
\(227\) −5.87868 10.1822i −0.390182 0.675814i 0.602292 0.798276i \(-0.294254\pi\)
−0.992473 + 0.122462i \(0.960921\pi\)
\(228\) 0 0
\(229\) 2.24264 3.88437i 0.148198 0.256686i −0.782364 0.622822i \(-0.785986\pi\)
0.930561 + 0.366136i \(0.119319\pi\)
\(230\) 3.48528 0.229813
\(231\) 0 0
\(232\) 14.9289 0.980132
\(233\) −8.24264 + 14.2767i −0.539993 + 0.935296i 0.458910 + 0.888483i \(0.348240\pi\)
−0.998904 + 0.0468133i \(0.985093\pi\)
\(234\) 0 0
\(235\) 0.792893 + 1.37333i 0.0517227 + 0.0895863i
\(236\) −1.07107 + 1.85514i −0.0697206 + 0.120760i
\(237\) 0 0
\(238\) 4.34315 + 0.594346i 0.281524 + 0.0385257i
\(239\) −2.00000 −0.129369 −0.0646846 0.997906i \(-0.520604\pi\)
−0.0646846 + 0.997906i \(0.520604\pi\)
\(240\) 0 0
\(241\) −11.0208 19.0886i −0.709913 1.22961i −0.964889 0.262658i \(-0.915401\pi\)
0.254976 0.966947i \(-0.417932\pi\)
\(242\) −1.07107 1.85514i −0.0688508 0.119253i
\(243\) 0 0
\(244\) −11.2843 −0.722401
\(245\) 5.00000 4.89898i 0.319438 0.312984i
\(246\) 0 0
\(247\) 3.12132 5.40629i 0.198605 0.343994i
\(248\) −1.77817 3.07989i −0.112914 0.195573i
\(249\) 0 0
\(250\) 1.86396 3.22848i 0.117887 0.204187i
\(251\) −11.7279 −0.740260 −0.370130 0.928980i \(-0.620687\pi\)
−0.370130 + 0.928980i \(0.620687\pi\)
\(252\) 0 0
\(253\) −20.3137 −1.27711
\(254\) −0.878680 + 1.52192i −0.0551333 + 0.0954936i
\(255\) 0 0
\(256\) −1.98528 3.43861i −0.124080 0.214913i
\(257\) −6.65685 + 11.5300i −0.415243 + 0.719222i −0.995454 0.0952441i \(-0.969637\pi\)
0.580211 + 0.814466i \(0.302970\pi\)
\(258\) 0 0
\(259\) −8.22183 + 10.6024i −0.510879 + 0.658803i
\(260\) 11.4142 0.707879
\(261\) 0 0
\(262\) −4.24264 7.34847i −0.262111 0.453990i
\(263\) −0.242641 0.420266i −0.0149619 0.0259147i 0.858448 0.512901i \(-0.171429\pi\)
−0.873409 + 0.486987i \(0.838096\pi\)
\(264\) 0 0
\(265\) 4.24264 0.260623
\(266\) 0.414214 + 1.01461i 0.0253971 + 0.0622098i
\(267\) 0 0
\(268\) 6.24264 10.8126i 0.381330 0.660483i
\(269\) −2.00000 3.46410i −0.121942 0.211210i 0.798591 0.601874i \(-0.205579\pi\)
−0.920534 + 0.390664i \(0.872246\pi\)
\(270\) 0 0
\(271\) 3.37868 5.85204i 0.205240 0.355486i −0.744969 0.667099i \(-0.767536\pi\)
0.950209 + 0.311613i \(0.100869\pi\)
\(272\) 12.0000 0.727607
\(273\) 0 0
\(274\) −5.87006 −0.354623
\(275\) −4.82843 + 8.36308i −0.291165 + 0.504313i
\(276\) 0 0
\(277\) −14.2279 24.6435i −0.854873 1.48068i −0.876763 0.480923i \(-0.840302\pi\)
0.0218898 0.999760i \(-0.493032\pi\)
\(278\) 1.67157 2.89525i 0.100254 0.173646i
\(279\) 0 0
\(280\) −2.57107 + 3.31552i −0.153651 + 0.198140i
\(281\) 19.7574 1.17863 0.589313 0.807905i \(-0.299399\pi\)
0.589313 + 0.807905i \(0.299399\pi\)
\(282\) 0 0
\(283\) −7.96447 13.7949i −0.473438 0.820019i 0.526099 0.850423i \(-0.323654\pi\)
−0.999538 + 0.0304038i \(0.990321\pi\)
\(284\) 5.26346 + 9.11657i 0.312329 + 0.540969i
\(285\) 0 0
\(286\) 6.24264 0.369135
\(287\) −23.1421 3.16693i −1.36604 0.186938i
\(288\) 0 0
\(289\) 0.500000 0.866025i 0.0294118 0.0509427i
\(290\) −1.94975 3.37706i −0.114493 0.198308i
\(291\) 0 0
\(292\) −12.0147 + 20.8101i −0.703108 + 1.21782i
\(293\) −8.82843 −0.515762 −0.257881 0.966177i \(-0.583024\pi\)
−0.257881 + 0.966177i \(0.583024\pi\)
\(294\) 0 0
\(295\) 1.17157 0.0682116
\(296\) 4.02082 6.96426i 0.233705 0.404789i
\(297\) 0 0
\(298\) 1.20711 + 2.09077i 0.0699258 + 0.121115i
\(299\) −26.2635 + 45.4896i −1.51885 + 2.63073i
\(300\) 0 0
\(301\) 15.9142 + 2.17781i 0.917280 + 0.125527i
\(302\) −2.20101 −0.126654
\(303\) 0 0
\(304\) 1.50000 + 2.59808i 0.0860309 + 0.149010i
\(305\) 3.08579 + 5.34474i 0.176692 + 0.306039i
\(306\) 0 0
\(307\) 6.68629 0.381607 0.190803 0.981628i \(-0.438891\pi\)
0.190803 + 0.981628i \(0.438891\pi\)
\(308\) 7.15685 9.22911i 0.407800 0.525877i
\(309\) 0 0
\(310\) −0.464466 + 0.804479i −0.0263799 + 0.0456913i
\(311\) 7.89949 + 13.6823i 0.447939 + 0.775854i 0.998252 0.0591052i \(-0.0188247\pi\)
−0.550312 + 0.834959i \(0.685491\pi\)
\(312\) 0 0
\(313\) −2.32843 + 4.03295i −0.131610 + 0.227956i −0.924298 0.381673i \(-0.875348\pi\)
0.792687 + 0.609629i \(0.208681\pi\)
\(314\) −4.89949 −0.276494
\(315\) 0 0
\(316\) 2.58579 0.145462
\(317\) −5.87868 + 10.1822i −0.330180 + 0.571888i −0.982547 0.186015i \(-0.940443\pi\)
0.652367 + 0.757903i \(0.273776\pi\)
\(318\) 0 0
\(319\) 11.3640 + 19.6830i 0.636260 + 1.10203i
\(320\) −2.08579 + 3.61269i −0.116599 + 0.201955i
\(321\) 0 0
\(322\) −3.48528 8.53716i −0.194227 0.475757i
\(323\) −4.00000 −0.222566
\(324\) 0 0
\(325\) 12.4853 + 21.6251i 0.692559 + 1.19955i
\(326\) 3.74264 + 6.48244i 0.207286 + 0.359029i
\(327\) 0 0
\(328\) 14.0000 0.773021
\(329\) 2.57107 3.31552i 0.141748 0.182790i
\(330\) 0 0
\(331\) −9.72792 + 16.8493i −0.534695 + 0.926119i 0.464483 + 0.885582i \(0.346240\pi\)
−0.999178 + 0.0405368i \(0.987093\pi\)
\(332\) −0.692388 1.19925i −0.0379997 0.0658175i
\(333\) 0 0
\(334\) 0.221825 0.384213i 0.0121377 0.0210232i
\(335\) −6.82843 −0.373077
\(336\) 0 0
\(337\) −11.5563 −0.629514 −0.314757 0.949172i \(-0.601923\pi\)
−0.314757 + 0.949172i \(0.601923\pi\)
\(338\) 5.37868 9.31615i 0.292562 0.506732i
\(339\) 0 0
\(340\) −3.65685 6.33386i −0.198321 0.343502i
\(341\) 2.70711 4.68885i 0.146598 0.253915i
\(342\) 0 0
\(343\) −17.0000 7.34847i −0.917914 0.396780i
\(344\) −9.62742 −0.519076
\(345\) 0 0
\(346\) −3.17157 5.49333i −0.170505 0.295323i
\(347\) −10.5208 18.2226i −0.564787 0.978240i −0.997069 0.0765015i \(-0.975625\pi\)
0.432283 0.901738i \(-0.357708\pi\)
\(348\) 0 0
\(349\) −12.4853 −0.668322 −0.334161 0.942516i \(-0.608453\pi\)
−0.334161 + 0.942516i \(0.608453\pi\)
\(350\) −4.34315 0.594346i −0.232151 0.0317691i
\(351\) 0 0
\(352\) −5.32843 + 9.22911i −0.284006 + 0.491913i
\(353\) −8.24264 14.2767i −0.438711 0.759871i 0.558879 0.829249i \(-0.311232\pi\)
−0.997590 + 0.0693787i \(0.977898\pi\)
\(354\) 0 0
\(355\) 2.87868 4.98602i 0.152784 0.264630i
\(356\) −15.6985 −0.832018
\(357\) 0 0
\(358\) −9.02944 −0.477221
\(359\) −1.62132 + 2.80821i −0.0855700 + 0.148212i −0.905634 0.424060i \(-0.860604\pi\)
0.820064 + 0.572272i \(0.193938\pi\)
\(360\) 0 0
\(361\) −0.500000 0.866025i −0.0263158 0.0455803i
\(362\) −2.05025 + 3.55114i −0.107759 + 0.186644i
\(363\) 0 0
\(364\) −11.4142 27.9590i −0.598267 1.46545i
\(365\) 13.1421 0.687891
\(366\) 0 0
\(367\) 17.8284 + 30.8797i 0.930636 + 1.61191i 0.782236 + 0.622982i \(0.214079\pi\)
0.148400 + 0.988927i \(0.452588\pi\)
\(368\) −12.6213 21.8608i −0.657932 1.13957i
\(369\) 0 0
\(370\) −2.10051 −0.109200
\(371\) −4.24264 10.3923i −0.220267 0.539542i
\(372\) 0 0
\(373\) 5.65685 9.79796i 0.292901 0.507319i −0.681594 0.731731i \(-0.738713\pi\)
0.974494 + 0.224412i \(0.0720461\pi\)
\(374\) −2.00000 3.46410i −0.103418 0.179124i
\(375\) 0 0
\(376\) −1.25736 + 2.17781i −0.0648434 + 0.112312i
\(377\) 58.7696 3.02679
\(378\) 0 0
\(379\) −4.24264 −0.217930 −0.108965 0.994046i \(-0.534754\pi\)
−0.108965 + 0.994046i \(0.534754\pi\)
\(380\) 0.914214 1.58346i 0.0468982 0.0812300i
\(381\) 0 0
\(382\) −1.15685 2.00373i −0.0591898 0.102520i
\(383\) 14.1213 24.4588i 0.721566 1.24979i −0.238806 0.971067i \(-0.576756\pi\)
0.960372 0.278721i \(-0.0899106\pi\)
\(384\) 0 0
\(385\) −6.32843 0.866025i −0.322527 0.0441367i
\(386\) 4.92893 0.250876
\(387\) 0 0
\(388\) −8.07107 13.9795i −0.409746 0.709702i
\(389\) −14.2426 24.6690i −0.722131 1.25077i −0.960144 0.279505i \(-0.909830\pi\)
0.238014 0.971262i \(-0.423504\pi\)
\(390\) 0 0
\(391\) 33.6569 1.70210
\(392\) 10.6924 + 2.98229i 0.540047 + 0.150628i
\(393\) 0 0
\(394\) −4.44975 + 7.70719i −0.224175 + 0.388283i
\(395\) −0.707107 1.22474i −0.0355784 0.0616236i
\(396\) 0 0
\(397\) −18.3137 + 31.7203i −0.919139 + 1.59199i −0.118412 + 0.992965i \(0.537780\pi\)
−0.800726 + 0.599030i \(0.795553\pi\)
\(398\) −0.798990 −0.0400497
\(399\) 0 0
\(400\) −12.0000 −0.600000
\(401\) −8.24264 + 14.2767i −0.411618 + 0.712943i −0.995067 0.0992068i \(-0.968369\pi\)
0.583449 + 0.812150i \(0.301703\pi\)
\(402\) 0 0
\(403\) −7.00000 12.1244i −0.348695 0.603957i
\(404\) 3.94365 6.83060i 0.196204 0.339835i
\(405\) 0 0
\(406\) −6.32233 + 8.15295i −0.313772 + 0.404624i
\(407\) 12.2426 0.606845
\(408\) 0 0
\(409\) 12.6569 + 21.9223i 0.625841 + 1.08399i 0.988378 + 0.152019i \(0.0485775\pi\)
−0.362536 + 0.931970i \(0.618089\pi\)
\(410\) −1.82843 3.16693i −0.0902996 0.156403i
\(411\) 0 0
\(412\) 10.9706 0.540481
\(413\) −1.17157 2.86976i −0.0576493 0.141211i
\(414\) 0 0
\(415\) −0.378680 + 0.655892i −0.0185887 + 0.0321965i
\(416\) 13.7782 + 23.8645i 0.675531 + 1.17005i
\(417\) 0 0
\(418\) 0.500000 0.866025i 0.0244558 0.0423587i
\(419\) 8.07107 0.394297 0.197149 0.980374i \(-0.436832\pi\)
0.197149 + 0.980374i \(0.436832\pi\)
\(420\) 0 0
\(421\) 5.21320 0.254076 0.127038 0.991898i \(-0.459453\pi\)
0.127038 + 0.991898i \(0.459453\pi\)
\(422\) −1.41421 + 2.44949i −0.0688428 + 0.119239i
\(423\) 0 0
\(424\) 3.36396 + 5.82655i 0.163368 + 0.282962i
\(425\) 8.00000 13.8564i 0.388057 0.672134i
\(426\) 0 0
\(427\) 10.0061 12.9033i 0.484229 0.624436i
\(428\) 10.7868 0.521399
\(429\) 0 0
\(430\) 1.25736 + 2.17781i 0.0606353 + 0.105023i
\(431\) 19.0208 + 32.9450i 0.916200 + 1.58691i 0.805134 + 0.593093i \(0.202093\pi\)
0.111066 + 0.993813i \(0.464573\pi\)
\(432\) 0 0
\(433\) 28.0000 1.34559 0.672797 0.739827i \(-0.265093\pi\)
0.672797 + 0.739827i \(0.265093\pi\)
\(434\) 2.43503 + 0.333226i 0.116885 + 0.0159954i
\(435\) 0 0
\(436\) 1.51472 2.62357i 0.0725419 0.125646i
\(437\) 4.20711 + 7.28692i 0.201253 + 0.348581i
\(438\) 0 0
\(439\) 3.75736 6.50794i 0.179329 0.310607i −0.762322 0.647198i \(-0.775941\pi\)
0.941651 + 0.336591i \(0.109274\pi\)
\(440\) 3.82843 0.182513
\(441\) 0 0
\(442\) −10.3431 −0.491973
\(443\) 3.17157 5.49333i 0.150686 0.260996i −0.780794 0.624789i \(-0.785185\pi\)
0.931480 + 0.363793i \(0.118518\pi\)
\(444\) 0 0
\(445\) 4.29289 + 7.43551i 0.203503 + 0.352477i
\(446\) −1.29289 + 2.23936i −0.0612203 + 0.106037i
\(447\) 0 0
\(448\) 10.9350 + 1.49642i 0.516632 + 0.0706994i
\(449\) 1.65685 0.0781918 0.0390959 0.999235i \(-0.487552\pi\)
0.0390959 + 0.999235i \(0.487552\pi\)
\(450\) 0 0
\(451\) 10.6569 + 18.4582i 0.501812 + 0.869163i
\(452\) −7.53553 13.0519i −0.354442 0.613911i
\(453\) 0 0
\(454\) −4.87006 −0.228563
\(455\) −10.1213 + 13.0519i −0.474495 + 0.611884i
\(456\) 0 0
\(457\) 1.08579 1.88064i 0.0507909 0.0879725i −0.839512 0.543341i \(-0.817159\pi\)
0.890303 + 0.455368i \(0.150492\pi\)
\(458\) −0.928932 1.60896i −0.0434062 0.0751817i
\(459\) 0 0
\(460\) −7.69239 + 13.3236i −0.358659 + 0.621216i
\(461\) 3.97056 0.184928 0.0924638 0.995716i \(-0.470526\pi\)
0.0924638 + 0.995716i \(0.470526\pi\)
\(462\) 0 0
\(463\) 10.0711 0.468042 0.234021 0.972232i \(-0.424812\pi\)
0.234021 + 0.972232i \(0.424812\pi\)
\(464\) −14.1213 + 24.4588i −0.655566 + 1.13547i
\(465\) 0 0
\(466\) 3.41421 + 5.91359i 0.158160 + 0.273942i
\(467\) 19.4497 33.6880i 0.900027 1.55889i 0.0725700 0.997363i \(-0.476880\pi\)
0.827457 0.561529i \(-0.189787\pi\)
\(468\) 0 0
\(469\) 6.82843 + 16.7262i 0.315307 + 0.772342i
\(470\) 0.656854 0.0302984
\(471\) 0 0
\(472\) 0.928932 + 1.60896i 0.0427576 + 0.0740583i
\(473\) −7.32843 12.6932i −0.336961 0.583634i
\(474\) 0 0
\(475\) 4.00000 0.183533
\(476\) −11.8579 + 15.2913i −0.543504 + 0.700875i
\(477\) 0 0
\(478\) −0.414214 + 0.717439i −0.0189457 + 0.0328149i
\(479\) 5.69239 + 9.85951i 0.260092 + 0.450492i 0.966266 0.257546i \(-0.0829138\pi\)
−0.706174 + 0.708038i \(0.749580\pi\)
\(480\) 0 0
\(481\) 15.8284 27.4156i 0.721714 1.25005i
\(482\) −9.12994 −0.415857
\(483\) 0 0
\(484\) 9.45584 0.429811
\(485\) −4.41421 + 7.64564i −0.200439 + 0.347171i
\(486\) 0 0
\(487\) −10.4142 18.0379i −0.471913 0.817377i 0.527571 0.849511i \(-0.323103\pi\)
−0.999484 + 0.0321338i \(0.989770\pi\)
\(488\) −4.89340 + 8.47561i −0.221514 + 0.383673i
\(489\) 0 0
\(490\) −0.721825 2.80821i −0.0326087 0.126862i
\(491\) 32.5563 1.46925 0.734624 0.678475i \(-0.237359\pi\)
0.734624 + 0.678475i \(0.237359\pi\)
\(492\) 0 0
\(493\) −18.8284 32.6118i −0.847990 1.46876i
\(494\) −1.29289 2.23936i −0.0581700 0.100753i
\(495\) 0 0
\(496\) 6.72792 0.302093
\(497\) −15.0919 2.06528i −0.676963 0.0926403i
\(498\) 0 0
\(499\) −1.72183 + 2.98229i −0.0770795 + 0.133506i −0.901989 0.431760i \(-0.857893\pi\)
0.824909 + 0.565265i \(0.191226\pi\)
\(500\) 8.22792 + 14.2512i 0.367964 + 0.637332i
\(501\) 0 0
\(502\) −2.42893 + 4.20703i −0.108409 + 0.187769i
\(503\) −19.0416 −0.849024 −0.424512 0.905422i \(-0.639554\pi\)
−0.424512 + 0.905422i \(0.639554\pi\)
\(504\) 0 0
\(505\) −4.31371 −0.191958
\(506\) −4.20711 + 7.28692i −0.187029 + 0.323943i
\(507\) 0 0
\(508\) −3.87868 6.71807i −0.172089 0.298066i
\(509\) 9.48528 16.4290i 0.420428 0.728202i −0.575554 0.817764i \(-0.695213\pi\)
0.995981 + 0.0895619i \(0.0285467\pi\)
\(510\) 0 0
\(511\) −13.1421 32.1915i −0.581374 1.42407i
\(512\) −22.7574 −1.00574
\(513\) 0 0
\(514\) 2.75736 + 4.77589i 0.121622 + 0.210655i
\(515\) −3.00000 5.19615i −0.132196 0.228970i
\(516\) 0 0
\(517\) −3.82843 −0.168374
\(518\) 2.10051 + 5.14517i 0.0922909 + 0.226066i
\(519\) 0 0
\(520\) 4.94975 8.57321i 0.217061 0.375960i
\(521\) 5.22183 + 9.04447i 0.228772 + 0.396245i 0.957445 0.288617i \(-0.0931955\pi\)
−0.728672 + 0.684863i \(0.759862\pi\)
\(522\) 0 0
\(523\) 11.8284 20.4874i 0.517221 0.895853i −0.482579 0.875852i \(-0.660300\pi\)
0.999800 0.0200006i \(-0.00636681\pi\)
\(524\) 37.4558 1.63627
\(525\) 0 0
\(526\) −0.201010 −0.00876446
\(527\) −4.48528 + 7.76874i −0.195382 + 0.338411i
\(528\) 0 0
\(529\) −23.8995 41.3951i −1.03911 1.79979i
\(530\) 0.878680 1.52192i 0.0381674 0.0661079i
\(531\) 0 0
\(532\) −4.79289 0.655892i −0.207798 0.0284365i
\(533\) 55.1127 2.38720
\(534\) 0 0
\(535\) −2.94975 5.10911i −0.127529 0.220886i
\(536\) −5.41421 9.37769i −0.233858 0.405055i
\(537\) 0 0
\(538\) −1.65685 −0.0714321
\(539\) 4.20711 + 16.3674i 0.181213 + 0.704996i
\(540\) 0 0
\(541\) −2.57107 + 4.45322i −0.110539 + 0.191459i −0.915988 0.401206i \(-0.868591\pi\)
0.805449 + 0.592665i \(0.201924\pi\)
\(542\) −1.39949 2.42400i −0.0601135 0.104120i
\(543\) 0 0
\(544\) 8.82843 15.2913i 0.378516 0.655608i
\(545\) −1.65685 −0.0709718
\(546\) 0 0
\(547\) 29.5563 1.26374 0.631869 0.775075i \(-0.282288\pi\)
0.631869 + 0.775075i \(0.282288\pi\)
\(548\) 12.9558 22.4402i 0.553446 0.958597i
\(549\) 0 0
\(550\) 2.00000 + 3.46410i 0.0852803 + 0.147710i
\(551\) 4.70711 8.15295i 0.200529 0.347327i
\(552\) 0 0
\(553\) −2.29289 + 2.95680i −0.0975037 + 0.125736i
\(554\) −11.7868 −0.500773
\(555\) 0 0
\(556\) 7.37868 + 12.7802i 0.312926 + 0.542003i
\(557\) 5.08579 + 8.80884i 0.215492 + 0.373243i 0.953425 0.301632i \(-0.0975312\pi\)
−0.737933 + 0.674874i \(0.764198\pi\)
\(558\) 0 0
\(559\) −37.8995 −1.60298
\(560\) −3.00000 7.34847i −0.126773 0.310530i
\(561\) 0 0
\(562\) 4.09188 7.08735i 0.172606 0.298962i
\(563\) −6.94975 12.0373i −0.292897 0.507312i 0.681597 0.731728i \(-0.261286\pi\)
−0.974493 + 0.224416i \(0.927953\pi\)
\(564\) 0 0
\(565\) −4.12132 + 7.13834i −0.173385 + 0.300312i
\(566\) −6.59798 −0.277334
\(567\) 0 0
\(568\) 9.12994 0.383084
\(569\) −21.4853 + 37.2136i −0.900710 + 1.56008i −0.0741351 + 0.997248i \(0.523620\pi\)
−0.826575 + 0.562827i \(0.809714\pi\)
\(570\) 0 0
\(571\) 9.44975 + 16.3674i 0.395460 + 0.684956i 0.993160 0.116764i \(-0.0372520\pi\)
−0.597700 + 0.801720i \(0.703919\pi\)
\(572\) −13.7782 + 23.8645i −0.576094 + 0.997825i
\(573\) 0 0
\(574\) −5.92893 + 7.64564i −0.247469 + 0.319123i
\(575\) −33.6569 −1.40359
\(576\) 0 0
\(577\) −13.9853 24.2232i −0.582215 1.00843i −0.995216 0.0976954i \(-0.968853\pi\)
0.413001 0.910730i \(-0.364480\pi\)
\(578\) −0.207107 0.358719i −0.00861451 0.0149208i
\(579\) 0 0
\(580\) 17.2132 0.714739
\(581\) 1.98528 + 0.271680i 0.0823633 + 0.0112712i
\(582\) 0 0
\(583\) −5.12132 + 8.87039i −0.212103 + 0.367374i
\(584\) 10.4203 + 18.0485i 0.431196 + 0.746853i
\(585\) 0 0
\(586\) −1.82843 + 3.16693i −0.0755316 + 0.130825i
\(587\) −14.0000 −0.577842 −0.288921 0.957353i \(-0.593296\pi\)
−0.288921 + 0.957353i \(0.593296\pi\)
\(588\) 0 0
\(589\) −2.24264 −0.0924064
\(590\) 0.242641 0.420266i 0.00998936 0.0173021i
\(591\) 0 0
\(592\) 7.60660 + 13.1750i 0.312629 + 0.541490i
\(593\) 3.08579 5.34474i 0.126718 0.219482i −0.795685 0.605710i \(-0.792889\pi\)
0.922403 + 0.386228i \(0.126222\pi\)
\(594\) 0 0
\(595\) 10.4853 + 1.43488i 0.429855 + 0.0588243i
\(596\) −10.6569 −0.436522
\(597\) 0 0
\(598\) 10.8787 + 18.8424i 0.444862 + 0.770524i
\(599\) −15.8492 27.4517i −0.647582 1.12165i −0.983699 0.179825i \(-0.942447\pi\)
0.336116 0.941821i \(-0.390887\pi\)
\(600\) 0 0
\(601\) −9.27208 −0.378216 −0.189108 0.981956i \(-0.560560\pi\)
−0.189108 + 0.981956i \(0.560560\pi\)
\(602\) 4.07716 5.25770i 0.166173 0.214288i
\(603\) 0 0
\(604\) 4.85786 8.41407i 0.197664 0.342364i
\(605\) −2.58579 4.47871i −0.105127 0.182086i
\(606\) 0 0
\(607\) −16.2635 + 28.1691i −0.660113 + 1.14335i 0.320472 + 0.947258i \(0.396158\pi\)
−0.980586 + 0.196092i \(0.937175\pi\)
\(608\) 4.41421 0.179020
\(609\) 0 0
\(610\) 2.55635 0.103504
\(611\) −4.94975 + 8.57321i −0.200245 + 0.346835i
\(612\) 0 0
\(613\) 4.34315 + 7.52255i 0.175418 + 0.303833i 0.940306 0.340331i \(-0.110539\pi\)
−0.764888 + 0.644163i \(0.777206\pi\)
\(614\) 1.38478 2.39850i 0.0558850 0.0967957i
\(615\) 0 0
\(616\) −3.82843 9.37769i −0.154252 0.377838i
\(617\) 42.4558 1.70921 0.854604 0.519280i \(-0.173800\pi\)
0.854604 + 0.519280i \(0.173800\pi\)
\(618\) 0 0
\(619\) −1.72183 2.98229i −0.0692060 0.119868i 0.829346 0.558735i \(-0.188713\pi\)
−0.898552 + 0.438867i \(0.855380\pi\)
\(620\) −2.05025 3.55114i −0.0823401 0.142617i
\(621\) 0 0
\(622\) 6.54416 0.262397
\(623\) 13.9203 17.9509i 0.557705 0.719188i
\(624\) 0 0
\(625\) −5.50000 + 9.52628i −0.220000 + 0.381051i
\(626\) 0.964466 + 1.67050i 0.0385478 + 0.0667668i
\(627\) 0 0
\(628\) 10.8137 18.7299i 0.431514 0.747404i
\(629\) −20.2843 −0.808787
\(630\) 0 0
\(631\) −5.44365 −0.216708 −0.108354 0.994112i \(-0.534558\pi\)
−0.108354 + 0.994112i \(0.534558\pi\)
\(632\) 1.12132 1.94218i 0.0446037 0.0772559i
\(633\) 0 0
\(634\) 2.43503 + 4.21759i 0.0967073 + 0.167502i
\(635\) −2.12132 + 3.67423i −0.0841820 + 0.145808i
\(636\) 0 0
\(637\) 42.0919 + 11.7401i 1.66774 + 0.465161i
\(638\) 9.41421 0.372712
\(639\) 0 0
\(640\) 5.27817 + 9.14207i 0.208638 + 0.361372i
\(641\) 1.89949 + 3.29002i 0.0750255 + 0.129948i 0.901097 0.433617i \(-0.142763\pi\)
−0.826072 + 0.563565i \(0.809430\pi\)
\(642\) 0 0
\(643\) 30.1421 1.18869 0.594345 0.804210i \(-0.297411\pi\)
0.594345 + 0.804210i \(0.297411\pi\)
\(644\) 40.3284 + 5.51882i 1.58916 + 0.217472i
\(645\) 0 0
\(646\) −0.828427 + 1.43488i −0.0325940 + 0.0564545i
\(647\) 3.10660 + 5.38079i 0.122133 + 0.211541i 0.920609 0.390486i \(-0.127693\pi\)
−0.798476 + 0.602027i \(0.794360\pi\)
\(648\) 0 0
\(649\) −1.41421 + 2.44949i −0.0555127 + 0.0961509i
\(650\) 10.3431 0.405692
\(651\) 0 0
\(652\) −33.0416 −1.29401
\(653\) −0.928932 + 1.60896i −0.0363519 + 0.0629634i −0.883629 0.468188i \(-0.844907\pi\)
0.847277 + 0.531151i \(0.178240\pi\)
\(654\) 0 0
\(655\) −10.2426 17.7408i −0.400213 0.693189i
\(656\) −13.2426 + 22.9369i −0.517038 + 0.895537i
\(657\) 0 0
\(658\) −0.656854 1.60896i −0.0256068 0.0627237i
\(659\) 38.0416 1.48189 0.740946 0.671565i \(-0.234378\pi\)
0.740946 + 0.671565i \(0.234378\pi\)
\(660\) 0 0
\(661\) 11.3640 + 19.6830i 0.442007 + 0.765578i 0.997838 0.0657167i \(-0.0209334\pi\)
−0.555831 + 0.831295i \(0.687600\pi\)
\(662\) 4.02944 + 6.97919i 0.156609 + 0.271254i
\(663\) 0 0
\(664\) −1.20101 −0.0466082
\(665\) 1.00000 + 2.44949i 0.0387783 + 0.0949871i
\(666\) 0 0
\(667\) −39.6066 + 68.6006i −1.53357 + 2.65623i
\(668\) 0.979185 + 1.69600i 0.0378858 + 0.0656201i
\(669\) 0 0
\(670\) −1.41421 + 2.44949i −0.0546358 + 0.0946320i
\(671\) −14.8995 −0.575189
\(672\) 0 0
\(673\) 35.7990 1.37995 0.689975 0.723833i \(-0.257622\pi\)
0.689975 + 0.723833i \(0.257622\pi\)
\(674\) −2.39340 + 4.14549i −0.0921903 + 0.159678i
\(675\) 0 0
\(676\) 23.7426 + 41.1235i 0.913178 + 1.58167i
\(677\) 0.343146 0.594346i 0.0131882 0.0228426i −0.859356 0.511378i \(-0.829135\pi\)
0.872544 + 0.488535i \(0.162469\pi\)
\(678\) 0 0
\(679\) 23.1421 + 3.16693i 0.888114 + 0.121536i
\(680\) −6.34315 −0.243249
\(681\) 0 0
\(682\) −1.12132 1.94218i −0.0429376 0.0743701i
\(683\) 5.24264 + 9.08052i 0.200604 + 0.347456i 0.948723 0.316108i \(-0.102376\pi\)
−0.748119 + 0.663564i \(0.769043\pi\)
\(684\) 0 0
\(685\) −14.1716 −0.541468
\(686\) −6.15685 + 4.57631i −0.235070 + 0.174724i
\(687\) 0 0
\(688\) 9.10660 15.7731i 0.347186 0.601344i
\(689\) 13.2426 + 22.9369i 0.504504 + 0.873827i
\(690\) 0 0
\(691\) 1.48528 2.57258i 0.0565028 0.0978657i −0.836390 0.548134i \(-0.815338\pi\)
0.892893 + 0.450268i \(0.148672\pi\)
\(692\) 28.0000 1.06440
\(693\) 0 0
\(694\) −8.71573 −0.330845
\(695\) 4.03553 6.98975i 0.153077 0.265136i
\(696\) 0 0
\(697\) −17.6569 30.5826i −0.668801 1.15840i
\(698\) −2.58579 + 4.47871i −0.0978735 + 0.169522i
\(699\) 0 0
\(700\) 11.8579 15.2913i 0.448185 0.577956i
\(701\) −3.82843 −0.144598 −0.0722988 0.997383i \(-0.523034\pi\)
−0.0722988 + 0.997383i \(0.523034\pi\)
\(702\) 0 0
\(703\) −2.53553 4.39167i −0.0956295 0.165635i
\(704\) −5.03553 8.72180i −0.189784 0.328715i
\(705\) 0 0
\(706\) −6.82843 −0.256991
\(707\) 4.31371 + 10.5664i 0.162234 + 0.397390i
\(708\) 0 0
\(709\) −12.4706 + 21.5996i −0.468342 + 0.811192i −0.999345 0.0361778i \(-0.988482\pi\)
0.531004 + 0.847370i \(0.321815\pi\)
\(710\) −1.19239 2.06528i −0.0447495 0.0775085i
\(711\) 0 0
\(712\) −6.80761 + 11.7911i −0.255126 + 0.441891i
\(713\) 18.8701 0.706689
\(714\) 0 0
\(715\) 15.0711 0.563626
\(716\) 19.9289 34.5179i 0.744779 1.29000i
\(717\) 0 0
\(718\) 0.671573 + 1.16320i 0.0250629 + 0.0434102i
\(719\) −22.0416 + 38.1772i −0.822014 + 1.42377i 0.0821659 + 0.996619i \(0.473816\pi\)
−0.904180 + 0.427152i \(0.859517\pi\)
\(720\) 0 0
\(721\) −9.72792 + 12.5446i −0.362287 + 0.467186i
\(722\) −0.414214 −0.0154154
\(723\) 0 0
\(724\) −9.05025 15.6755i −0.336350 0.582575i
\(725\) 18.8284 + 32.6118i 0.699270 + 1.21117i
\(726\) 0 0
\(727\) 5.92893 0.219892 0.109946 0.993938i \(-0.464932\pi\)
0.109946 + 0.993938i \(0.464932\pi\)
\(728\) −25.9497 3.55114i −0.961762 0.131614i
\(729\) 0 0
\(730\) 2.72183 4.71434i 0.100739 0.174486i
\(731\) 12.1421 + 21.0308i 0.449093 + 0.777852i
\(732\) 0 0
\(733\) 14.7279 25.5095i 0.543988 0.942215i −0.454682 0.890654i \(-0.650247\pi\)
0.998670 0.0515612i \(-0.0164197\pi\)
\(734\) 14.7696 0.545154
\(735\) 0 0
\(736\) −37.1421 −1.36908
\(737\) 8.24264 14.2767i 0.303622 0.525888i
\(738\) 0 0
\(739\) 9.82843 + 17.0233i 0.361545 + 0.626214i 0.988215 0.153071i \(-0.0489162\pi\)
−0.626671 + 0.779284i \(0.715583\pi\)
\(740\) 4.63604 8.02986i 0.170424 0.295183i
\(741\) 0 0
\(742\) −4.60660 0.630399i −0.169114 0.0231427i
\(743\) −50.8701 −1.86624 −0.933121 0.359563i \(-0.882926\pi\)
−0.933121 + 0.359563i \(0.882926\pi\)
\(744\) 0 0
\(745\) 2.91421 + 5.04757i 0.106769 + 0.184929i
\(746\) −2.34315 4.05845i −0.0857887 0.148590i
\(747\) 0 0
\(748\) 17.6569 0.645599
\(749\) −9.56497 + 12.3345i −0.349496 + 0.450692i
\(750\) 0 0
\(751\) 20.7279 35.9018i 0.756373 1.31008i −0.188316 0.982108i \(-0.560303\pi\)
0.944689 0.327967i \(-0.106364\pi\)
\(752\) −2.37868 4.11999i −0.0867415 0.150241i
\(753\) 0 0
\(754\) 12.1716 21.0818i 0.443263 0.767753i
\(755\) −5.31371 −0.193386
\(756\) 0 0
\(757\) −5.00000 −0.181728 −0.0908640 0.995863i \(-0.528963\pi\)
−0.0908640 + 0.995863i \(0.528963\pi\)
\(758\) −0.878680 + 1.52192i −0.0319151 + 0.0552785i
\(759\) 0 0
\(760\) −0.792893 1.37333i −0.0287613 0.0498160i
\(761\) 14.0563 24.3463i 0.509542 0.882553i −0.490397 0.871499i \(-0.663148\pi\)
0.999939 0.0110537i \(-0.00351858\pi\)
\(762\) 0 0
\(763\) 1.65685 + 4.05845i 0.0599822 + 0.146926i
\(764\) 10.2132 0.369501
\(765\) 0 0
\(766\) −5.84924 10.1312i −0.211342 0.366055i
\(767\) 3.65685 + 6.33386i 0.132041 + 0.228702i
\(768\) 0 0
\(769\) 41.4264 1.49387 0.746937 0.664895i \(-0.231524\pi\)
0.746937 + 0.664895i \(0.231524\pi\)
\(770\) −1.62132 + 2.09077i −0.0584283 + 0.0753461i
\(771\) 0 0
\(772\) −10.8787 + 18.8424i −0.391532 + 0.678154i
\(773\) −12.8787 22.3065i −0.463214 0.802310i 0.535905 0.844278i \(-0.319971\pi\)
−0.999119 + 0.0419682i \(0.986637\pi\)
\(774\) 0 0
\(775\) 4.48528 7.76874i 0.161116 0.279061i
\(776\) −14.0000 −0.502571
\(777\) 0 0
\(778\) −11.7990 −0.423014
\(779\) 4.41421 7.64564i 0.158156 0.273934i
\(780\) 0 0
\(781\) 6.94975 + 12.0373i 0.248682 + 0.430729i
\(782\) 6.97056 12.0734i 0.249267 0.431743i
\(783\) 0 0
\(784\) −15.0000 + 14.6969i −0.535714 + 0.524891i
\(785\) −11.8284 −0.422175
\(786\) 0 0
\(787\) 20.5061 + 35.5176i 0.730963 + 1.26607i 0.956472 + 0.291825i \(0.0942623\pi\)
−0.225508 + 0.974241i \(0.572404\pi\)
\(788\) −19.6421 34.0212i −0.699722 1.21195i
\(789\) 0 0
\(790\) −0.585786 −0.0208413
\(791\) 21.6066 + 2.95680i 0.768242 + 0.105132i
\(792\) 0 0
\(793\) −19.2635 + 33.3653i −0.684065 + 1.18484i
\(794\) 7.58579 + 13.1390i 0.269209 + 0.466285i
\(795\) 0 0
\(796\) 1.76346 3.05440i 0.0625040 0.108260i
\(797\) 21.7574 0.770685 0.385343 0.922774i \(-0.374083\pi\)
0.385343 + 0.922774i \(0.374083\pi\)
\(798\) 0 0
\(799\) 6.34315 0.224404
\(800\) −8.82843 + 15.2913i −0.312132 + 0.540629i
\(801\) 0 0
\(802\) 3.41421 + 5.91359i 0.120560 + 0.208816i
\(803\) −15.8640 + 27.4772i −0.559827 + 0.969649i
\(804\) 0 0
\(805\) −8.41421 20.6105i −0.296562 0.726426i
\(806\) −5.79899 −0.204261
\(807\) 0 0
\(808\) −3.42031 5.92415i −0.120326 0.208411i
\(809\) 1.42893 + 2.47498i 0.0502386 + 0.0870158i 0.890051 0.455861i \(-0.150668\pi\)
−0.839813 + 0.542877i \(0.817335\pi\)
\(810\) 0 0
\(811\) −51.4558 −1.80686 −0.903430 0.428737i \(-0.858959\pi\)
−0.903430 + 0.428737i \(0.858959\pi\)
\(812\) −17.2132 42.1636i −0.604065 1.47965i
\(813\) 0 0
\(814\) 2.53553 4.39167i 0.0888704 0.153928i
\(815\) 9.03553 + 15.6500i 0.316501 + 0.548196i
\(816\) 0 0
\(817\) −3.03553 + 5.25770i −0.106200 + 0.183944i
\(818\) 10.4853 0.366609
\(819\) 0 0
\(820\) 16.1421 0.563708
\(821\) −26.0563 + 45.1309i −0.909373 + 1.57508i −0.0944355 + 0.995531i \(0.530105\pi\)
−0.814937 + 0.579549i \(0.803229\pi\)
\(822\) 0 0
\(823\) −18.1066 31.3616i −0.631156 1.09320i −0.987316 0.158770i \(-0.949247\pi\)
0.356159 0.934425i \(-0.384086\pi\)
\(824\) 4.75736 8.23999i 0.165730 0.287054i
\(825\) 0 0
\(826\) −1.27208 0.174080i −0.0442613 0.00605701i
\(827\) 44.2843 1.53991 0.769957 0.638095i \(-0.220277\pi\)
0.769957 + 0.638095i \(0.220277\pi\)
\(828\) 0 0
\(829\) −14.1421 24.4949i −0.491177 0.850743i 0.508772 0.860901i \(-0.330100\pi\)
−0.999948 + 0.0101585i \(0.996766\pi\)
\(830\) 0.156854 + 0.271680i 0.00544449 + 0.00943013i
\(831\) 0 0
\(832\) −26.0416 −0.902831
\(833\) −6.97056 27.1185i −0.241516 0.939599i
\(834\) 0 0
\(835\) 0.535534 0.927572i 0.0185329 0.0321000i
\(836\) 2.20711 + 3.82282i 0.0763344 + 0.132215i
\(837\) 0 0
\(838\) 1.67157 2.89525i 0.0577435 0.100015i
\(839\) −19.7990 −0.683537 −0.341769 0.939784i \(-0.611026\pi\)
−0.341769 + 0.939784i \(0.611026\pi\)
\(840\) 0 0
\(841\) 59.6274 2.05612
\(842\) 1.07969 1.87008i 0.0372086 0.0644471i
\(843\) 0 0
\(844\) −6.24264 10.8126i −0.214881 0.372184i
\(845\) 12.9853 22.4912i 0.446707 0.773720i
\(846\) 0 0
\(847\) −8.38478 + 10.8126i −0.288104 + 0.371524i
\(848\) −12.7279 −0.437079
\(849\) 0 0
\(850\) −3.31371 5.73951i −0.113659 0.196864i
\(851\) 21.3345 + 36.9525i 0.731338 + 1.26671i
\(852\) 0 0
\(853\) 10.0294 0.343401 0.171701 0.985149i \(-0.445074\pi\)
0.171701 + 0.985149i \(0.445074\pi\)
\(854\) −2.55635 6.26175i −0.0874765 0.214273i
\(855\) 0 0
\(856\) 4.67767 8.10196i 0.159879 0.276919i
\(857\) 10.4853 + 18.1610i 0.358170 + 0.620369i 0.987655 0.156643i \(-0.0500674\pi\)
−0.629485 + 0.777013i \(0.716734\pi\)
\(858\) 0 0
\(859\) −1.03553 + 1.79360i −0.0353320 + 0.0611968i −0.883151 0.469089i \(-0.844582\pi\)
0.847819 + 0.530286i \(0.177916\pi\)
\(860\) −11.1005 −0.378524
\(861\) 0 0
\(862\) 15.7574 0.536698
\(863\) 3.70711 6.42090i 0.126191 0.218570i −0.796007 0.605288i \(-0.793058\pi\)
0.922198 + 0.386718i \(0.126391\pi\)
\(864\) 0 0
\(865\) −7.65685 13.2621i −0.260341 0.450924i
\(866\) 5.79899 10.0441i 0.197058 0.341314i
\(867\) 0 0
\(868\) −6.64823 + 8.57321i −0.225656 + 0.290994i
\(869\) 3.41421 0.115819
\(870\) 0 0
\(871\) −21.3137 36.9164i −0.722187 1.25087i
\(872\) −1.31371 2.27541i −0.0444878 0.0770551i
\(873\) 0 0
\(874\) 3.48528 0.117891
\(875\) −23.5919 3.22848i −0.797551 0.109142i
\(876\) 0 0
\(877\) 4.05025 7.01524i 0.136767 0.236888i −0.789504 0.613746i \(-0.789662\pi\)
0.926271 + 0.376858i \(0.122995\pi\)
\(878\) −1.55635 2.69568i −0.0525242 0.0909747i
\(879\) 0 0
\(880\) −3.62132 + 6.27231i −0.122075 + 0.211440i
\(881\) −4.28427 −0.144341 −0.0721704 0.997392i \(-0.522993\pi\)
−0.0721704 + 0.997392i \(0.522993\pi\)
\(882\) 0 0
\(883\) 5.65685 0.190368 0.0951842 0.995460i \(-0.469656\pi\)
0.0951842 + 0.995460i \(0.469656\pi\)
\(884\) 22.8284 39.5400i 0.767803 1.32987i
\(885\) 0 0
\(886\) −1.31371 2.27541i −0.0441349 0.0764439i
\(887\) 0.656854 1.13770i 0.0220550 0.0382004i −0.854787 0.518979i \(-0.826312\pi\)
0.876842 + 0.480778i \(0.159646\pi\)
\(888\) 0 0
\(889\) 11.1213 + 1.52192i 0.372997 + 0.0510435i
\(890\) 3.55635 0.119209
\(891\) 0 0
\(892\) −5.70711 9.88500i −0.191088 0.330974i
\(893\) 0.792893 + 1.37333i 0.0265332 + 0.0459568i
\(894\) 0 0
\(895\) −21.7990 −0.728660
\(896\) 17.1152 22.0709i 0.571779 0.737337i
\(897\) 0 0
\(898\) 0.343146 0.594346i 0.0114509 0.0198336i
\(899\) −10.5563 18.2841i −0.352074 0.609810i
\(900\) 0 0
\(901\) 8.48528 14.6969i 0.282686 0.489626i
\(902\) 8.82843 0.293954
\(903\) 0 0
\(904\) −13.0711 −0.434737
\(905\) −4.94975 + 8.57321i −0.164535 + 0.284983i
\(906\) 0 0
\(907\) −14.2929 24.7560i −0.474588 0.822010i 0.524989 0.851109i \(-0.324070\pi\)
−0.999577 + 0.0290991i \(0.990736\pi\)
\(908\) 10.7487 18.6174i 0.356709 0.617839i
\(909\) 0 0
\(910\) 2.58579 + 6.33386i 0.0857180 + 0.209965i
\(911\) −34.7279 −1.15059 −0.575294 0.817947i \(-0.695112\pi\)
−0.575294 + 0.817947i \(0.695112\pi\)
\(912\) 0 0
\(913\) −0.914214 1.58346i −0.0302561 0.0524050i
\(914\) −0.449747 0.778985i −0.0148763 0.0257665i
\(915\) 0 0
\(916\) 8.20101 0.270969
\(917\) −33.2132 + 42.8300i −1.09680 + 1.41437i
\(918\) 0 0
\(919\) −14.5208 + 25.1508i −0.478997 + 0.829648i −0.999710 0.0240841i \(-0.992333\pi\)
0.520712 + 0.853732i \(0.325666\pi\)
\(920\) 6.67157 + 11.5555i 0.219955 + 0.380974i
\(921\) 0 0
\(922\) 0.822330 1.42432i 0.0270820 0.0469074i
\(923\) 35.9411 1.18302
\(924\) 0 0
\(925\) 20.2843 0.666943
\(926\) 2.08579 3.61269i 0.0685432 0.118720i
\(927\) 0 0
\(928\) 20.7782 + 35.9889i 0.682077 + 1.18139i
\(929\) 7.50000 12.9904i 0.246067 0.426201i −0.716364 0.697727i \(-0.754195\pi\)
0.962431 + 0.271526i \(0.0875283\pi\)
\(930\) 0 0
\(931\) 5.00000 4.89898i 0.163868 0.160558i
\(932\) −30.1421 −0.987338
\(933\) 0 0
\(934\) −8.05635 13.9540i −0.263612 0.456589i
\(935\) −4.82843 8.36308i −0.157906 0.273502i
\(936\) 0 0
\(937\) −56.3137 −1.83969 −0.919844 0.392284i \(-0.871685\pi\)
−0.919844 + 0.392284i \(0.871685\pi\)
\(938\) 7.41421 + 1.01461i 0.242083 + 0.0331283i
\(939\) 0 0
\(940\) −1.44975 + 2.51104i −0.0472855 + 0.0819010i
\(941\) −22.0208 38.1412i −0.717858 1.24337i −0.961847 0.273589i \(-0.911789\pi\)
0.243989 0.969778i \(-0.421544\pi\)
\(942\) 0 0
\(943\) −37.1421 + 64.3321i −1.20951 + 2.09494i
\(944\) −3.51472 −0.114394
\(945\) 0 0
\(946\) −6.07107 −0.197387
\(947\) −3.82843 + 6.63103i −0.124407 + 0.215480i −0.921501 0.388376i \(-0.873036\pi\)
0.797094 + 0.603855i \(0.206370\pi\)
\(948\) 0 0
\(949\) 41.0208 + 71.0501i 1.33159 + 2.30639i
\(950\) 0.828427 1.43488i 0.0268777 0.0465536i
\(951\) 0 0
\(952\) 6.34315 + 15.5375i 0.205583 + 0.503572i
\(953\) 0.585786 0.0189755 0.00948774 0.999955i \(-0.496980\pi\)
0.00948774 + 0.999955i \(0.496980\pi\)
\(954\) 0 0
\(955\) −2.79289 4.83743i −0.0903759 0.156536i
\(956\) −1.82843 3.16693i −0.0591356 0.102426i
\(957\) 0 0
\(958\) 4.71573 0.152358
\(959\) 14.1716 + 34.7131i 0.457624 + 1.12095i
\(960\) 0 0
\(961\) 12.9853 22.4912i 0.418880 0.725522i
\(962\) −6.55635 11.3559i −0.211385 0.366130i
\(963\) 0 0
\(964\) 20.1508 34.9021i 0.649012 1.12412i
\(965\) 11.8995 0.383058
\(966\) 0 0
\(967\) 20.2843 0.652298 0.326149 0.945318i \(-0.394249\pi\)
0.326149 + 0.945318i \(0.394249\pi\)
\(968\) 4.10051 7.10228i 0.131795 0.228276i
\(969\) 0 0
\(970\) 1.82843 + 3.16693i 0.0587073 + 0.101684i
\(971\) −13.4350 + 23.2702i −0.431151 + 0.746775i −0.996973 0.0777526i \(-0.975226\pi\)
0.565822 + 0.824527i \(0.308559\pi\)
\(972\) 0 0
\(973\) −21.1569 2.89525i −0.678258 0.0928174i
\(974\) −8.62742 −0.276440
\(975\) 0 0
\(976\) −9.25736 16.0342i −0.296321 0.513243i
\(977\) 14.3848 + 24.9152i 0.460210 + 0.797107i 0.998971 0.0453518i \(-0.0144409\pi\)
−0.538761 + 0.842458i \(0.681108\pi\)
\(978\) 0 0
\(979\) −20.7279 −0.662467
\(980\) 12.3284 + 3.43861i 0.393817 + 0.109842i
\(981\) 0 0
\(982\) 6.74264 11.6786i 0.215166 0.372679i
\(983\) −23.0000 39.8372i −0.733586 1.27061i −0.955341 0.295506i \(-0.904512\pi\)
0.221755 0.975102i \(-0.428822\pi\)
\(984\) 0 0
\(985\) −10.7426 + 18.6068i −0.342289 + 0.592862i
\(986\) −15.5980 −0.496741
\(987\) 0 0
\(988\) 11.4142 0.363135
\(989\) 25.5416 44.2394i 0.812177 1.40673i
\(990\) 0 0
\(991\) 17.8995 + 31.0028i 0.568596 + 0.984837i 0.996705 + 0.0811104i \(0.0258466\pi\)
−0.428109 + 0.903727i \(0.640820\pi\)
\(992\) 4.94975 8.57321i 0.157155 0.272200i
\(993\) 0 0
\(994\) −3.86649 + 4.98602i −0.122638 + 0.158147i
\(995\) −1.92893 −0.0611513
\(996\) 0 0
\(997\) −14.1421 24.4949i −0.447886 0.775761i 0.550362 0.834926i \(-0.314490\pi\)
−0.998248 + 0.0591648i \(0.981156\pi\)
\(998\) 0.713203 + 1.23530i 0.0225761 + 0.0391029i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1197.2.j.e.856.2 4
3.2 odd 2 133.2.f.c.58.1 yes 4
7.2 even 3 8379.2.a.bi.1.1 2
7.4 even 3 inner 1197.2.j.e.172.2 4
7.5 odd 6 8379.2.a.bl.1.1 2
21.2 odd 6 931.2.a.f.1.2 2
21.5 even 6 931.2.a.e.1.2 2
21.11 odd 6 133.2.f.c.39.1 4
21.17 even 6 931.2.f.i.704.1 4
21.20 even 2 931.2.f.i.324.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
133.2.f.c.39.1 4 21.11 odd 6
133.2.f.c.58.1 yes 4 3.2 odd 2
931.2.a.e.1.2 2 21.5 even 6
931.2.a.f.1.2 2 21.2 odd 6
931.2.f.i.324.1 4 21.20 even 2
931.2.f.i.704.1 4 21.17 even 6
1197.2.j.e.172.2 4 7.4 even 3 inner
1197.2.j.e.856.2 4 1.1 even 1 trivial
8379.2.a.bi.1.1 2 7.2 even 3
8379.2.a.bl.1.1 2 7.5 odd 6