Properties

Label 1197.2.j.d.856.1
Level $1197$
Weight $2$
Character 1197.856
Analytic conductor $9.558$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1197,2,Mod(172,1197)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1197.172"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1197, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1197 = 3^{2} \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1197.j (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-2,0,-2,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.55809312195\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 399)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 856.1
Root \(-0.707107 + 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 1197.856
Dual form 1197.2.j.d.172.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.20711 + 2.09077i) q^{2} +(-1.91421 - 3.31552i) q^{4} +(-1.91421 + 3.31552i) q^{5} +(-2.50000 + 0.866025i) q^{7} +4.41421 q^{8} +(-4.62132 - 8.00436i) q^{10} +(-1.91421 - 3.31552i) q^{11} +2.82843 q^{13} +(1.20711 - 6.27231i) q^{14} +(-1.50000 + 2.59808i) q^{16} +(-1.82843 - 3.16693i) q^{17} +(0.500000 - 0.866025i) q^{19} +14.6569 q^{20} +9.24264 q^{22} +(-0.914214 + 1.58346i) q^{23} +(-4.82843 - 8.36308i) q^{25} +(-3.41421 + 5.91359i) q^{26} +(7.65685 + 6.63103i) q^{28} +4.82843 q^{29} +(1.58579 + 2.74666i) q^{31} +(0.792893 + 1.37333i) q^{32} +8.82843 q^{34} +(1.91421 - 9.94655i) q^{35} +(-0.585786 + 1.01461i) q^{37} +(1.20711 + 2.09077i) q^{38} +(-8.44975 + 14.6354i) q^{40} -7.65685 q^{41} -12.6569 q^{43} +(-7.32843 + 12.6932i) q^{44} +(-2.20711 - 3.82282i) q^{46} +(3.08579 - 5.34474i) q^{47} +(5.50000 - 4.33013i) q^{49} +23.3137 q^{50} +(-5.41421 - 9.37769i) q^{52} +(-1.00000 - 1.73205i) q^{53} +14.6569 q^{55} +(-11.0355 + 3.82282i) q^{56} +(-5.82843 + 10.0951i) q^{58} +(5.41421 + 9.37769i) q^{59} +(7.32843 - 12.6932i) q^{61} -7.65685 q^{62} -9.82843 q^{64} +(-5.41421 + 9.37769i) q^{65} +(6.00000 + 10.3923i) q^{67} +(-7.00000 + 12.1244i) q^{68} +(18.4853 + 16.0087i) q^{70} -4.34315 q^{71} +(5.15685 + 8.93193i) q^{73} +(-1.41421 - 2.44949i) q^{74} -3.82843 q^{76} +(7.65685 + 6.63103i) q^{77} +(-1.17157 + 2.02922i) q^{79} +(-5.74264 - 9.94655i) q^{80} +(9.24264 - 16.0087i) q^{82} -4.17157 q^{83} +14.0000 q^{85} +(15.2782 - 26.4626i) q^{86} +(-8.44975 - 14.6354i) q^{88} +(5.41421 - 9.37769i) q^{89} +(-7.07107 + 2.44949i) q^{91} +7.00000 q^{92} +(7.44975 + 12.9033i) q^{94} +(1.91421 + 3.31552i) q^{95} +16.8284 q^{97} +(2.41421 + 16.7262i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} - 2 q^{4} - 2 q^{5} - 10 q^{7} + 12 q^{8} - 10 q^{10} - 2 q^{11} + 2 q^{14} - 6 q^{16} + 4 q^{17} + 2 q^{19} + 36 q^{20} + 20 q^{22} + 2 q^{23} - 8 q^{25} - 8 q^{26} + 8 q^{28} + 8 q^{29}+ \cdots + 4 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1197\mathbb{Z}\right)^\times\).

\(n\) \(514\) \(533\) \(1009\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.20711 + 2.09077i −0.853553 + 1.47840i 0.0244272 + 0.999702i \(0.492224\pi\)
−0.877981 + 0.478696i \(0.841110\pi\)
\(3\) 0 0
\(4\) −1.91421 3.31552i −0.957107 1.65776i
\(5\) −1.91421 + 3.31552i −0.856062 + 1.48274i 0.0195936 + 0.999808i \(0.493763\pi\)
−0.875656 + 0.482935i \(0.839571\pi\)
\(6\) 0 0
\(7\) −2.50000 + 0.866025i −0.944911 + 0.327327i
\(8\) 4.41421 1.56066
\(9\) 0 0
\(10\) −4.62132 8.00436i −1.46139 2.53120i
\(11\) −1.91421 3.31552i −0.577157 0.999665i −0.995804 0.0915161i \(-0.970829\pi\)
0.418646 0.908149i \(-0.362505\pi\)
\(12\) 0 0
\(13\) 2.82843 0.784465 0.392232 0.919866i \(-0.371703\pi\)
0.392232 + 0.919866i \(0.371703\pi\)
\(14\) 1.20711 6.27231i 0.322613 1.67635i
\(15\) 0 0
\(16\) −1.50000 + 2.59808i −0.375000 + 0.649519i
\(17\) −1.82843 3.16693i −0.443459 0.768093i 0.554485 0.832194i \(-0.312915\pi\)
−0.997943 + 0.0641009i \(0.979582\pi\)
\(18\) 0 0
\(19\) 0.500000 0.866025i 0.114708 0.198680i
\(20\) 14.6569 3.27737
\(21\) 0 0
\(22\) 9.24264 1.97054
\(23\) −0.914214 + 1.58346i −0.190627 + 0.330175i −0.945458 0.325744i \(-0.894385\pi\)
0.754831 + 0.655919i \(0.227719\pi\)
\(24\) 0 0
\(25\) −4.82843 8.36308i −0.965685 1.67262i
\(26\) −3.41421 + 5.91359i −0.669582 + 1.15975i
\(27\) 0 0
\(28\) 7.65685 + 6.63103i 1.44701 + 1.25315i
\(29\) 4.82843 0.896616 0.448308 0.893879i \(-0.352027\pi\)
0.448308 + 0.893879i \(0.352027\pi\)
\(30\) 0 0
\(31\) 1.58579 + 2.74666i 0.284816 + 0.493315i 0.972564 0.232634i \(-0.0747343\pi\)
−0.687749 + 0.725949i \(0.741401\pi\)
\(32\) 0.792893 + 1.37333i 0.140165 + 0.242773i
\(33\) 0 0
\(34\) 8.82843 1.51406
\(35\) 1.91421 9.94655i 0.323561 1.68127i
\(36\) 0 0
\(37\) −0.585786 + 1.01461i −0.0963027 + 0.166801i −0.910152 0.414275i \(-0.864035\pi\)
0.813849 + 0.581077i \(0.197368\pi\)
\(38\) 1.20711 + 2.09077i 0.195819 + 0.339168i
\(39\) 0 0
\(40\) −8.44975 + 14.6354i −1.33602 + 2.31406i
\(41\) −7.65685 −1.19580 −0.597900 0.801571i \(-0.703998\pi\)
−0.597900 + 0.801571i \(0.703998\pi\)
\(42\) 0 0
\(43\) −12.6569 −1.93015 −0.965076 0.261970i \(-0.915628\pi\)
−0.965076 + 0.261970i \(0.915628\pi\)
\(44\) −7.32843 + 12.6932i −1.10480 + 1.91357i
\(45\) 0 0
\(46\) −2.20711 3.82282i −0.325420 0.563644i
\(47\) 3.08579 5.34474i 0.450108 0.779610i −0.548284 0.836292i \(-0.684719\pi\)
0.998392 + 0.0566819i \(0.0180521\pi\)
\(48\) 0 0
\(49\) 5.50000 4.33013i 0.785714 0.618590i
\(50\) 23.3137 3.29706
\(51\) 0 0
\(52\) −5.41421 9.37769i −0.750816 1.30045i
\(53\) −1.00000 1.73205i −0.137361 0.237915i 0.789136 0.614218i \(-0.210529\pi\)
−0.926497 + 0.376303i \(0.877195\pi\)
\(54\) 0 0
\(55\) 14.6569 1.97633
\(56\) −11.0355 + 3.82282i −1.47469 + 0.510846i
\(57\) 0 0
\(58\) −5.82843 + 10.0951i −0.765310 + 1.32556i
\(59\) 5.41421 + 9.37769i 0.704871 + 1.22087i 0.966738 + 0.255768i \(0.0823283\pi\)
−0.261868 + 0.965104i \(0.584338\pi\)
\(60\) 0 0
\(61\) 7.32843 12.6932i 0.938309 1.62520i 0.169685 0.985498i \(-0.445725\pi\)
0.768624 0.639700i \(-0.220942\pi\)
\(62\) −7.65685 −0.972421
\(63\) 0 0
\(64\) −9.82843 −1.22855
\(65\) −5.41421 + 9.37769i −0.671551 + 1.16316i
\(66\) 0 0
\(67\) 6.00000 + 10.3923i 0.733017 + 1.26962i 0.955588 + 0.294706i \(0.0952216\pi\)
−0.222571 + 0.974916i \(0.571445\pi\)
\(68\) −7.00000 + 12.1244i −0.848875 + 1.47029i
\(69\) 0 0
\(70\) 18.4853 + 16.0087i 2.20941 + 1.91341i
\(71\) −4.34315 −0.515437 −0.257718 0.966220i \(-0.582971\pi\)
−0.257718 + 0.966220i \(0.582971\pi\)
\(72\) 0 0
\(73\) 5.15685 + 8.93193i 0.603564 + 1.04540i 0.992277 + 0.124045i \(0.0395866\pi\)
−0.388712 + 0.921359i \(0.627080\pi\)
\(74\) −1.41421 2.44949i −0.164399 0.284747i
\(75\) 0 0
\(76\) −3.82843 −0.439151
\(77\) 7.65685 + 6.63103i 0.872580 + 0.755676i
\(78\) 0 0
\(79\) −1.17157 + 2.02922i −0.131812 + 0.228306i −0.924375 0.381485i \(-0.875413\pi\)
0.792563 + 0.609790i \(0.208746\pi\)
\(80\) −5.74264 9.94655i −0.642047 1.11206i
\(81\) 0 0
\(82\) 9.24264 16.0087i 1.02068 1.76787i
\(83\) −4.17157 −0.457890 −0.228945 0.973439i \(-0.573528\pi\)
−0.228945 + 0.973439i \(0.573528\pi\)
\(84\) 0 0
\(85\) 14.0000 1.51851
\(86\) 15.2782 26.4626i 1.64749 2.85353i
\(87\) 0 0
\(88\) −8.44975 14.6354i −0.900746 1.56014i
\(89\) 5.41421 9.37769i 0.573905 0.994033i −0.422254 0.906478i \(-0.638761\pi\)
0.996160 0.0875560i \(-0.0279057\pi\)
\(90\) 0 0
\(91\) −7.07107 + 2.44949i −0.741249 + 0.256776i
\(92\) 7.00000 0.729800
\(93\) 0 0
\(94\) 7.44975 + 12.9033i 0.768383 + 1.33088i
\(95\) 1.91421 + 3.31552i 0.196394 + 0.340165i
\(96\) 0 0
\(97\) 16.8284 1.70867 0.854334 0.519724i \(-0.173965\pi\)
0.854334 + 0.519724i \(0.173965\pi\)
\(98\) 2.41421 + 16.7262i 0.243872 + 1.68960i
\(99\) 0 0
\(100\) −18.4853 + 32.0174i −1.84853 + 3.20174i
\(101\) −1.74264 3.01834i −0.173399 0.300336i 0.766207 0.642594i \(-0.222142\pi\)
−0.939606 + 0.342258i \(0.888808\pi\)
\(102\) 0 0
\(103\) −1.82843 + 3.16693i −0.180160 + 0.312047i −0.941935 0.335795i \(-0.890995\pi\)
0.761775 + 0.647842i \(0.224328\pi\)
\(104\) 12.4853 1.22428
\(105\) 0 0
\(106\) 4.82843 0.468978
\(107\) −1.41421 + 2.44949i −0.136717 + 0.236801i −0.926252 0.376905i \(-0.876988\pi\)
0.789535 + 0.613706i \(0.210322\pi\)
\(108\) 0 0
\(109\) −9.07107 15.7116i −0.868851 1.50489i −0.863172 0.504910i \(-0.831526\pi\)
−0.00567856 0.999984i \(-0.501808\pi\)
\(110\) −17.6924 + 30.6441i −1.68690 + 2.92180i
\(111\) 0 0
\(112\) 1.50000 7.79423i 0.141737 0.736485i
\(113\) 12.8284 1.20680 0.603398 0.797440i \(-0.293813\pi\)
0.603398 + 0.797440i \(0.293813\pi\)
\(114\) 0 0
\(115\) −3.50000 6.06218i −0.326377 0.565301i
\(116\) −9.24264 16.0087i −0.858158 1.48637i
\(117\) 0 0
\(118\) −26.1421 −2.40658
\(119\) 7.31371 + 6.33386i 0.670447 + 0.580624i
\(120\) 0 0
\(121\) −1.82843 + 3.16693i −0.166221 + 0.287903i
\(122\) 17.6924 + 30.6441i 1.60179 + 2.77439i
\(123\) 0 0
\(124\) 6.07107 10.5154i 0.545198 0.944311i
\(125\) 17.8284 1.59462
\(126\) 0 0
\(127\) 16.9706 1.50589 0.752947 0.658081i \(-0.228632\pi\)
0.752947 + 0.658081i \(0.228632\pi\)
\(128\) 10.2782 17.8023i 0.908471 1.57352i
\(129\) 0 0
\(130\) −13.0711 22.6398i −1.14641 1.98564i
\(131\) 5.17157 8.95743i 0.451842 0.782614i −0.546658 0.837356i \(-0.684100\pi\)
0.998501 + 0.0547419i \(0.0174336\pi\)
\(132\) 0 0
\(133\) −0.500000 + 2.59808i −0.0433555 + 0.225282i
\(134\) −28.9706 −2.50268
\(135\) 0 0
\(136\) −8.07107 13.9795i −0.692088 1.19873i
\(137\) −6.91421 11.9758i −0.590721 1.02316i −0.994136 0.108142i \(-0.965510\pi\)
0.403414 0.915017i \(-0.367823\pi\)
\(138\) 0 0
\(139\) −6.65685 −0.564627 −0.282314 0.959322i \(-0.591102\pi\)
−0.282314 + 0.959322i \(0.591102\pi\)
\(140\) −36.6421 + 12.6932i −3.09683 + 1.07277i
\(141\) 0 0
\(142\) 5.24264 9.08052i 0.439953 0.762020i
\(143\) −5.41421 9.37769i −0.452759 0.784202i
\(144\) 0 0
\(145\) −9.24264 + 16.0087i −0.767560 + 1.32945i
\(146\) −24.8995 −2.06070
\(147\) 0 0
\(148\) 4.48528 0.368688
\(149\) 1.91421 3.31552i 0.156818 0.271618i −0.776901 0.629623i \(-0.783210\pi\)
0.933720 + 0.358005i \(0.116543\pi\)
\(150\) 0 0
\(151\) 4.65685 + 8.06591i 0.378969 + 0.656394i 0.990913 0.134507i \(-0.0429452\pi\)
−0.611943 + 0.790902i \(0.709612\pi\)
\(152\) 2.20711 3.82282i 0.179020 0.310072i
\(153\) 0 0
\(154\) −23.1066 + 8.00436i −1.86198 + 0.645010i
\(155\) −12.1421 −0.975280
\(156\) 0 0
\(157\) −5.32843 9.22911i −0.425255 0.736563i 0.571189 0.820818i \(-0.306482\pi\)
−0.996444 + 0.0842554i \(0.973149\pi\)
\(158\) −2.82843 4.89898i −0.225018 0.389742i
\(159\) 0 0
\(160\) −6.07107 −0.479960
\(161\) 0.914214 4.75039i 0.0720501 0.374383i
\(162\) 0 0
\(163\) −10.9853 + 19.0271i −0.860434 + 1.49031i 0.0110773 + 0.999939i \(0.496474\pi\)
−0.871511 + 0.490376i \(0.836859\pi\)
\(164\) 14.6569 + 25.3864i 1.14451 + 1.98235i
\(165\) 0 0
\(166\) 5.03553 8.72180i 0.390833 0.676943i
\(167\) −8.82843 −0.683164 −0.341582 0.939852i \(-0.610963\pi\)
−0.341582 + 0.939852i \(0.610963\pi\)
\(168\) 0 0
\(169\) −5.00000 −0.384615
\(170\) −16.8995 + 29.2708i −1.29613 + 2.24497i
\(171\) 0 0
\(172\) 24.2279 + 41.9640i 1.84736 + 3.19972i
\(173\) 1.41421 2.44949i 0.107521 0.186231i −0.807245 0.590217i \(-0.799042\pi\)
0.914765 + 0.403986i \(0.132375\pi\)
\(174\) 0 0
\(175\) 19.3137 + 16.7262i 1.45998 + 1.26438i
\(176\) 11.4853 0.865736
\(177\) 0 0
\(178\) 13.0711 + 22.6398i 0.979718 + 1.69692i
\(179\) −5.24264 9.08052i −0.391853 0.678710i 0.600841 0.799369i \(-0.294833\pi\)
−0.992694 + 0.120659i \(0.961499\pi\)
\(180\) 0 0
\(181\) −11.6569 −0.866447 −0.433224 0.901286i \(-0.642624\pi\)
−0.433224 + 0.901286i \(0.642624\pi\)
\(182\) 3.41421 17.7408i 0.253078 1.31503i
\(183\) 0 0
\(184\) −4.03553 + 6.98975i −0.297504 + 0.515291i
\(185\) −2.24264 3.88437i −0.164882 0.285584i
\(186\) 0 0
\(187\) −7.00000 + 12.1244i −0.511891 + 0.886621i
\(188\) −23.6274 −1.72321
\(189\) 0 0
\(190\) −9.24264 −0.670532
\(191\) 5.91421 10.2437i 0.427937 0.741209i −0.568752 0.822509i \(-0.692574\pi\)
0.996690 + 0.0812994i \(0.0259070\pi\)
\(192\) 0 0
\(193\) −2.00000 3.46410i −0.143963 0.249351i 0.785022 0.619467i \(-0.212651\pi\)
−0.928986 + 0.370116i \(0.879318\pi\)
\(194\) −20.3137 + 35.1844i −1.45844 + 2.52609i
\(195\) 0 0
\(196\) −24.8848 9.94655i −1.77748 0.710468i
\(197\) 17.4853 1.24577 0.622887 0.782312i \(-0.285959\pi\)
0.622887 + 0.782312i \(0.285959\pi\)
\(198\) 0 0
\(199\) −1.67157 2.89525i −0.118495 0.205239i 0.800677 0.599097i \(-0.204474\pi\)
−0.919171 + 0.393858i \(0.871140\pi\)
\(200\) −21.3137 36.9164i −1.50711 2.61039i
\(201\) 0 0
\(202\) 8.41421 0.592022
\(203\) −12.0711 + 4.18154i −0.847223 + 0.293487i
\(204\) 0 0
\(205\) 14.6569 25.3864i 1.02368 1.77306i
\(206\) −4.41421 7.64564i −0.307553 0.532697i
\(207\) 0 0
\(208\) −4.24264 + 7.34847i −0.294174 + 0.509525i
\(209\) −3.82843 −0.264818
\(210\) 0 0
\(211\) 16.4853 1.13489 0.567447 0.823410i \(-0.307931\pi\)
0.567447 + 0.823410i \(0.307931\pi\)
\(212\) −3.82843 + 6.63103i −0.262937 + 0.455421i
\(213\) 0 0
\(214\) −3.41421 5.91359i −0.233391 0.404245i
\(215\) 24.2279 41.9640i 1.65233 2.86192i
\(216\) 0 0
\(217\) −6.34315 5.49333i −0.430601 0.372911i
\(218\) 43.7990 2.96644
\(219\) 0 0
\(220\) −28.0563 48.5950i −1.89156 3.27628i
\(221\) −5.17157 8.95743i −0.347878 0.602542i
\(222\) 0 0
\(223\) 21.7990 1.45977 0.729884 0.683571i \(-0.239574\pi\)
0.729884 + 0.683571i \(0.239574\pi\)
\(224\) −3.17157 2.74666i −0.211910 0.183519i
\(225\) 0 0
\(226\) −15.4853 + 26.8213i −1.03007 + 1.78413i
\(227\) −3.17157 5.49333i −0.210505 0.364605i 0.741368 0.671099i \(-0.234177\pi\)
−0.951873 + 0.306494i \(0.900844\pi\)
\(228\) 0 0
\(229\) 7.82843 13.5592i 0.517317 0.896019i −0.482481 0.875907i \(-0.660264\pi\)
0.999798 0.0201128i \(-0.00640252\pi\)
\(230\) 16.8995 1.11432
\(231\) 0 0
\(232\) 21.3137 1.39931
\(233\) 3.00000 5.19615i 0.196537 0.340411i −0.750867 0.660454i \(-0.770364\pi\)
0.947403 + 0.320043i \(0.103697\pi\)
\(234\) 0 0
\(235\) 11.8137 + 20.4619i 0.770641 + 1.33479i
\(236\) 20.7279 35.9018i 1.34927 2.33701i
\(237\) 0 0
\(238\) −22.0711 + 7.64564i −1.43065 + 0.495593i
\(239\) −2.34315 −0.151565 −0.0757827 0.997124i \(-0.524146\pi\)
−0.0757827 + 0.997124i \(0.524146\pi\)
\(240\) 0 0
\(241\) −9.89949 17.1464i −0.637683 1.10450i −0.985940 0.167100i \(-0.946560\pi\)
0.348257 0.937399i \(-0.386773\pi\)
\(242\) −4.41421 7.64564i −0.283756 0.491480i
\(243\) 0 0
\(244\) −56.1127 −3.59225
\(245\) 3.82843 + 26.5241i 0.244589 + 1.69456i
\(246\) 0 0
\(247\) 1.41421 2.44949i 0.0899843 0.155857i
\(248\) 7.00000 + 12.1244i 0.444500 + 0.769897i
\(249\) 0 0
\(250\) −21.5208 + 37.2751i −1.36110 + 2.35749i
\(251\) 13.4853 0.851183 0.425592 0.904915i \(-0.360066\pi\)
0.425592 + 0.904915i \(0.360066\pi\)
\(252\) 0 0
\(253\) 7.00000 0.440086
\(254\) −20.4853 + 35.4815i −1.28536 + 2.22631i
\(255\) 0 0
\(256\) 14.9853 + 25.9553i 0.936580 + 1.62220i
\(257\) 13.0000 22.5167i 0.810918 1.40455i −0.101305 0.994855i \(-0.532302\pi\)
0.912222 0.409695i \(-0.134365\pi\)
\(258\) 0 0
\(259\) 0.585786 3.04384i 0.0363990 0.189135i
\(260\) 41.4558 2.57098
\(261\) 0 0
\(262\) 12.4853 + 21.6251i 0.771343 + 1.33601i
\(263\) 5.65685 + 9.79796i 0.348817 + 0.604168i 0.986040 0.166511i \(-0.0532503\pi\)
−0.637223 + 0.770680i \(0.719917\pi\)
\(264\) 0 0
\(265\) 7.65685 0.470357
\(266\) −4.82843 4.18154i −0.296050 0.256387i
\(267\) 0 0
\(268\) 22.9706 39.7862i 1.40315 2.43033i
\(269\) −4.00000 6.92820i −0.243884 0.422420i 0.717933 0.696112i \(-0.245088\pi\)
−0.961817 + 0.273692i \(0.911755\pi\)
\(270\) 0 0
\(271\) 9.81371 16.9978i 0.596140 1.03255i −0.397245 0.917713i \(-0.630034\pi\)
0.993385 0.114833i \(-0.0366331\pi\)
\(272\) 10.9706 0.665188
\(273\) 0 0
\(274\) 33.3848 2.01685
\(275\) −18.4853 + 32.0174i −1.11470 + 1.93072i
\(276\) 0 0
\(277\) −6.50000 11.2583i −0.390547 0.676448i 0.601975 0.798515i \(-0.294381\pi\)
−0.992522 + 0.122068i \(0.961047\pi\)
\(278\) 8.03553 13.9180i 0.481939 0.834743i
\(279\) 0 0
\(280\) 8.44975 43.9062i 0.504969 2.62390i
\(281\) −6.97056 −0.415829 −0.207914 0.978147i \(-0.566668\pi\)
−0.207914 + 0.978147i \(0.566668\pi\)
\(282\) 0 0
\(283\) −15.8137 27.3901i −0.940027 1.62818i −0.765414 0.643538i \(-0.777466\pi\)
−0.174613 0.984637i \(-0.555868\pi\)
\(284\) 8.31371 + 14.3998i 0.493328 + 0.854469i
\(285\) 0 0
\(286\) 26.1421 1.54582
\(287\) 19.1421 6.63103i 1.12992 0.391417i
\(288\) 0 0
\(289\) 1.81371 3.14144i 0.106689 0.184790i
\(290\) −22.3137 38.6485i −1.31031 2.26952i
\(291\) 0 0
\(292\) 19.7426 34.1953i 1.15535 2.00113i
\(293\) 0.828427 0.0483972 0.0241986 0.999707i \(-0.492297\pi\)
0.0241986 + 0.999707i \(0.492297\pi\)
\(294\) 0 0
\(295\) −41.4558 −2.41365
\(296\) −2.58579 + 4.47871i −0.150296 + 0.260320i
\(297\) 0 0
\(298\) 4.62132 + 8.00436i 0.267706 + 0.463680i
\(299\) −2.58579 + 4.47871i −0.149540 + 0.259011i
\(300\) 0 0
\(301\) 31.6421 10.9612i 1.82382 0.631791i
\(302\) −22.4853 −1.29388
\(303\) 0 0
\(304\) 1.50000 + 2.59808i 0.0860309 + 0.149010i
\(305\) 28.0563 + 48.5950i 1.60650 + 2.78254i
\(306\) 0 0
\(307\) 2.48528 0.141843 0.0709213 0.997482i \(-0.477406\pi\)
0.0709213 + 0.997482i \(0.477406\pi\)
\(308\) 7.32843 38.0796i 0.417576 2.16979i
\(309\) 0 0
\(310\) 14.6569 25.3864i 0.832453 1.44185i
\(311\) 11.3137 + 19.5959i 0.641542 + 1.11118i 0.985089 + 0.172047i \(0.0550381\pi\)
−0.343547 + 0.939135i \(0.611629\pi\)
\(312\) 0 0
\(313\) −15.6421 + 27.0930i −0.884146 + 1.53139i −0.0374562 + 0.999298i \(0.511925\pi\)
−0.846690 + 0.532087i \(0.821408\pi\)
\(314\) 25.7279 1.45191
\(315\) 0 0
\(316\) 8.97056 0.504634
\(317\) 14.8995 25.8067i 0.836839 1.44945i −0.0556853 0.998448i \(-0.517734\pi\)
0.892524 0.450999i \(-0.148932\pi\)
\(318\) 0 0
\(319\) −9.24264 16.0087i −0.517489 0.896316i
\(320\) 18.8137 32.5863i 1.05172 1.82163i
\(321\) 0 0
\(322\) 8.82843 + 7.64564i 0.491989 + 0.426075i
\(323\) −3.65685 −0.203473
\(324\) 0 0
\(325\) −13.6569 23.6544i −0.757546 1.31211i
\(326\) −26.5208 45.9354i −1.46885 2.54413i
\(327\) 0 0
\(328\) −33.7990 −1.86624
\(329\) −3.08579 + 16.0342i −0.170125 + 0.883995i
\(330\) 0 0
\(331\) 2.75736 4.77589i 0.151558 0.262506i −0.780242 0.625477i \(-0.784904\pi\)
0.931800 + 0.362971i \(0.118238\pi\)
\(332\) 7.98528 + 13.8309i 0.438249 + 0.759070i
\(333\) 0 0
\(334\) 10.6569 18.4582i 0.583117 1.00999i
\(335\) −45.9411 −2.51003
\(336\) 0 0
\(337\) −6.48528 −0.353276 −0.176638 0.984276i \(-0.556522\pi\)
−0.176638 + 0.984276i \(0.556522\pi\)
\(338\) 6.03553 10.4539i 0.328290 0.568615i
\(339\) 0 0
\(340\) −26.7990 46.4172i −1.45338 2.51733i
\(341\) 6.07107 10.5154i 0.328767 0.569441i
\(342\) 0 0
\(343\) −10.0000 + 15.5885i −0.539949 + 0.841698i
\(344\) −55.8701 −3.01231
\(345\) 0 0
\(346\) 3.41421 + 5.91359i 0.183549 + 0.317917i
\(347\) 10.2279 + 17.7153i 0.549064 + 0.951006i 0.998339 + 0.0576128i \(0.0183489\pi\)
−0.449275 + 0.893393i \(0.648318\pi\)
\(348\) 0 0
\(349\) 14.0000 0.749403 0.374701 0.927146i \(-0.377745\pi\)
0.374701 + 0.927146i \(0.377745\pi\)
\(350\) −58.2843 + 20.1903i −3.11543 + 1.07921i
\(351\) 0 0
\(352\) 3.03553 5.25770i 0.161795 0.280236i
\(353\) −0.656854 1.13770i −0.0349608 0.0605539i 0.848016 0.529971i \(-0.177797\pi\)
−0.882976 + 0.469417i \(0.844464\pi\)
\(354\) 0 0
\(355\) 8.31371 14.3998i 0.441246 0.764260i
\(356\) −41.4558 −2.19716
\(357\) 0 0
\(358\) 25.3137 1.33787
\(359\) −3.08579 + 5.34474i −0.162862 + 0.282085i −0.935894 0.352282i \(-0.885406\pi\)
0.773032 + 0.634367i \(0.218739\pi\)
\(360\) 0 0
\(361\) −0.500000 0.866025i −0.0263158 0.0455803i
\(362\) 14.0711 24.3718i 0.739559 1.28095i
\(363\) 0 0
\(364\) 21.6569 + 18.7554i 1.13513 + 0.983049i
\(365\) −39.4853 −2.06675
\(366\) 0 0
\(367\) −14.8284 25.6836i −0.774038 1.34067i −0.935334 0.353766i \(-0.884901\pi\)
0.161296 0.986906i \(-0.448433\pi\)
\(368\) −2.74264 4.75039i −0.142970 0.247631i
\(369\) 0 0
\(370\) 10.8284 0.562943
\(371\) 4.00000 + 3.46410i 0.207670 + 0.179847i
\(372\) 0 0
\(373\) −10.1421 + 17.5667i −0.525140 + 0.909569i 0.474431 + 0.880292i \(0.342654\pi\)
−0.999571 + 0.0292765i \(0.990680\pi\)
\(374\) −16.8995 29.2708i −0.873852 1.51356i
\(375\) 0 0
\(376\) 13.6213 23.5928i 0.702466 1.21671i
\(377\) 13.6569 0.703364
\(378\) 0 0
\(379\) −16.4853 −0.846792 −0.423396 0.905945i \(-0.639162\pi\)
−0.423396 + 0.905945i \(0.639162\pi\)
\(380\) 7.32843 12.6932i 0.375940 0.651148i
\(381\) 0 0
\(382\) 14.2782 + 24.7305i 0.730535 + 1.26532i
\(383\) 8.00000 13.8564i 0.408781 0.708029i −0.585973 0.810331i \(-0.699287\pi\)
0.994753 + 0.102302i \(0.0326207\pi\)
\(384\) 0 0
\(385\) −36.6421 + 12.6932i −1.86746 + 0.646906i
\(386\) 9.65685 0.491521
\(387\) 0 0
\(388\) −32.2132 55.7949i −1.63538 2.83256i
\(389\) 2.17157 + 3.76127i 0.110103 + 0.190704i 0.915812 0.401608i \(-0.131549\pi\)
−0.805709 + 0.592312i \(0.798215\pi\)
\(390\) 0 0
\(391\) 6.68629 0.338140
\(392\) 24.2782 19.1141i 1.22623 0.965408i
\(393\) 0 0
\(394\) −21.1066 + 36.5577i −1.06334 + 1.84175i
\(395\) −4.48528 7.76874i −0.225679 0.390887i
\(396\) 0 0
\(397\) −2.65685 + 4.60181i −0.133344 + 0.230958i −0.924964 0.380056i \(-0.875905\pi\)
0.791620 + 0.611014i \(0.209238\pi\)
\(398\) 8.07107 0.404566
\(399\) 0 0
\(400\) 28.9706 1.44853
\(401\) −0.343146 + 0.594346i −0.0171359 + 0.0296802i −0.874466 0.485086i \(-0.838788\pi\)
0.857330 + 0.514767i \(0.172121\pi\)
\(402\) 0 0
\(403\) 4.48528 + 7.76874i 0.223428 + 0.386988i
\(404\) −6.67157 + 11.5555i −0.331923 + 0.574908i
\(405\) 0 0
\(406\) 5.82843 30.2854i 0.289260 1.50304i
\(407\) 4.48528 0.222327
\(408\) 0 0
\(409\) −2.65685 4.60181i −0.131373 0.227545i 0.792833 0.609439i \(-0.208605\pi\)
−0.924206 + 0.381894i \(0.875272\pi\)
\(410\) 35.3848 + 61.2882i 1.74753 + 3.02681i
\(411\) 0 0
\(412\) 14.0000 0.689730
\(413\) −21.6569 18.7554i −1.06566 0.922892i
\(414\) 0 0
\(415\) 7.98528 13.8309i 0.391982 0.678933i
\(416\) 2.24264 + 3.88437i 0.109955 + 0.190447i
\(417\) 0 0
\(418\) 4.62132 8.00436i 0.226036 0.391506i
\(419\) 10.1716 0.496914 0.248457 0.968643i \(-0.420077\pi\)
0.248457 + 0.968643i \(0.420077\pi\)
\(420\) 0 0
\(421\) 19.1716 0.934365 0.467183 0.884161i \(-0.345269\pi\)
0.467183 + 0.884161i \(0.345269\pi\)
\(422\) −19.8995 + 34.4669i −0.968692 + 1.67782i
\(423\) 0 0
\(424\) −4.41421 7.64564i −0.214373 0.371305i
\(425\) −17.6569 + 30.5826i −0.856483 + 1.48347i
\(426\) 0 0
\(427\) −7.32843 + 38.0796i −0.354647 + 1.84280i
\(428\) 10.8284 0.523412
\(429\) 0 0
\(430\) 58.4914 + 101.310i 2.82070 + 4.88560i
\(431\) −11.5858 20.0672i −0.558068 0.966602i −0.997658 0.0684031i \(-0.978210\pi\)
0.439590 0.898199i \(-0.355124\pi\)
\(432\) 0 0
\(433\) 8.48528 0.407777 0.203888 0.978994i \(-0.434642\pi\)
0.203888 + 0.978994i \(0.434642\pi\)
\(434\) 19.1421 6.63103i 0.918852 0.318300i
\(435\) 0 0
\(436\) −34.7279 + 60.1505i −1.66317 + 2.88069i
\(437\) 0.914214 + 1.58346i 0.0437328 + 0.0757474i
\(438\) 0 0
\(439\) 9.89949 17.1464i 0.472477 0.818354i −0.527027 0.849849i \(-0.676693\pi\)
0.999504 + 0.0314943i \(0.0100266\pi\)
\(440\) 64.6985 3.08438
\(441\) 0 0
\(442\) 24.9706 1.18773
\(443\) −16.8284 + 29.1477i −0.799543 + 1.38485i 0.120372 + 0.992729i \(0.461591\pi\)
−0.919914 + 0.392120i \(0.871742\pi\)
\(444\) 0 0
\(445\) 20.7279 + 35.9018i 0.982598 + 1.70191i
\(446\) −26.3137 + 45.5767i −1.24599 + 2.15812i
\(447\) 0 0
\(448\) 24.5711 8.51167i 1.16087 0.402138i
\(449\) −26.1421 −1.23372 −0.616862 0.787071i \(-0.711596\pi\)
−0.616862 + 0.787071i \(0.711596\pi\)
\(450\) 0 0
\(451\) 14.6569 + 25.3864i 0.690164 + 1.19540i
\(452\) −24.5563 42.5328i −1.15503 2.00058i
\(453\) 0 0
\(454\) 15.3137 0.718708
\(455\) 5.41421 28.1331i 0.253822 1.31890i
\(456\) 0 0
\(457\) 7.32843 12.6932i 0.342809 0.593763i −0.642144 0.766584i \(-0.721955\pi\)
0.984953 + 0.172821i \(0.0552882\pi\)
\(458\) 18.8995 + 32.7349i 0.883115 + 1.52960i
\(459\) 0 0
\(460\) −13.3995 + 23.2086i −0.624755 + 1.08211i
\(461\) −22.4558 −1.04587 −0.522936 0.852372i \(-0.675164\pi\)
−0.522936 + 0.852372i \(0.675164\pi\)
\(462\) 0 0
\(463\) −20.6569 −0.960005 −0.480003 0.877267i \(-0.659364\pi\)
−0.480003 + 0.877267i \(0.659364\pi\)
\(464\) −7.24264 + 12.5446i −0.336231 + 0.582369i
\(465\) 0 0
\(466\) 7.24264 + 12.5446i 0.335509 + 0.581118i
\(467\) 12.7426 22.0709i 0.589659 1.02132i −0.404618 0.914486i \(-0.632595\pi\)
0.994277 0.106834i \(-0.0340712\pi\)
\(468\) 0 0
\(469\) −24.0000 20.7846i −1.10822 0.959744i
\(470\) −57.0416 −2.63113
\(471\) 0 0
\(472\) 23.8995 + 41.3951i 1.10006 + 1.90537i
\(473\) 24.2279 + 41.9640i 1.11400 + 1.92951i
\(474\) 0 0
\(475\) −9.65685 −0.443087
\(476\) 7.00000 36.3731i 0.320844 1.66716i
\(477\) 0 0
\(478\) 2.82843 4.89898i 0.129369 0.224074i
\(479\) 6.08579 + 10.5409i 0.278067 + 0.481626i 0.970904 0.239468i \(-0.0769730\pi\)
−0.692838 + 0.721094i \(0.743640\pi\)
\(480\) 0 0
\(481\) −1.65685 + 2.86976i −0.0755461 + 0.130850i
\(482\) 47.7990 2.17718
\(483\) 0 0
\(484\) 14.0000 0.636364
\(485\) −32.2132 + 55.7949i −1.46273 + 2.53352i
\(486\) 0 0
\(487\) 0.171573 + 0.297173i 0.00777471 + 0.0134662i 0.869887 0.493252i \(-0.164192\pi\)
−0.862112 + 0.506718i \(0.830859\pi\)
\(488\) 32.3492 56.0305i 1.46438 2.53638i
\(489\) 0 0
\(490\) −60.0772 24.0131i −2.71401 1.08480i
\(491\) 8.51472 0.384264 0.192132 0.981369i \(-0.438460\pi\)
0.192132 + 0.981369i \(0.438460\pi\)
\(492\) 0 0
\(493\) −8.82843 15.2913i −0.397612 0.688685i
\(494\) 3.41421 + 5.91359i 0.153613 + 0.266065i
\(495\) 0 0
\(496\) −9.51472 −0.427223
\(497\) 10.8579 3.76127i 0.487042 0.168716i
\(498\) 0 0
\(499\) −9.98528 + 17.2950i −0.447003 + 0.774231i −0.998189 0.0601507i \(-0.980842\pi\)
0.551187 + 0.834382i \(0.314175\pi\)
\(500\) −34.1274 59.1104i −1.52622 2.64350i
\(501\) 0 0
\(502\) −16.2782 + 28.1946i −0.726530 + 1.25839i
\(503\) −20.1127 −0.896781 −0.448390 0.893838i \(-0.648003\pi\)
−0.448390 + 0.893838i \(0.648003\pi\)
\(504\) 0 0
\(505\) 13.3431 0.593762
\(506\) −8.44975 + 14.6354i −0.375637 + 0.650623i
\(507\) 0 0
\(508\) −32.4853 56.2662i −1.44130 2.49641i
\(509\) −5.24264 + 9.08052i −0.232376 + 0.402487i −0.958507 0.285070i \(-0.907983\pi\)
0.726131 + 0.687557i \(0.241317\pi\)
\(510\) 0 0
\(511\) −20.6274 17.8639i −0.912503 0.790251i
\(512\) −31.2426 −1.38074
\(513\) 0 0
\(514\) 31.3848 + 54.3600i 1.38432 + 2.39772i
\(515\) −7.00000 12.1244i −0.308457 0.534263i
\(516\) 0 0
\(517\) −23.6274 −1.03913
\(518\) 5.65685 + 4.89898i 0.248548 + 0.215249i
\(519\) 0 0
\(520\) −23.8995 + 41.3951i −1.04806 + 1.81530i
\(521\) −20.4853 35.4815i −0.897476 1.55447i −0.830709 0.556706i \(-0.812065\pi\)
−0.0667670 0.997769i \(-0.521268\pi\)
\(522\) 0 0
\(523\) 18.8995 32.7349i 0.826417 1.43140i −0.0744141 0.997227i \(-0.523709\pi\)
0.900831 0.434169i \(-0.142958\pi\)
\(524\) −39.5980 −1.72985
\(525\) 0 0
\(526\) −27.3137 −1.19093
\(527\) 5.79899 10.0441i 0.252608 0.437530i
\(528\) 0 0
\(529\) 9.82843 + 17.0233i 0.427323 + 0.740145i
\(530\) −9.24264 + 16.0087i −0.401475 + 0.695375i
\(531\) 0 0
\(532\) 9.57107 3.31552i 0.414958 0.143746i
\(533\) −21.6569 −0.938062
\(534\) 0 0
\(535\) −5.41421 9.37769i −0.234077 0.405433i
\(536\) 26.4853 + 45.8739i 1.14399 + 1.98145i
\(537\) 0 0
\(538\) 19.3137 0.832673
\(539\) −24.8848 9.94655i −1.07186 0.428428i
\(540\) 0 0
\(541\) −11.5000 + 19.9186i −0.494424 + 0.856367i −0.999979 0.00642713i \(-0.997954\pi\)
0.505556 + 0.862794i \(0.331288\pi\)
\(542\) 23.6924 + 41.0364i 1.01768 + 1.76267i
\(543\) 0 0
\(544\) 2.89949 5.02207i 0.124315 0.215320i
\(545\) 69.4558 2.97516
\(546\) 0 0
\(547\) −5.79899 −0.247947 −0.123973 0.992286i \(-0.539564\pi\)
−0.123973 + 0.992286i \(0.539564\pi\)
\(548\) −26.4706 + 45.8484i −1.13077 + 1.95854i
\(549\) 0 0
\(550\) −44.6274 77.2970i −1.90292 3.29595i
\(551\) 2.41421 4.18154i 0.102849 0.178140i
\(552\) 0 0
\(553\) 1.17157 6.08767i 0.0498203 0.258874i
\(554\) 31.3848 1.33341
\(555\) 0 0
\(556\) 12.7426 + 22.0709i 0.540408 + 0.936015i
\(557\) 7.22792 + 12.5191i 0.306257 + 0.530452i 0.977540 0.210748i \(-0.0675900\pi\)
−0.671283 + 0.741201i \(0.734257\pi\)
\(558\) 0 0
\(559\) −35.7990 −1.51414
\(560\) 22.9706 + 19.8931i 0.970683 + 0.840637i
\(561\) 0 0
\(562\) 8.41421 14.5738i 0.354932 0.614761i
\(563\) 0.242641 + 0.420266i 0.0102261 + 0.0177121i 0.871093 0.491118i \(-0.163412\pi\)
−0.860867 + 0.508830i \(0.830078\pi\)
\(564\) 0 0
\(565\) −24.5563 + 42.5328i −1.03309 + 1.78937i
\(566\) 76.3553 3.20945
\(567\) 0 0
\(568\) −19.1716 −0.804421
\(569\) −22.8995 + 39.6631i −0.959997 + 1.66276i −0.237502 + 0.971387i \(0.576329\pi\)
−0.722495 + 0.691376i \(0.757005\pi\)
\(570\) 0 0
\(571\) −13.6421 23.6289i −0.570906 0.988838i −0.996473 0.0839109i \(-0.973259\pi\)
0.425568 0.904927i \(-0.360074\pi\)
\(572\) −20.7279 + 35.9018i −0.866678 + 1.50113i
\(573\) 0 0
\(574\) −9.24264 + 48.0262i −0.385780 + 2.00457i
\(575\) 17.6569 0.736342
\(576\) 0 0
\(577\) −9.15685 15.8601i −0.381205 0.660266i 0.610030 0.792378i \(-0.291157\pi\)
−0.991235 + 0.132112i \(0.957824\pi\)
\(578\) 4.37868 + 7.58410i 0.182129 + 0.315457i
\(579\) 0 0
\(580\) 70.7696 2.93855
\(581\) 10.4289 3.61269i 0.432665 0.149880i
\(582\) 0 0
\(583\) −3.82843 + 6.63103i −0.158557 + 0.274629i
\(584\) 22.7635 + 39.4275i 0.941959 + 1.63152i
\(585\) 0 0
\(586\) −1.00000 + 1.73205i −0.0413096 + 0.0715504i
\(587\) 26.6274 1.09903 0.549516 0.835483i \(-0.314812\pi\)
0.549516 + 0.835483i \(0.314812\pi\)
\(588\) 0 0
\(589\) 3.17157 0.130682
\(590\) 50.0416 86.6746i 2.06018 3.56834i
\(591\) 0 0
\(592\) −1.75736 3.04384i −0.0722270 0.125101i
\(593\) 13.7426 23.8030i 0.564343 0.977470i −0.432768 0.901505i \(-0.642463\pi\)
0.997111 0.0759647i \(-0.0242036\pi\)
\(594\) 0 0
\(595\) −35.0000 + 12.1244i −1.43486 + 0.497050i
\(596\) −14.6569 −0.600368
\(597\) 0 0
\(598\) −6.24264 10.8126i −0.255281 0.442159i
\(599\) −14.5563 25.2123i −0.594756 1.03015i −0.993581 0.113121i \(-0.963915\pi\)
0.398825 0.917027i \(-0.369418\pi\)
\(600\) 0 0
\(601\) −8.68629 −0.354321 −0.177161 0.984182i \(-0.556691\pi\)
−0.177161 + 0.984182i \(0.556691\pi\)
\(602\) −15.2782 + 79.3877i −0.622692 + 3.23560i
\(603\) 0 0
\(604\) 17.8284 30.8797i 0.725428 1.25648i
\(605\) −7.00000 12.1244i −0.284590 0.492925i
\(606\) 0 0
\(607\) −6.92893 + 12.0013i −0.281237 + 0.487116i −0.971690 0.236261i \(-0.924078\pi\)
0.690453 + 0.723377i \(0.257411\pi\)
\(608\) 1.58579 0.0643121
\(609\) 0 0
\(610\) −135.468 −5.48494
\(611\) 8.72792 15.1172i 0.353094 0.611577i
\(612\) 0 0
\(613\) 18.3137 + 31.7203i 0.739684 + 1.28117i 0.952638 + 0.304108i \(0.0983582\pi\)
−0.212954 + 0.977062i \(0.568308\pi\)
\(614\) −3.00000 + 5.19615i −0.121070 + 0.209700i
\(615\) 0 0
\(616\) 33.7990 + 29.2708i 1.36180 + 1.17935i
\(617\) 32.1716 1.29518 0.647589 0.761989i \(-0.275777\pi\)
0.647589 + 0.761989i \(0.275777\pi\)
\(618\) 0 0
\(619\) −4.67157 8.09140i −0.187766 0.325221i 0.756739 0.653717i \(-0.226791\pi\)
−0.944505 + 0.328496i \(0.893458\pi\)
\(620\) 23.2426 + 40.2574i 0.933447 + 1.61678i
\(621\) 0 0
\(622\) −54.6274 −2.19036
\(623\) −5.41421 + 28.1331i −0.216916 + 1.12713i
\(624\) 0 0
\(625\) −9.98528 + 17.2950i −0.399411 + 0.691801i
\(626\) −37.7635 65.4082i −1.50933 2.61424i
\(627\) 0 0
\(628\) −20.3995 + 35.3330i −0.814028 + 1.40994i
\(629\) 4.28427 0.170825
\(630\) 0 0
\(631\) −16.6569 −0.663099 −0.331549 0.943438i \(-0.607571\pi\)
−0.331549 + 0.943438i \(0.607571\pi\)
\(632\) −5.17157 + 8.95743i −0.205714 + 0.356307i
\(633\) 0 0
\(634\) 35.9706 + 62.3028i 1.42857 + 2.47436i
\(635\) −32.4853 + 56.2662i −1.28914 + 2.23285i
\(636\) 0 0
\(637\) 15.5563 12.2474i 0.616365 0.485262i
\(638\) 44.6274 1.76682
\(639\) 0 0
\(640\) 39.3492 + 68.1549i 1.55542 + 2.69406i
\(641\) −2.58579 4.47871i −0.102132 0.176899i 0.810431 0.585835i \(-0.199233\pi\)
−0.912563 + 0.408936i \(0.865900\pi\)
\(642\) 0 0
\(643\) 1.37258 0.0541294 0.0270647 0.999634i \(-0.491384\pi\)
0.0270647 + 0.999634i \(0.491384\pi\)
\(644\) −17.5000 + 6.06218i −0.689597 + 0.238883i
\(645\) 0 0
\(646\) 4.41421 7.64564i 0.173675 0.300814i
\(647\) 3.42893 + 5.93908i 0.134805 + 0.233490i 0.925523 0.378691i \(-0.123626\pi\)
−0.790718 + 0.612181i \(0.790292\pi\)
\(648\) 0 0
\(649\) 20.7279 35.9018i 0.813642 1.40927i
\(650\) 65.9411 2.58642
\(651\) 0 0
\(652\) 84.1127 3.29411
\(653\) 19.9706 34.5900i 0.781509 1.35361i −0.149554 0.988754i \(-0.547784\pi\)
0.931063 0.364859i \(-0.118883\pi\)
\(654\) 0 0
\(655\) 19.7990 + 34.2929i 0.773611 + 1.33993i
\(656\) 11.4853 19.8931i 0.448425 0.776695i
\(657\) 0 0
\(658\) −29.7990 25.8067i −1.16169 1.00605i
\(659\) 21.5147 0.838094 0.419047 0.907964i \(-0.362364\pi\)
0.419047 + 0.907964i \(0.362364\pi\)
\(660\) 0 0
\(661\) −6.14214 10.6385i −0.238901 0.413789i 0.721498 0.692417i \(-0.243454\pi\)
−0.960399 + 0.278627i \(0.910121\pi\)
\(662\) 6.65685 + 11.5300i 0.258726 + 0.448127i
\(663\) 0 0
\(664\) −18.4142 −0.714610
\(665\) −7.65685 6.63103i −0.296920 0.257140i
\(666\) 0 0
\(667\) −4.41421 + 7.64564i −0.170919 + 0.296040i
\(668\) 16.8995 + 29.2708i 0.653861 + 1.13252i
\(669\) 0 0
\(670\) 55.4558 96.0523i 2.14245 3.71083i
\(671\) −56.1127 −2.16621
\(672\) 0 0
\(673\) 2.82843 0.109028 0.0545139 0.998513i \(-0.482639\pi\)
0.0545139 + 0.998513i \(0.482639\pi\)
\(674\) 7.82843 13.5592i 0.301540 0.522282i
\(675\) 0 0
\(676\) 9.57107 + 16.5776i 0.368118 + 0.637599i
\(677\) −8.00000 + 13.8564i −0.307465 + 0.532545i −0.977807 0.209507i \(-0.932814\pi\)
0.670342 + 0.742052i \(0.266147\pi\)
\(678\) 0 0
\(679\) −42.0711 + 14.5738i −1.61454 + 0.559293i
\(680\) 61.7990 2.36988
\(681\) 0 0
\(682\) 14.6569 + 25.3864i 0.561240 + 0.972096i
\(683\) 2.51472 + 4.35562i 0.0962230 + 0.166663i 0.910118 0.414348i \(-0.135990\pi\)
−0.813895 + 0.581011i \(0.802657\pi\)
\(684\) 0 0
\(685\) 52.9411 2.02278
\(686\) −20.5208 39.7246i −0.783488 1.51669i
\(687\) 0 0
\(688\) 18.9853 32.8835i 0.723807 1.25367i
\(689\) −2.82843 4.89898i −0.107754 0.186636i
\(690\) 0 0
\(691\) −6.00000 + 10.3923i −0.228251 + 0.395342i −0.957290 0.289130i \(-0.906634\pi\)
0.729039 + 0.684472i \(0.239967\pi\)
\(692\) −10.8284 −0.411635
\(693\) 0 0
\(694\) −49.3848 −1.87462
\(695\) 12.7426 22.0709i 0.483356 0.837197i
\(696\) 0 0
\(697\) 14.0000 + 24.2487i 0.530288 + 0.918485i
\(698\) −16.8995 + 29.2708i −0.639655 + 1.10792i
\(699\) 0 0
\(700\) 18.4853 96.0523i 0.698678 3.63044i
\(701\) −2.45584 −0.0927560 −0.0463780 0.998924i \(-0.514768\pi\)
−0.0463780 + 0.998924i \(0.514768\pi\)
\(702\) 0 0
\(703\) 0.585786 + 1.01461i 0.0220934 + 0.0382668i
\(704\) 18.8137 + 32.5863i 0.709068 + 1.22814i
\(705\) 0 0
\(706\) 3.17157 0.119364
\(707\) 6.97056 + 6.03668i 0.262155 + 0.227033i
\(708\) 0 0
\(709\) 7.98528 13.8309i 0.299894 0.519431i −0.676218 0.736702i \(-0.736382\pi\)
0.976111 + 0.217271i \(0.0697155\pi\)
\(710\) 20.0711 + 34.7641i 0.753254 + 1.30467i
\(711\) 0 0
\(712\) 23.8995 41.3951i 0.895671 1.55135i
\(713\) −5.79899 −0.217174
\(714\) 0 0
\(715\) 41.4558 1.55036
\(716\) −20.0711 + 34.7641i −0.750091 + 1.29920i
\(717\) 0 0
\(718\) −7.44975 12.9033i −0.278022 0.481548i
\(719\) −0.485281 + 0.840532i −0.0180979 + 0.0313466i −0.874933 0.484245i \(-0.839094\pi\)
0.856835 + 0.515591i \(0.172428\pi\)
\(720\) 0 0
\(721\) 1.82843 9.50079i 0.0680942 0.353828i
\(722\) 2.41421 0.0898477
\(723\) 0 0
\(724\) 22.3137 + 38.6485i 0.829282 + 1.43636i
\(725\) −23.3137 40.3805i −0.865849 1.49970i
\(726\) 0 0
\(727\) −13.0000 −0.482143 −0.241072 0.970507i \(-0.577499\pi\)
−0.241072 + 0.970507i \(0.577499\pi\)
\(728\) −31.2132 + 10.8126i −1.15684 + 0.400741i
\(729\) 0 0
\(730\) 47.6630 82.5547i 1.76408 3.05548i
\(731\) 23.1421 + 40.0834i 0.855943 + 1.48254i
\(732\) 0 0
\(733\) 11.0000 19.0526i 0.406294 0.703722i −0.588177 0.808732i \(-0.700154\pi\)
0.994471 + 0.105010i \(0.0334875\pi\)
\(734\) 71.5980 2.64273
\(735\) 0 0
\(736\) −2.89949 −0.106877
\(737\) 22.9706 39.7862i 0.846132 1.46554i
\(738\) 0 0
\(739\) 4.00000 + 6.92820i 0.147142 + 0.254858i 0.930170 0.367129i \(-0.119659\pi\)
−0.783028 + 0.621987i \(0.786326\pi\)
\(740\) −8.58579 + 14.8710i −0.315620 + 0.546670i
\(741\) 0 0
\(742\) −12.0711 + 4.18154i −0.443143 + 0.153509i
\(743\) −33.1716 −1.21695 −0.608473 0.793574i \(-0.708218\pi\)
−0.608473 + 0.793574i \(0.708218\pi\)
\(744\) 0 0
\(745\) 7.32843 + 12.6932i 0.268493 + 0.465043i
\(746\) −24.4853 42.4098i −0.896470 1.55273i
\(747\) 0 0
\(748\) 53.5980 1.95974
\(749\) 1.41421 7.34847i 0.0516742 0.268507i
\(750\) 0 0
\(751\) −17.3137 + 29.9882i −0.631786 + 1.09429i 0.355400 + 0.934714i \(0.384345\pi\)
−0.987186 + 0.159572i \(0.948989\pi\)
\(752\) 9.25736 + 16.0342i 0.337581 + 0.584708i
\(753\) 0 0
\(754\) −16.4853 + 28.5533i −0.600359 + 1.03985i
\(755\) −35.6569 −1.29769
\(756\) 0 0
\(757\) 9.34315 0.339582 0.169791 0.985480i \(-0.445691\pi\)
0.169791 + 0.985480i \(0.445691\pi\)
\(758\) 19.8995 34.4669i 0.722782 1.25190i
\(759\) 0 0
\(760\) 8.44975 + 14.6354i 0.306505 + 0.530881i
\(761\) −9.39949 + 16.2804i −0.340731 + 0.590164i −0.984569 0.174998i \(-0.944008\pi\)
0.643837 + 0.765162i \(0.277341\pi\)
\(762\) 0 0
\(763\) 36.2843 + 31.4231i 1.31358 + 1.13759i
\(764\) −45.2843 −1.63833
\(765\) 0 0
\(766\) 19.3137 + 33.4523i 0.697833 + 1.20868i
\(767\) 15.3137 + 26.5241i 0.552946 + 0.957731i
\(768\) 0 0
\(769\) 14.3137 0.516166 0.258083 0.966123i \(-0.416909\pi\)
0.258083 + 0.966123i \(0.416909\pi\)
\(770\) 17.6924 91.9323i 0.637589 3.31301i
\(771\) 0 0
\(772\) −7.65685 + 13.2621i −0.275576 + 0.477312i
\(773\) 1.41421 + 2.44949i 0.0508657 + 0.0881020i 0.890337 0.455302i \(-0.150469\pi\)
−0.839471 + 0.543404i \(0.817135\pi\)
\(774\) 0 0
\(775\) 15.3137 26.5241i 0.550085 0.952775i
\(776\) 74.2843 2.66665
\(777\) 0 0
\(778\) −10.4853 −0.375916
\(779\) −3.82843 + 6.63103i −0.137168 + 0.237581i
\(780\) 0 0
\(781\) 8.31371 + 14.3998i 0.297488 + 0.515264i
\(782\) −8.07107 + 13.9795i −0.288621 + 0.499906i
\(783\) 0 0
\(784\) 3.00000 + 20.7846i 0.107143 + 0.742307i
\(785\) 40.7990 1.45618
\(786\) 0 0
\(787\) −8.14214 14.1026i −0.290236 0.502703i 0.683630 0.729829i \(-0.260400\pi\)
−0.973865 + 0.227126i \(0.927067\pi\)
\(788\) −33.4706 57.9727i −1.19234 2.06519i
\(789\) 0 0
\(790\) 21.6569 0.770516
\(791\) −32.0711 + 11.1097i −1.14032 + 0.395017i
\(792\) 0 0
\(793\) 20.7279 35.9018i 0.736070 1.27491i
\(794\) −6.41421 11.1097i −0.227632 0.394270i
\(795\) 0 0
\(796\) −6.39949 + 11.0843i −0.226824 + 0.392871i
\(797\) −7.51472 −0.266185 −0.133092 0.991104i \(-0.542491\pi\)
−0.133092 + 0.991104i \(0.542491\pi\)
\(798\) 0 0
\(799\) −22.5685 −0.798418
\(800\) 7.65685 13.2621i 0.270711 0.468885i
\(801\) 0 0
\(802\) −0.828427 1.43488i −0.0292528 0.0506673i
\(803\) 19.7426 34.1953i 0.696703 1.20672i
\(804\) 0 0
\(805\) 14.0000 + 12.1244i 0.493435 + 0.427327i
\(806\) −21.6569 −0.762830
\(807\) 0 0
\(808\) −7.69239 13.3236i −0.270617 0.468723i
\(809\) −12.3995 21.4766i −0.435943 0.755075i 0.561429 0.827525i \(-0.310252\pi\)
−0.997372 + 0.0724494i \(0.976918\pi\)
\(810\) 0 0
\(811\) −12.1421 −0.426368 −0.213184 0.977012i \(-0.568383\pi\)
−0.213184 + 0.977012i \(0.568383\pi\)
\(812\) 36.9706 + 32.0174i 1.29741 + 1.12359i
\(813\) 0 0
\(814\) −5.41421 + 9.37769i −0.189768 + 0.328688i
\(815\) −42.0563 72.8437i −1.47317 2.55160i
\(816\) 0 0
\(817\) −6.32843 + 10.9612i −0.221404 + 0.383482i
\(818\) 12.8284 0.448535
\(819\) 0 0
\(820\) −112.225 −3.91908
\(821\) 3.42893 5.93908i 0.119671 0.207275i −0.799967 0.600045i \(-0.795150\pi\)
0.919637 + 0.392769i \(0.128483\pi\)
\(822\) 0 0
\(823\) −15.9853 27.6873i −0.557212 0.965119i −0.997728 0.0673745i \(-0.978538\pi\)
0.440516 0.897745i \(-0.354796\pi\)
\(824\) −8.07107 + 13.9795i −0.281169 + 0.486999i
\(825\) 0 0
\(826\) 65.3553 22.6398i 2.27400 0.787738i
\(827\) 15.1127 0.525520 0.262760 0.964861i \(-0.415367\pi\)
0.262760 + 0.964861i \(0.415367\pi\)
\(828\) 0 0
\(829\) 19.0711 + 33.0321i 0.662366 + 1.14725i 0.979992 + 0.199035i \(0.0637807\pi\)
−0.317627 + 0.948216i \(0.602886\pi\)
\(830\) 19.2782 + 33.3908i 0.669155 + 1.15901i
\(831\) 0 0
\(832\) −27.7990 −0.963757
\(833\) −23.7696 9.50079i −0.823566 0.329183i
\(834\) 0 0
\(835\) 16.8995 29.2708i 0.584831 1.01296i
\(836\) 7.32843 + 12.6932i 0.253459 + 0.439004i
\(837\) 0 0
\(838\) −12.2782 + 21.2664i −0.424143 + 0.734636i
\(839\) 45.2548 1.56237 0.781185 0.624299i \(-0.214615\pi\)
0.781185 + 0.624299i \(0.214615\pi\)
\(840\) 0 0
\(841\) −5.68629 −0.196079
\(842\) −23.1421 + 40.0834i −0.797531 + 1.38136i
\(843\) 0 0
\(844\) −31.5563 54.6572i −1.08621 1.88138i
\(845\) 9.57107 16.5776i 0.329255 0.570286i
\(846\) 0 0
\(847\) 1.82843 9.50079i 0.0628255 0.326451i
\(848\) 6.00000 0.206041
\(849\) 0 0
\(850\) −42.6274 73.8329i −1.46211 2.53245i
\(851\) −1.07107 1.85514i −0.0367157 0.0635935i
\(852\) 0 0
\(853\) −6.37258 −0.218193 −0.109097 0.994031i \(-0.534796\pi\)
−0.109097 + 0.994031i \(0.534796\pi\)
\(854\) −70.7696 61.2882i −2.42168 2.09724i
\(855\) 0 0
\(856\) −6.24264 + 10.8126i −0.213369 + 0.369566i
\(857\) −13.4142 23.2341i −0.458221 0.793662i 0.540646 0.841250i \(-0.318180\pi\)
−0.998867 + 0.0475883i \(0.984846\pi\)
\(858\) 0 0
\(859\) −15.4706 + 26.7958i −0.527849 + 0.914261i 0.471624 + 0.881800i \(0.343668\pi\)
−0.999473 + 0.0324613i \(0.989665\pi\)
\(860\) −185.510 −6.32583
\(861\) 0 0
\(862\) 55.9411 1.90536
\(863\) 3.58579 6.21076i 0.122062 0.211417i −0.798519 0.601970i \(-0.794383\pi\)
0.920581 + 0.390553i \(0.127716\pi\)
\(864\) 0 0
\(865\) 5.41421 + 9.37769i 0.184089 + 0.318851i
\(866\) −10.2426 + 17.7408i −0.348059 + 0.602856i
\(867\) 0 0
\(868\) −6.07107 + 31.5462i −0.206065 + 1.07075i
\(869\) 8.97056 0.304305
\(870\) 0 0
\(871\) 16.9706 + 29.3939i 0.575026 + 0.995974i
\(872\) −40.0416 69.3541i −1.35598 2.34863i
\(873\) 0 0
\(874\) −4.41421 −0.149313
\(875\) −44.5711 + 15.4399i −1.50678 + 0.521963i
\(876\) 0 0
\(877\) −10.8284 + 18.7554i −0.365650 + 0.633324i −0.988880 0.148714i \(-0.952487\pi\)
0.623230 + 0.782038i \(0.285820\pi\)
\(878\) 23.8995 + 41.3951i 0.806569 + 1.39702i
\(879\) 0 0
\(880\) −21.9853 + 38.0796i −0.741124 + 1.28366i
\(881\) 4.62742 0.155902 0.0779508 0.996957i \(-0.475162\pi\)
0.0779508 + 0.996957i \(0.475162\pi\)
\(882\) 0 0
\(883\) −44.9706 −1.51338 −0.756690 0.653774i \(-0.773185\pi\)
−0.756690 + 0.653774i \(0.773185\pi\)
\(884\) −19.7990 + 34.2929i −0.665912 + 1.15339i
\(885\) 0 0
\(886\) −40.6274 70.3688i −1.36490 2.36408i
\(887\) −7.72792 + 13.3852i −0.259478 + 0.449429i −0.966102 0.258160i \(-0.916884\pi\)
0.706624 + 0.707589i \(0.250217\pi\)
\(888\) 0 0
\(889\) −42.4264 + 14.6969i −1.42294 + 0.492919i
\(890\) −100.083 −3.35480
\(891\) 0 0
\(892\) −41.7279 72.2749i −1.39715 2.41994i
\(893\) −3.08579 5.34474i −0.103262 0.178855i
\(894\) 0 0
\(895\) 40.1421 1.34180
\(896\) −10.2782 + 53.4070i −0.343370 + 1.78420i
\(897\) 0 0
\(898\) 31.5563 54.6572i 1.05305 1.82393i
\(899\) 7.65685 + 13.2621i 0.255370 + 0.442314i
\(900\) 0 0
\(901\) −3.65685 + 6.33386i −0.121827 + 0.211011i
\(902\) −70.7696 −2.35637
\(903\) 0 0
\(904\) 56.6274 1.88340
\(905\) 22.3137 38.6485i 0.741733 1.28472i
\(906\) 0 0
\(907\) 9.82843 + 17.0233i 0.326348 + 0.565251i 0.981784 0.190000i \(-0.0608487\pi\)
−0.655437 + 0.755250i \(0.727515\pi\)
\(908\) −12.1421 + 21.0308i −0.402951 + 0.697931i
\(909\) 0 0
\(910\) 52.2843 + 45.2795i 1.73321 + 1.50100i
\(911\) −18.0000 −0.596367 −0.298183 0.954509i \(-0.596381\pi\)
−0.298183 + 0.954509i \(0.596381\pi\)
\(912\) 0 0
\(913\) 7.98528 + 13.8309i 0.264274 + 0.457736i
\(914\) 17.6924 + 30.6441i 0.585212 + 1.01362i
\(915\) 0 0
\(916\) −59.9411 −1.98051
\(917\) −5.17157 + 26.8723i −0.170780 + 0.887401i
\(918\) 0 0
\(919\) 21.6716 37.5363i 0.714879 1.23821i −0.248127 0.968728i \(-0.579815\pi\)
0.963006 0.269480i \(-0.0868517\pi\)
\(920\) −15.4497 26.7597i −0.509363 0.882243i
\(921\) 0 0
\(922\) 27.1066 46.9500i 0.892708 1.54622i
\(923\) −12.2843 −0.404342
\(924\) 0 0
\(925\) 11.3137 0.371992
\(926\) 24.9350 43.1887i 0.819416 1.41927i
\(927\) 0 0
\(928\) 3.82843 + 6.63103i 0.125674 + 0.217674i
\(929\) 8.22792 14.2512i 0.269949 0.467566i −0.698899 0.715220i \(-0.746326\pi\)
0.968848 + 0.247654i \(0.0796597\pi\)
\(930\) 0 0
\(931\) −1.00000 6.92820i −0.0327737 0.227063i
\(932\) −22.9706 −0.752426
\(933\) 0 0
\(934\) 30.7635 + 53.2839i 1.00661 + 1.74350i
\(935\) −26.7990 46.4172i −0.876421 1.51801i
\(936\) 0 0
\(937\) −27.0000 −0.882052 −0.441026 0.897494i \(-0.645385\pi\)
−0.441026 + 0.897494i \(0.645385\pi\)
\(938\) 72.4264 25.0892i 2.36481 0.819193i
\(939\) 0 0
\(940\) 45.2279 78.3371i 1.47517 2.55507i
\(941\) 29.9706 + 51.9105i 0.977012 + 1.69224i 0.673128 + 0.739526i \(0.264950\pi\)
0.303885 + 0.952709i \(0.401716\pi\)
\(942\) 0 0
\(943\) 7.00000 12.1244i 0.227951 0.394823i
\(944\) −32.4853 −1.05731
\(945\) 0 0
\(946\) −116.983 −3.80344
\(947\) −8.34315 + 14.4508i −0.271116 + 0.469586i −0.969148 0.246480i \(-0.920726\pi\)
0.698032 + 0.716067i \(0.254059\pi\)
\(948\) 0 0
\(949\) 14.5858 + 25.2633i 0.473475 + 0.820082i
\(950\) 11.6569 20.1903i 0.378198 0.655059i
\(951\) 0 0
\(952\) 32.2843 + 27.9590i 1.04634 + 0.906156i
\(953\) 26.6274 0.862547 0.431273 0.902221i \(-0.358064\pi\)
0.431273 + 0.902221i \(0.358064\pi\)
\(954\) 0 0
\(955\) 22.6421 + 39.2173i 0.732682 + 1.26904i
\(956\) 4.48528 + 7.76874i 0.145064 + 0.251259i
\(957\) 0 0
\(958\) −29.3848 −0.949379
\(959\) 27.6569 + 23.9515i 0.893086 + 0.773436i
\(960\) 0 0
\(961\) 10.4706 18.1355i 0.337760 0.585018i
\(962\) −4.00000 6.92820i −0.128965 0.223374i
\(963\) 0 0
\(964\) −37.8995 + 65.6439i −1.22066 + 2.11425i
\(965\) 15.3137 0.492966
\(966\) 0 0
\(967\) −16.0000 −0.514525 −0.257263 0.966342i \(-0.582821\pi\)
−0.257263 + 0.966342i \(0.582821\pi\)
\(968\) −8.07107 + 13.9795i −0.259414 + 0.449318i
\(969\) 0 0
\(970\) −77.7696 134.701i −2.49703 4.32498i
\(971\) −19.8995 + 34.4669i −0.638605 + 1.10610i 0.347134 + 0.937816i \(0.387155\pi\)
−0.985739 + 0.168281i \(0.946178\pi\)
\(972\) 0 0
\(973\) 16.6421 5.76500i 0.533522 0.184818i
\(974\) −0.828427 −0.0265445
\(975\) 0 0
\(976\) 21.9853 + 38.0796i 0.703732 + 1.21890i
\(977\) 11.5563 + 20.0162i 0.369720 + 0.640374i 0.989522 0.144384i \(-0.0461202\pi\)
−0.619801 + 0.784759i \(0.712787\pi\)
\(978\) 0 0
\(979\) −41.4558 −1.32493
\(980\) 80.6127 63.4660i 2.57508 2.02735i
\(981\) 0 0
\(982\) −10.2782 + 17.8023i −0.327990 + 0.568095i
\(983\) 1.72792 + 2.99285i 0.0551122 + 0.0954571i 0.892265 0.451512i \(-0.149115\pi\)
−0.837153 + 0.546969i \(0.815782\pi\)
\(984\) 0 0
\(985\) −33.4706 + 57.9727i −1.06646 + 1.84716i
\(986\) 42.6274 1.35753
\(987\) 0 0
\(988\) −10.8284 −0.344498
\(989\) 11.5711 20.0417i 0.367939 0.637288i
\(990\) 0 0
\(991\) −26.6274 46.1200i −0.845848 1.46505i −0.884883 0.465813i \(-0.845762\pi\)
0.0390352 0.999238i \(-0.487572\pi\)
\(992\) −2.51472 + 4.35562i −0.0798424 + 0.138291i
\(993\) 0 0
\(994\) −5.24264 + 27.2416i −0.166286 + 0.864050i
\(995\) 12.7990 0.405755
\(996\) 0 0
\(997\) 15.0000 + 25.9808i 0.475055 + 0.822819i 0.999592 0.0285686i \(-0.00909491\pi\)
−0.524537 + 0.851388i \(0.675762\pi\)
\(998\) −24.1066 41.7539i −0.763081 1.32170i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1197.2.j.d.856.1 4
3.2 odd 2 399.2.j.c.58.2 4
7.2 even 3 8379.2.a.bm.1.2 2
7.4 even 3 inner 1197.2.j.d.172.1 4
7.5 odd 6 8379.2.a.bh.1.2 2
21.2 odd 6 2793.2.a.o.1.1 2
21.5 even 6 2793.2.a.n.1.1 2
21.11 odd 6 399.2.j.c.172.2 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
399.2.j.c.58.2 4 3.2 odd 2
399.2.j.c.172.2 yes 4 21.11 odd 6
1197.2.j.d.172.1 4 7.4 even 3 inner
1197.2.j.d.856.1 4 1.1 even 1 trivial
2793.2.a.n.1.1 2 21.5 even 6
2793.2.a.o.1.1 2 21.2 odd 6
8379.2.a.bh.1.2 2 7.5 odd 6
8379.2.a.bm.1.2 2 7.2 even 3