Properties

Label 1197.2.j.b.856.1
Level $1197$
Weight $2$
Character 1197.856
Analytic conductor $9.558$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1197,2,Mod(172,1197)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1197.172"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1197, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1197 = 3^{2} \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1197.j (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,2,0,-2,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.55809312195\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 399)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 856.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 1197.856
Dual form 1197.2.j.b.172.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 - 1.73205i) q^{2} +(-1.00000 - 1.73205i) q^{4} +(0.500000 - 0.866025i) q^{5} +(2.00000 - 1.73205i) q^{7} +(-1.00000 - 1.73205i) q^{10} +(2.00000 + 3.46410i) q^{11} +4.00000 q^{13} +(-1.00000 - 5.19615i) q^{14} +(2.00000 - 3.46410i) q^{16} +(1.50000 + 2.59808i) q^{17} +(0.500000 - 0.866025i) q^{19} -2.00000 q^{20} +8.00000 q^{22} +(-1.50000 + 2.59808i) q^{23} +(2.00000 + 3.46410i) q^{25} +(4.00000 - 6.92820i) q^{26} +(-5.00000 - 1.73205i) q^{28} -10.0000 q^{29} +(-4.00000 - 6.92820i) q^{32} +6.00000 q^{34} +(-0.500000 - 2.59808i) q^{35} +(3.00000 - 5.19615i) q^{37} +(-1.00000 - 1.73205i) q^{38} -2.00000 q^{41} -7.00000 q^{43} +(4.00000 - 6.92820i) q^{44} +(3.00000 + 5.19615i) q^{46} +(1.00000 - 6.92820i) q^{49} +8.00000 q^{50} +(-4.00000 - 6.92820i) q^{52} +(-6.00000 - 10.3923i) q^{53} +4.00000 q^{55} +(-10.0000 + 17.3205i) q^{58} +(6.00000 + 10.3923i) q^{59} +(-5.00000 + 8.66025i) q^{61} -8.00000 q^{64} +(2.00000 - 3.46410i) q^{65} +(-5.00000 - 8.66025i) q^{67} +(3.00000 - 5.19615i) q^{68} +(-5.00000 - 1.73205i) q^{70} -6.00000 q^{71} +(-3.00000 - 5.19615i) q^{73} +(-6.00000 - 10.3923i) q^{74} -2.00000 q^{76} +(10.0000 + 3.46410i) q^{77} +(5.00000 - 8.66025i) q^{79} +(-2.00000 - 3.46410i) q^{80} +(-2.00000 + 3.46410i) q^{82} -3.00000 q^{83} +3.00000 q^{85} +(-7.00000 + 12.1244i) q^{86} +(-7.00000 + 12.1244i) q^{89} +(8.00000 - 6.92820i) q^{91} +6.00000 q^{92} +(-0.500000 - 0.866025i) q^{95} -12.0000 q^{97} +(-11.0000 - 8.66025i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} - 2 q^{4} + q^{5} + 4 q^{7} - 2 q^{10} + 4 q^{11} + 8 q^{13} - 2 q^{14} + 4 q^{16} + 3 q^{17} + q^{19} - 4 q^{20} + 16 q^{22} - 3 q^{23} + 4 q^{25} + 8 q^{26} - 10 q^{28} - 20 q^{29} - 8 q^{32}+ \cdots - 22 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1197\mathbb{Z}\right)^\times\).

\(n\) \(514\) \(533\) \(1009\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 1.73205i 0.707107 1.22474i −0.258819 0.965926i \(-0.583333\pi\)
0.965926 0.258819i \(-0.0833333\pi\)
\(3\) 0 0
\(4\) −1.00000 1.73205i −0.500000 0.866025i
\(5\) 0.500000 0.866025i 0.223607 0.387298i −0.732294 0.680989i \(-0.761550\pi\)
0.955901 + 0.293691i \(0.0948835\pi\)
\(6\) 0 0
\(7\) 2.00000 1.73205i 0.755929 0.654654i
\(8\) 0 0
\(9\) 0 0
\(10\) −1.00000 1.73205i −0.316228 0.547723i
\(11\) 2.00000 + 3.46410i 0.603023 + 1.04447i 0.992361 + 0.123371i \(0.0393705\pi\)
−0.389338 + 0.921095i \(0.627296\pi\)
\(12\) 0 0
\(13\) 4.00000 1.10940 0.554700 0.832050i \(-0.312833\pi\)
0.554700 + 0.832050i \(0.312833\pi\)
\(14\) −1.00000 5.19615i −0.267261 1.38873i
\(15\) 0 0
\(16\) 2.00000 3.46410i 0.500000 0.866025i
\(17\) 1.50000 + 2.59808i 0.363803 + 0.630126i 0.988583 0.150675i \(-0.0481447\pi\)
−0.624780 + 0.780801i \(0.714811\pi\)
\(18\) 0 0
\(19\) 0.500000 0.866025i 0.114708 0.198680i
\(20\) −2.00000 −0.447214
\(21\) 0 0
\(22\) 8.00000 1.70561
\(23\) −1.50000 + 2.59808i −0.312772 + 0.541736i −0.978961 0.204046i \(-0.934591\pi\)
0.666190 + 0.745782i \(0.267924\pi\)
\(24\) 0 0
\(25\) 2.00000 + 3.46410i 0.400000 + 0.692820i
\(26\) 4.00000 6.92820i 0.784465 1.35873i
\(27\) 0 0
\(28\) −5.00000 1.73205i −0.944911 0.327327i
\(29\) −10.0000 −1.85695 −0.928477 0.371391i \(-0.878881\pi\)
−0.928477 + 0.371391i \(0.878881\pi\)
\(30\) 0 0
\(31\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(32\) −4.00000 6.92820i −0.707107 1.22474i
\(33\) 0 0
\(34\) 6.00000 1.02899
\(35\) −0.500000 2.59808i −0.0845154 0.439155i
\(36\) 0 0
\(37\) 3.00000 5.19615i 0.493197 0.854242i −0.506772 0.862080i \(-0.669162\pi\)
0.999969 + 0.00783774i \(0.00249486\pi\)
\(38\) −1.00000 1.73205i −0.162221 0.280976i
\(39\) 0 0
\(40\) 0 0
\(41\) −2.00000 −0.312348 −0.156174 0.987730i \(-0.549916\pi\)
−0.156174 + 0.987730i \(0.549916\pi\)
\(42\) 0 0
\(43\) −7.00000 −1.06749 −0.533745 0.845645i \(-0.679216\pi\)
−0.533745 + 0.845645i \(0.679216\pi\)
\(44\) 4.00000 6.92820i 0.603023 1.04447i
\(45\) 0 0
\(46\) 3.00000 + 5.19615i 0.442326 + 0.766131i
\(47\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(48\) 0 0
\(49\) 1.00000 6.92820i 0.142857 0.989743i
\(50\) 8.00000 1.13137
\(51\) 0 0
\(52\) −4.00000 6.92820i −0.554700 0.960769i
\(53\) −6.00000 10.3923i −0.824163 1.42749i −0.902557 0.430570i \(-0.858312\pi\)
0.0783936 0.996922i \(-0.475021\pi\)
\(54\) 0 0
\(55\) 4.00000 0.539360
\(56\) 0 0
\(57\) 0 0
\(58\) −10.0000 + 17.3205i −1.31306 + 2.27429i
\(59\) 6.00000 + 10.3923i 0.781133 + 1.35296i 0.931282 + 0.364299i \(0.118692\pi\)
−0.150148 + 0.988663i \(0.547975\pi\)
\(60\) 0 0
\(61\) −5.00000 + 8.66025i −0.640184 + 1.10883i 0.345207 + 0.938527i \(0.387809\pi\)
−0.985391 + 0.170305i \(0.945525\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −8.00000 −1.00000
\(65\) 2.00000 3.46410i 0.248069 0.429669i
\(66\) 0 0
\(67\) −5.00000 8.66025i −0.610847 1.05802i −0.991098 0.133135i \(-0.957496\pi\)
0.380251 0.924883i \(-0.375838\pi\)
\(68\) 3.00000 5.19615i 0.363803 0.630126i
\(69\) 0 0
\(70\) −5.00000 1.73205i −0.597614 0.207020i
\(71\) −6.00000 −0.712069 −0.356034 0.934473i \(-0.615871\pi\)
−0.356034 + 0.934473i \(0.615871\pi\)
\(72\) 0 0
\(73\) −3.00000 5.19615i −0.351123 0.608164i 0.635323 0.772246i \(-0.280867\pi\)
−0.986447 + 0.164083i \(0.947534\pi\)
\(74\) −6.00000 10.3923i −0.697486 1.20808i
\(75\) 0 0
\(76\) −2.00000 −0.229416
\(77\) 10.0000 + 3.46410i 1.13961 + 0.394771i
\(78\) 0 0
\(79\) 5.00000 8.66025i 0.562544 0.974355i −0.434730 0.900561i \(-0.643156\pi\)
0.997274 0.0737937i \(-0.0235106\pi\)
\(80\) −2.00000 3.46410i −0.223607 0.387298i
\(81\) 0 0
\(82\) −2.00000 + 3.46410i −0.220863 + 0.382546i
\(83\) −3.00000 −0.329293 −0.164646 0.986353i \(-0.552648\pi\)
−0.164646 + 0.986353i \(0.552648\pi\)
\(84\) 0 0
\(85\) 3.00000 0.325396
\(86\) −7.00000 + 12.1244i −0.754829 + 1.30740i
\(87\) 0 0
\(88\) 0 0
\(89\) −7.00000 + 12.1244i −0.741999 + 1.28518i 0.209585 + 0.977790i \(0.432789\pi\)
−0.951584 + 0.307389i \(0.900545\pi\)
\(90\) 0 0
\(91\) 8.00000 6.92820i 0.838628 0.726273i
\(92\) 6.00000 0.625543
\(93\) 0 0
\(94\) 0 0
\(95\) −0.500000 0.866025i −0.0512989 0.0888523i
\(96\) 0 0
\(97\) −12.0000 −1.21842 −0.609208 0.793011i \(-0.708512\pi\)
−0.609208 + 0.793011i \(0.708512\pi\)
\(98\) −11.0000 8.66025i −1.11117 0.874818i
\(99\) 0 0
\(100\) 4.00000 6.92820i 0.400000 0.692820i
\(101\) 5.50000 + 9.52628i 0.547270 + 0.947900i 0.998460 + 0.0554722i \(0.0176664\pi\)
−0.451190 + 0.892428i \(0.649000\pi\)
\(102\) 0 0
\(103\) −4.00000 + 6.92820i −0.394132 + 0.682656i −0.992990 0.118199i \(-0.962288\pi\)
0.598858 + 0.800855i \(0.295621\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −24.0000 −2.33109
\(107\) 5.00000 8.66025i 0.483368 0.837218i −0.516449 0.856318i \(-0.672747\pi\)
0.999818 + 0.0190994i \(0.00607989\pi\)
\(108\) 0 0
\(109\) 3.00000 + 5.19615i 0.287348 + 0.497701i 0.973176 0.230063i \(-0.0738931\pi\)
−0.685828 + 0.727764i \(0.740560\pi\)
\(110\) 4.00000 6.92820i 0.381385 0.660578i
\(111\) 0 0
\(112\) −2.00000 10.3923i −0.188982 0.981981i
\(113\) 8.00000 0.752577 0.376288 0.926503i \(-0.377200\pi\)
0.376288 + 0.926503i \(0.377200\pi\)
\(114\) 0 0
\(115\) 1.50000 + 2.59808i 0.139876 + 0.242272i
\(116\) 10.0000 + 17.3205i 0.928477 + 1.60817i
\(117\) 0 0
\(118\) 24.0000 2.20938
\(119\) 7.50000 + 2.59808i 0.687524 + 0.238165i
\(120\) 0 0
\(121\) −2.50000 + 4.33013i −0.227273 + 0.393648i
\(122\) 10.0000 + 17.3205i 0.905357 + 1.56813i
\(123\) 0 0
\(124\) 0 0
\(125\) 9.00000 0.804984
\(126\) 0 0
\(127\) 12.0000 1.06483 0.532414 0.846484i \(-0.321285\pi\)
0.532414 + 0.846484i \(0.321285\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) −4.00000 6.92820i −0.350823 0.607644i
\(131\) −2.50000 + 4.33013i −0.218426 + 0.378325i −0.954327 0.298764i \(-0.903426\pi\)
0.735901 + 0.677089i \(0.236759\pi\)
\(132\) 0 0
\(133\) −0.500000 2.59808i −0.0433555 0.225282i
\(134\) −20.0000 −1.72774
\(135\) 0 0
\(136\) 0 0
\(137\) −9.00000 15.5885i −0.768922 1.33181i −0.938148 0.346235i \(-0.887460\pi\)
0.169226 0.985577i \(-0.445873\pi\)
\(138\) 0 0
\(139\) −12.0000 −1.01783 −0.508913 0.860818i \(-0.669953\pi\)
−0.508913 + 0.860818i \(0.669953\pi\)
\(140\) −4.00000 + 3.46410i −0.338062 + 0.292770i
\(141\) 0 0
\(142\) −6.00000 + 10.3923i −0.503509 + 0.872103i
\(143\) 8.00000 + 13.8564i 0.668994 + 1.15873i
\(144\) 0 0
\(145\) −5.00000 + 8.66025i −0.415227 + 0.719195i
\(146\) −12.0000 −0.993127
\(147\) 0 0
\(148\) −12.0000 −0.986394
\(149\) −4.50000 + 7.79423i −0.368654 + 0.638528i −0.989355 0.145519i \(-0.953515\pi\)
0.620701 + 0.784047i \(0.286848\pi\)
\(150\) 0 0
\(151\) 5.00000 + 8.66025i 0.406894 + 0.704761i 0.994540 0.104357i \(-0.0332784\pi\)
−0.587646 + 0.809118i \(0.699945\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 16.0000 13.8564i 1.28932 1.11658i
\(155\) 0 0
\(156\) 0 0
\(157\) −0.500000 0.866025i −0.0399043 0.0691164i 0.845383 0.534160i \(-0.179372\pi\)
−0.885288 + 0.465044i \(0.846039\pi\)
\(158\) −10.0000 17.3205i −0.795557 1.37795i
\(159\) 0 0
\(160\) −8.00000 −0.632456
\(161\) 1.50000 + 7.79423i 0.118217 + 0.614271i
\(162\) 0 0
\(163\) −9.50000 + 16.4545i −0.744097 + 1.28881i 0.206518 + 0.978443i \(0.433787\pi\)
−0.950615 + 0.310372i \(0.899546\pi\)
\(164\) 2.00000 + 3.46410i 0.156174 + 0.270501i
\(165\) 0 0
\(166\) −3.00000 + 5.19615i −0.232845 + 0.403300i
\(167\) 2.00000 0.154765 0.0773823 0.997001i \(-0.475344\pi\)
0.0773823 + 0.997001i \(0.475344\pi\)
\(168\) 0 0
\(169\) 3.00000 0.230769
\(170\) 3.00000 5.19615i 0.230089 0.398527i
\(171\) 0 0
\(172\) 7.00000 + 12.1244i 0.533745 + 0.924473i
\(173\) 7.00000 12.1244i 0.532200 0.921798i −0.467093 0.884208i \(-0.654699\pi\)
0.999293 0.0375896i \(-0.0119679\pi\)
\(174\) 0 0
\(175\) 10.0000 + 3.46410i 0.755929 + 0.261861i
\(176\) 16.0000 1.20605
\(177\) 0 0
\(178\) 14.0000 + 24.2487i 1.04934 + 1.81752i
\(179\) −8.00000 13.8564i −0.597948 1.03568i −0.993124 0.117071i \(-0.962650\pi\)
0.395175 0.918606i \(-0.370684\pi\)
\(180\) 0 0
\(181\) −14.0000 −1.04061 −0.520306 0.853980i \(-0.674182\pi\)
−0.520306 + 0.853980i \(0.674182\pi\)
\(182\) −4.00000 20.7846i −0.296500 1.54066i
\(183\) 0 0
\(184\) 0 0
\(185\) −3.00000 5.19615i −0.220564 0.382029i
\(186\) 0 0
\(187\) −6.00000 + 10.3923i −0.438763 + 0.759961i
\(188\) 0 0
\(189\) 0 0
\(190\) −2.00000 −0.145095
\(191\) −8.50000 + 14.7224i −0.615038 + 1.06528i 0.375339 + 0.926887i \(0.377526\pi\)
−0.990378 + 0.138390i \(0.955807\pi\)
\(192\) 0 0
\(193\) 8.00000 + 13.8564i 0.575853 + 0.997406i 0.995948 + 0.0899262i \(0.0286631\pi\)
−0.420096 + 0.907480i \(0.638004\pi\)
\(194\) −12.0000 + 20.7846i −0.861550 + 1.49225i
\(195\) 0 0
\(196\) −13.0000 + 5.19615i −0.928571 + 0.371154i
\(197\) 11.0000 0.783718 0.391859 0.920025i \(-0.371832\pi\)
0.391859 + 0.920025i \(0.371832\pi\)
\(198\) 0 0
\(199\) 13.5000 + 23.3827i 0.956990 + 1.65755i 0.729748 + 0.683716i \(0.239637\pi\)
0.227242 + 0.973838i \(0.427029\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 22.0000 1.54791
\(203\) −20.0000 + 17.3205i −1.40372 + 1.21566i
\(204\) 0 0
\(205\) −1.00000 + 1.73205i −0.0698430 + 0.120972i
\(206\) 8.00000 + 13.8564i 0.557386 + 0.965422i
\(207\) 0 0
\(208\) 8.00000 13.8564i 0.554700 0.960769i
\(209\) 4.00000 0.276686
\(210\) 0 0
\(211\) 4.00000 0.275371 0.137686 0.990476i \(-0.456034\pi\)
0.137686 + 0.990476i \(0.456034\pi\)
\(212\) −12.0000 + 20.7846i −0.824163 + 1.42749i
\(213\) 0 0
\(214\) −10.0000 17.3205i −0.683586 1.18401i
\(215\) −3.50000 + 6.06218i −0.238698 + 0.413437i
\(216\) 0 0
\(217\) 0 0
\(218\) 12.0000 0.812743
\(219\) 0 0
\(220\) −4.00000 6.92820i −0.269680 0.467099i
\(221\) 6.00000 + 10.3923i 0.403604 + 0.699062i
\(222\) 0 0
\(223\) 10.0000 0.669650 0.334825 0.942280i \(-0.391323\pi\)
0.334825 + 0.942280i \(0.391323\pi\)
\(224\) −20.0000 6.92820i −1.33631 0.462910i
\(225\) 0 0
\(226\) 8.00000 13.8564i 0.532152 0.921714i
\(227\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(228\) 0 0
\(229\) 3.50000 6.06218i 0.231287 0.400600i −0.726900 0.686743i \(-0.759040\pi\)
0.958187 + 0.286143i \(0.0923732\pi\)
\(230\) 6.00000 0.395628
\(231\) 0 0
\(232\) 0 0
\(233\) 4.50000 7.79423i 0.294805 0.510617i −0.680135 0.733087i \(-0.738079\pi\)
0.974939 + 0.222470i \(0.0714120\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 12.0000 20.7846i 0.781133 1.35296i
\(237\) 0 0
\(238\) 12.0000 10.3923i 0.777844 0.673633i
\(239\) −9.00000 −0.582162 −0.291081 0.956698i \(-0.594015\pi\)
−0.291081 + 0.956698i \(0.594015\pi\)
\(240\) 0 0
\(241\) 14.0000 + 24.2487i 0.901819 + 1.56200i 0.825131 + 0.564942i \(0.191101\pi\)
0.0766885 + 0.997055i \(0.475565\pi\)
\(242\) 5.00000 + 8.66025i 0.321412 + 0.556702i
\(243\) 0 0
\(244\) 20.0000 1.28037
\(245\) −5.50000 4.33013i −0.351382 0.276642i
\(246\) 0 0
\(247\) 2.00000 3.46410i 0.127257 0.220416i
\(248\) 0 0
\(249\) 0 0
\(250\) 9.00000 15.5885i 0.569210 0.985901i
\(251\) 23.0000 1.45175 0.725874 0.687828i \(-0.241436\pi\)
0.725874 + 0.687828i \(0.241436\pi\)
\(252\) 0 0
\(253\) −12.0000 −0.754434
\(254\) 12.0000 20.7846i 0.752947 1.30414i
\(255\) 0 0
\(256\) −8.00000 13.8564i −0.500000 0.866025i
\(257\) 1.00000 1.73205i 0.0623783 0.108042i −0.833150 0.553047i \(-0.813465\pi\)
0.895528 + 0.445005i \(0.146798\pi\)
\(258\) 0 0
\(259\) −3.00000 15.5885i −0.186411 0.968620i
\(260\) −8.00000 −0.496139
\(261\) 0 0
\(262\) 5.00000 + 8.66025i 0.308901 + 0.535032i
\(263\) −8.50000 14.7224i −0.524132 0.907824i −0.999605 0.0280936i \(-0.991056\pi\)
0.475473 0.879730i \(-0.342277\pi\)
\(264\) 0 0
\(265\) −12.0000 −0.737154
\(266\) −5.00000 1.73205i −0.306570 0.106199i
\(267\) 0 0
\(268\) −10.0000 + 17.3205i −0.610847 + 1.05802i
\(269\) −9.00000 15.5885i −0.548740 0.950445i −0.998361 0.0572259i \(-0.981774\pi\)
0.449622 0.893219i \(-0.351559\pi\)
\(270\) 0 0
\(271\) 11.5000 19.9186i 0.698575 1.20997i −0.270385 0.962752i \(-0.587151\pi\)
0.968960 0.247216i \(-0.0795156\pi\)
\(272\) 12.0000 0.727607
\(273\) 0 0
\(274\) −36.0000 −2.17484
\(275\) −8.00000 + 13.8564i −0.482418 + 0.835573i
\(276\) 0 0
\(277\) −11.0000 19.0526i −0.660926 1.14476i −0.980373 0.197153i \(-0.936830\pi\)
0.319447 0.947604i \(-0.396503\pi\)
\(278\) −12.0000 + 20.7846i −0.719712 + 1.24658i
\(279\) 0 0
\(280\) 0 0
\(281\) −20.0000 −1.19310 −0.596550 0.802576i \(-0.703462\pi\)
−0.596550 + 0.802576i \(0.703462\pi\)
\(282\) 0 0
\(283\) −0.500000 0.866025i −0.0297219 0.0514799i 0.850782 0.525519i \(-0.176129\pi\)
−0.880504 + 0.474039i \(0.842796\pi\)
\(284\) 6.00000 + 10.3923i 0.356034 + 0.616670i
\(285\) 0 0
\(286\) 32.0000 1.89220
\(287\) −4.00000 + 3.46410i −0.236113 + 0.204479i
\(288\) 0 0
\(289\) 4.00000 6.92820i 0.235294 0.407541i
\(290\) 10.0000 + 17.3205i 0.587220 + 1.01710i
\(291\) 0 0
\(292\) −6.00000 + 10.3923i −0.351123 + 0.608164i
\(293\) 16.0000 0.934730 0.467365 0.884064i \(-0.345203\pi\)
0.467365 + 0.884064i \(0.345203\pi\)
\(294\) 0 0
\(295\) 12.0000 0.698667
\(296\) 0 0
\(297\) 0 0
\(298\) 9.00000 + 15.5885i 0.521356 + 0.903015i
\(299\) −6.00000 + 10.3923i −0.346989 + 0.601003i
\(300\) 0 0
\(301\) −14.0000 + 12.1244i −0.806947 + 0.698836i
\(302\) 20.0000 1.15087
\(303\) 0 0
\(304\) −2.00000 3.46410i −0.114708 0.198680i
\(305\) 5.00000 + 8.66025i 0.286299 + 0.495885i
\(306\) 0 0
\(307\) 22.0000 1.25561 0.627803 0.778372i \(-0.283954\pi\)
0.627803 + 0.778372i \(0.283954\pi\)
\(308\) −4.00000 20.7846i −0.227921 1.18431i
\(309\) 0 0
\(310\) 0 0
\(311\) 1.50000 + 2.59808i 0.0850572 + 0.147323i 0.905416 0.424526i \(-0.139559\pi\)
−0.820358 + 0.571850i \(0.806226\pi\)
\(312\) 0 0
\(313\) −5.50000 + 9.52628i −0.310878 + 0.538457i −0.978553 0.205996i \(-0.933957\pi\)
0.667674 + 0.744453i \(0.267290\pi\)
\(314\) −2.00000 −0.112867
\(315\) 0 0
\(316\) −20.0000 −1.12509
\(317\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(318\) 0 0
\(319\) −20.0000 34.6410i −1.11979 1.93952i
\(320\) −4.00000 + 6.92820i −0.223607 + 0.387298i
\(321\) 0 0
\(322\) 15.0000 + 5.19615i 0.835917 + 0.289570i
\(323\) 3.00000 0.166924
\(324\) 0 0
\(325\) 8.00000 + 13.8564i 0.443760 + 0.768615i
\(326\) 19.0000 + 32.9090i 1.05231 + 1.82266i
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 11.0000 19.0526i 0.604615 1.04722i −0.387498 0.921871i \(-0.626660\pi\)
0.992112 0.125353i \(-0.0400062\pi\)
\(332\) 3.00000 + 5.19615i 0.164646 + 0.285176i
\(333\) 0 0
\(334\) 2.00000 3.46410i 0.109435 0.189547i
\(335\) −10.0000 −0.546358
\(336\) 0 0
\(337\) −8.00000 −0.435788 −0.217894 0.975972i \(-0.569919\pi\)
−0.217894 + 0.975972i \(0.569919\pi\)
\(338\) 3.00000 5.19615i 0.163178 0.282633i
\(339\) 0 0
\(340\) −3.00000 5.19615i −0.162698 0.281801i
\(341\) 0 0
\(342\) 0 0
\(343\) −10.0000 15.5885i −0.539949 0.841698i
\(344\) 0 0
\(345\) 0 0
\(346\) −14.0000 24.2487i −0.752645 1.30362i
\(347\) 14.5000 + 25.1147i 0.778401 + 1.34823i 0.932863 + 0.360231i \(0.117302\pi\)
−0.154462 + 0.987999i \(0.549365\pi\)
\(348\) 0 0
\(349\) 13.0000 0.695874 0.347937 0.937518i \(-0.386882\pi\)
0.347937 + 0.937518i \(0.386882\pi\)
\(350\) 16.0000 13.8564i 0.855236 0.740656i
\(351\) 0 0
\(352\) 16.0000 27.7128i 0.852803 1.47710i
\(353\) −13.0000 22.5167i −0.691920 1.19844i −0.971208 0.238233i \(-0.923432\pi\)
0.279288 0.960207i \(-0.409902\pi\)
\(354\) 0 0
\(355\) −3.00000 + 5.19615i −0.159223 + 0.275783i
\(356\) 28.0000 1.48400
\(357\) 0 0
\(358\) −32.0000 −1.69125
\(359\) 10.0000 17.3205i 0.527780 0.914141i −0.471696 0.881761i \(-0.656358\pi\)
0.999476 0.0323801i \(-0.0103087\pi\)
\(360\) 0 0
\(361\) −0.500000 0.866025i −0.0263158 0.0455803i
\(362\) −14.0000 + 24.2487i −0.735824 + 1.27448i
\(363\) 0 0
\(364\) −20.0000 6.92820i −1.04828 0.363137i
\(365\) −6.00000 −0.314054
\(366\) 0 0
\(367\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(368\) 6.00000 + 10.3923i 0.312772 + 0.541736i
\(369\) 0 0
\(370\) −12.0000 −0.623850
\(371\) −30.0000 10.3923i −1.55752 0.539542i
\(372\) 0 0
\(373\) −16.0000 + 27.7128i −0.828449 + 1.43492i 0.0708063 + 0.997490i \(0.477443\pi\)
−0.899255 + 0.437425i \(0.855891\pi\)
\(374\) 12.0000 + 20.7846i 0.620505 + 1.07475i
\(375\) 0 0
\(376\) 0 0
\(377\) −40.0000 −2.06010
\(378\) 0 0
\(379\) 12.0000 0.616399 0.308199 0.951322i \(-0.400274\pi\)
0.308199 + 0.951322i \(0.400274\pi\)
\(380\) −1.00000 + 1.73205i −0.0512989 + 0.0888523i
\(381\) 0 0
\(382\) 17.0000 + 29.4449i 0.869796 + 1.50653i
\(383\) 6.00000 10.3923i 0.306586 0.531022i −0.671027 0.741433i \(-0.734147\pi\)
0.977613 + 0.210411i \(0.0674801\pi\)
\(384\) 0 0
\(385\) 8.00000 6.92820i 0.407718 0.353094i
\(386\) 32.0000 1.62876
\(387\) 0 0
\(388\) 12.0000 + 20.7846i 0.609208 + 1.05518i
\(389\) −1.50000 2.59808i −0.0760530 0.131728i 0.825491 0.564416i \(-0.190898\pi\)
−0.901544 + 0.432688i \(0.857565\pi\)
\(390\) 0 0
\(391\) −9.00000 −0.455150
\(392\) 0 0
\(393\) 0 0
\(394\) 11.0000 19.0526i 0.554172 0.959854i
\(395\) −5.00000 8.66025i −0.251577 0.435745i
\(396\) 0 0
\(397\) 7.50000 12.9904i 0.376414 0.651969i −0.614123 0.789210i \(-0.710490\pi\)
0.990538 + 0.137241i \(0.0438236\pi\)
\(398\) 54.0000 2.70678
\(399\) 0 0
\(400\) 16.0000 0.800000
\(401\) −6.00000 + 10.3923i −0.299626 + 0.518967i −0.976050 0.217545i \(-0.930195\pi\)
0.676425 + 0.736512i \(0.263528\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 11.0000 19.0526i 0.547270 0.947900i
\(405\) 0 0
\(406\) 10.0000 + 51.9615i 0.496292 + 2.57881i
\(407\) 24.0000 1.18964
\(408\) 0 0
\(409\) −16.0000 27.7128i −0.791149 1.37031i −0.925256 0.379344i \(-0.876150\pi\)
0.134107 0.990967i \(-0.457183\pi\)
\(410\) 2.00000 + 3.46410i 0.0987730 + 0.171080i
\(411\) 0 0
\(412\) 16.0000 0.788263
\(413\) 30.0000 + 10.3923i 1.47620 + 0.511372i
\(414\) 0 0
\(415\) −1.50000 + 2.59808i −0.0736321 + 0.127535i
\(416\) −16.0000 27.7128i −0.784465 1.35873i
\(417\) 0 0
\(418\) 4.00000 6.92820i 0.195646 0.338869i
\(419\) 9.00000 0.439679 0.219839 0.975536i \(-0.429447\pi\)
0.219839 + 0.975536i \(0.429447\pi\)
\(420\) 0 0
\(421\) 8.00000 0.389896 0.194948 0.980814i \(-0.437546\pi\)
0.194948 + 0.980814i \(0.437546\pi\)
\(422\) 4.00000 6.92820i 0.194717 0.337260i
\(423\) 0 0
\(424\) 0 0
\(425\) −6.00000 + 10.3923i −0.291043 + 0.504101i
\(426\) 0 0
\(427\) 5.00000 + 25.9808i 0.241967 + 1.25730i
\(428\) −20.0000 −0.966736
\(429\) 0 0
\(430\) 7.00000 + 12.1244i 0.337570 + 0.584688i
\(431\) −6.00000 10.3923i −0.289010 0.500580i 0.684564 0.728953i \(-0.259993\pi\)
−0.973574 + 0.228373i \(0.926659\pi\)
\(432\) 0 0
\(433\) −14.0000 −0.672797 −0.336399 0.941720i \(-0.609209\pi\)
−0.336399 + 0.941720i \(0.609209\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 6.00000 10.3923i 0.287348 0.497701i
\(437\) 1.50000 + 2.59808i 0.0717547 + 0.124283i
\(438\) 0 0
\(439\) −15.0000 + 25.9808i −0.715911 + 1.23999i 0.246696 + 0.969093i \(0.420655\pi\)
−0.962607 + 0.270901i \(0.912678\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 24.0000 1.14156
\(443\) −10.5000 + 18.1865i −0.498870 + 0.864068i −0.999999 0.00130426i \(-0.999585\pi\)
0.501129 + 0.865373i \(0.332918\pi\)
\(444\) 0 0
\(445\) 7.00000 + 12.1244i 0.331832 + 0.574750i
\(446\) 10.0000 17.3205i 0.473514 0.820150i
\(447\) 0 0
\(448\) −16.0000 + 13.8564i −0.755929 + 0.654654i
\(449\) −6.00000 −0.283158 −0.141579 0.989927i \(-0.545218\pi\)
−0.141579 + 0.989927i \(0.545218\pi\)
\(450\) 0 0
\(451\) −4.00000 6.92820i −0.188353 0.326236i
\(452\) −8.00000 13.8564i −0.376288 0.651751i
\(453\) 0 0
\(454\) 0 0
\(455\) −2.00000 10.3923i −0.0937614 0.487199i
\(456\) 0 0
\(457\) −11.0000 + 19.0526i −0.514558 + 0.891241i 0.485299 + 0.874348i \(0.338711\pi\)
−0.999857 + 0.0168929i \(0.994623\pi\)
\(458\) −7.00000 12.1244i −0.327089 0.566534i
\(459\) 0 0
\(460\) 3.00000 5.19615i 0.139876 0.242272i
\(461\) −26.0000 −1.21094 −0.605470 0.795868i \(-0.707015\pi\)
−0.605470 + 0.795868i \(0.707015\pi\)
\(462\) 0 0
\(463\) 4.00000 0.185896 0.0929479 0.995671i \(-0.470371\pi\)
0.0929479 + 0.995671i \(0.470371\pi\)
\(464\) −20.0000 + 34.6410i −0.928477 + 1.60817i
\(465\) 0 0
\(466\) −9.00000 15.5885i −0.416917 0.722121i
\(467\) 18.0000 31.1769i 0.832941 1.44270i −0.0627555 0.998029i \(-0.519989\pi\)
0.895696 0.444667i \(-0.146678\pi\)
\(468\) 0 0
\(469\) −25.0000 8.66025i −1.15439 0.399893i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −14.0000 24.2487i −0.643721 1.11496i
\(474\) 0 0
\(475\) 4.00000 0.183533
\(476\) −3.00000 15.5885i −0.137505 0.714496i
\(477\) 0 0
\(478\) −9.00000 + 15.5885i −0.411650 + 0.712999i
\(479\) 5.50000 + 9.52628i 0.251301 + 0.435267i 0.963884 0.266321i \(-0.0858081\pi\)
−0.712583 + 0.701588i \(0.752475\pi\)
\(480\) 0 0
\(481\) 12.0000 20.7846i 0.547153 0.947697i
\(482\) 56.0000 2.55073
\(483\) 0 0
\(484\) 10.0000 0.454545
\(485\) −6.00000 + 10.3923i −0.272446 + 0.471890i
\(486\) 0 0
\(487\) 16.0000 + 27.7128i 0.725029 + 1.25579i 0.958962 + 0.283535i \(0.0915071\pi\)
−0.233933 + 0.972253i \(0.575160\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) −13.0000 + 5.19615i −0.587280 + 0.234738i
\(491\) 1.00000 0.0451294 0.0225647 0.999745i \(-0.492817\pi\)
0.0225647 + 0.999745i \(0.492817\pi\)
\(492\) 0 0
\(493\) −15.0000 25.9808i −0.675566 1.17011i
\(494\) −4.00000 6.92820i −0.179969 0.311715i
\(495\) 0 0
\(496\) 0 0
\(497\) −12.0000 + 10.3923i −0.538274 + 0.466159i
\(498\) 0 0
\(499\) −3.50000 + 6.06218i −0.156682 + 0.271380i −0.933670 0.358134i \(-0.883413\pi\)
0.776989 + 0.629515i \(0.216746\pi\)
\(500\) −9.00000 15.5885i −0.402492 0.697137i
\(501\) 0 0
\(502\) 23.0000 39.8372i 1.02654 1.77802i
\(503\) 3.00000 0.133763 0.0668817 0.997761i \(-0.478695\pi\)
0.0668817 + 0.997761i \(0.478695\pi\)
\(504\) 0 0
\(505\) 11.0000 0.489494
\(506\) −12.0000 + 20.7846i −0.533465 + 0.923989i
\(507\) 0 0
\(508\) −12.0000 20.7846i −0.532414 0.922168i
\(509\) 19.0000 32.9090i 0.842160 1.45866i −0.0459045 0.998946i \(-0.514617\pi\)
0.888065 0.459718i \(-0.152050\pi\)
\(510\) 0 0
\(511\) −15.0000 5.19615i −0.663561 0.229864i
\(512\) −32.0000 −1.41421
\(513\) 0 0
\(514\) −2.00000 3.46410i −0.0882162 0.152795i
\(515\) 4.00000 + 6.92820i 0.176261 + 0.305293i
\(516\) 0 0
\(517\) 0 0
\(518\) −30.0000 10.3923i −1.31812 0.456612i
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(522\) 0 0
\(523\) −20.0000 + 34.6410i −0.874539 + 1.51475i −0.0172859 + 0.999851i \(0.505503\pi\)
−0.857253 + 0.514895i \(0.827831\pi\)
\(524\) 10.0000 0.436852
\(525\) 0 0
\(526\) −34.0000 −1.48247
\(527\) 0 0
\(528\) 0 0
\(529\) 7.00000 + 12.1244i 0.304348 + 0.527146i
\(530\) −12.0000 + 20.7846i −0.521247 + 0.902826i
\(531\) 0 0
\(532\) −4.00000 + 3.46410i −0.173422 + 0.150188i
\(533\) −8.00000 −0.346518
\(534\) 0 0
\(535\) −5.00000 8.66025i −0.216169 0.374415i
\(536\) 0 0
\(537\) 0 0
\(538\) −36.0000 −1.55207
\(539\) 26.0000 10.3923i 1.11990 0.447628i
\(540\) 0 0
\(541\) −17.5000 + 30.3109i −0.752384 + 1.30317i 0.194281 + 0.980946i \(0.437763\pi\)
−0.946664 + 0.322221i \(0.895571\pi\)
\(542\) −23.0000 39.8372i −0.987935 1.71115i
\(543\) 0 0
\(544\) 12.0000 20.7846i 0.514496 0.891133i
\(545\) 6.00000 0.257012
\(546\) 0 0
\(547\) −2.00000 −0.0855138 −0.0427569 0.999086i \(-0.513614\pi\)
−0.0427569 + 0.999086i \(0.513614\pi\)
\(548\) −18.0000 + 31.1769i −0.768922 + 1.33181i
\(549\) 0 0
\(550\) 16.0000 + 27.7128i 0.682242 + 1.18168i
\(551\) −5.00000 + 8.66025i −0.213007 + 0.368939i
\(552\) 0 0
\(553\) −5.00000 25.9808i −0.212622 1.10481i
\(554\) −44.0000 −1.86938
\(555\) 0 0
\(556\) 12.0000 + 20.7846i 0.508913 + 0.881464i
\(557\) 3.50000 + 6.06218i 0.148300 + 0.256863i 0.930599 0.366040i \(-0.119287\pi\)
−0.782299 + 0.622903i \(0.785953\pi\)
\(558\) 0 0
\(559\) −28.0000 −1.18427
\(560\) −10.0000 3.46410i −0.422577 0.146385i
\(561\) 0 0
\(562\) −20.0000 + 34.6410i −0.843649 + 1.46124i
\(563\) 5.00000 + 8.66025i 0.210725 + 0.364986i 0.951942 0.306280i \(-0.0990842\pi\)
−0.741217 + 0.671266i \(0.765751\pi\)
\(564\) 0 0
\(565\) 4.00000 6.92820i 0.168281 0.291472i
\(566\) −2.00000 −0.0840663
\(567\) 0 0
\(568\) 0 0
\(569\) −10.0000 + 17.3205i −0.419222 + 0.726113i −0.995861 0.0908852i \(-0.971030\pi\)
0.576640 + 0.816999i \(0.304364\pi\)
\(570\) 0 0
\(571\) −2.50000 4.33013i −0.104622 0.181210i 0.808962 0.587861i \(-0.200030\pi\)
−0.913584 + 0.406651i \(0.866697\pi\)
\(572\) 16.0000 27.7128i 0.668994 1.15873i
\(573\) 0 0
\(574\) 2.00000 + 10.3923i 0.0834784 + 0.433766i
\(575\) −12.0000 −0.500435
\(576\) 0 0
\(577\) 1.00000 + 1.73205i 0.0416305 + 0.0721062i 0.886090 0.463513i \(-0.153411\pi\)
−0.844459 + 0.535620i \(0.820078\pi\)
\(578\) −8.00000 13.8564i −0.332756 0.576351i
\(579\) 0 0
\(580\) 20.0000 0.830455
\(581\) −6.00000 + 5.19615i −0.248922 + 0.215573i
\(582\) 0 0
\(583\) 24.0000 41.5692i 0.993978 1.72162i
\(584\) 0 0
\(585\) 0 0
\(586\) 16.0000 27.7128i 0.660954 1.14481i
\(587\) −7.00000 −0.288921 −0.144460 0.989511i \(-0.546145\pi\)
−0.144460 + 0.989511i \(0.546145\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 12.0000 20.7846i 0.494032 0.855689i
\(591\) 0 0
\(592\) −12.0000 20.7846i −0.493197 0.854242i
\(593\) −19.5000 + 33.7750i −0.800769 + 1.38697i 0.118342 + 0.992973i \(0.462242\pi\)
−0.919111 + 0.394000i \(0.871091\pi\)
\(594\) 0 0
\(595\) 6.00000 5.19615i 0.245976 0.213021i
\(596\) 18.0000 0.737309
\(597\) 0 0
\(598\) 12.0000 + 20.7846i 0.490716 + 0.849946i
\(599\) 6.00000 + 10.3923i 0.245153 + 0.424618i 0.962175 0.272433i \(-0.0878284\pi\)
−0.717021 + 0.697051i \(0.754495\pi\)
\(600\) 0 0
\(601\) −30.0000 −1.22373 −0.611863 0.790964i \(-0.709580\pi\)
−0.611863 + 0.790964i \(0.709580\pi\)
\(602\) 7.00000 + 36.3731i 0.285299 + 1.48246i
\(603\) 0 0
\(604\) 10.0000 17.3205i 0.406894 0.704761i
\(605\) 2.50000 + 4.33013i 0.101639 + 0.176045i
\(606\) 0 0
\(607\) 11.0000 19.0526i 0.446476 0.773320i −0.551678 0.834058i \(-0.686012\pi\)
0.998154 + 0.0607380i \(0.0193454\pi\)
\(608\) −8.00000 −0.324443
\(609\) 0 0
\(610\) 20.0000 0.809776
\(611\) 0 0
\(612\) 0 0
\(613\) −12.5000 21.6506i −0.504870 0.874461i −0.999984 0.00563283i \(-0.998207\pi\)
0.495114 0.868828i \(-0.335126\pi\)
\(614\) 22.0000 38.1051i 0.887848 1.53780i
\(615\) 0 0
\(616\) 0 0
\(617\) −27.0000 −1.08698 −0.543490 0.839416i \(-0.682897\pi\)
−0.543490 + 0.839416i \(0.682897\pi\)
\(618\) 0 0
\(619\) 17.5000 + 30.3109i 0.703384 + 1.21830i 0.967271 + 0.253744i \(0.0816620\pi\)
−0.263887 + 0.964554i \(0.585005\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 6.00000 0.240578
\(623\) 7.00000 + 36.3731i 0.280449 + 1.45726i
\(624\) 0 0
\(625\) −5.50000 + 9.52628i −0.220000 + 0.381051i
\(626\) 11.0000 + 19.0526i 0.439648 + 0.761493i
\(627\) 0 0
\(628\) −1.00000 + 1.73205i −0.0399043 + 0.0691164i
\(629\) 18.0000 0.717707
\(630\) 0 0
\(631\) 5.00000 0.199047 0.0995234 0.995035i \(-0.468268\pi\)
0.0995234 + 0.995035i \(0.468268\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 6.00000 10.3923i 0.238103 0.412406i
\(636\) 0 0
\(637\) 4.00000 27.7128i 0.158486 1.09802i
\(638\) −80.0000 −3.16723
\(639\) 0 0
\(640\) 0 0
\(641\) −15.0000 25.9808i −0.592464 1.02618i −0.993899 0.110291i \(-0.964822\pi\)
0.401435 0.915888i \(-0.368512\pi\)
\(642\) 0 0
\(643\) 11.0000 0.433798 0.216899 0.976194i \(-0.430406\pi\)
0.216899 + 0.976194i \(0.430406\pi\)
\(644\) 12.0000 10.3923i 0.472866 0.409514i
\(645\) 0 0
\(646\) 3.00000 5.19615i 0.118033 0.204440i
\(647\) 11.5000 + 19.9186i 0.452112 + 0.783080i 0.998517 0.0544405i \(-0.0173375\pi\)
−0.546405 + 0.837521i \(0.684004\pi\)
\(648\) 0 0
\(649\) −24.0000 + 41.5692i −0.942082 + 1.63173i
\(650\) 32.0000 1.25514
\(651\) 0 0
\(652\) 38.0000 1.48819
\(653\) −10.5000 + 18.1865i −0.410897 + 0.711694i −0.994988 0.0999939i \(-0.968118\pi\)
0.584091 + 0.811688i \(0.301451\pi\)
\(654\) 0 0
\(655\) 2.50000 + 4.33013i 0.0976831 + 0.169192i
\(656\) −4.00000 + 6.92820i −0.156174 + 0.270501i
\(657\) 0 0
\(658\) 0 0
\(659\) 30.0000 1.16863 0.584317 0.811525i \(-0.301362\pi\)
0.584317 + 0.811525i \(0.301362\pi\)
\(660\) 0 0
\(661\) −20.0000 34.6410i −0.777910 1.34738i −0.933144 0.359502i \(-0.882947\pi\)
0.155235 0.987878i \(-0.450387\pi\)
\(662\) −22.0000 38.1051i −0.855054 1.48100i
\(663\) 0 0
\(664\) 0 0
\(665\) −2.50000 0.866025i −0.0969458 0.0335830i
\(666\) 0 0
\(667\) 15.0000 25.9808i 0.580802 1.00598i
\(668\) −2.00000 3.46410i −0.0773823 0.134030i
\(669\) 0 0
\(670\) −10.0000 + 17.3205i −0.386334 + 0.669150i
\(671\) −40.0000 −1.54418
\(672\) 0 0
\(673\) 16.0000 0.616755 0.308377 0.951264i \(-0.400214\pi\)
0.308377 + 0.951264i \(0.400214\pi\)
\(674\) −8.00000 + 13.8564i −0.308148 + 0.533729i
\(675\) 0 0
\(676\) −3.00000 5.19615i −0.115385 0.199852i
\(677\) 15.0000 25.9808i 0.576497 0.998522i −0.419380 0.907811i \(-0.637753\pi\)
0.995877 0.0907112i \(-0.0289140\pi\)
\(678\) 0 0
\(679\) −24.0000 + 20.7846i −0.921035 + 0.797640i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −18.0000 31.1769i −0.688751 1.19295i −0.972242 0.233977i \(-0.924826\pi\)
0.283491 0.958975i \(-0.408507\pi\)
\(684\) 0 0
\(685\) −18.0000 −0.687745
\(686\) −37.0000 + 1.73205i −1.41267 + 0.0661300i
\(687\) 0 0
\(688\) −14.0000 + 24.2487i −0.533745 + 0.924473i
\(689\) −24.0000 41.5692i −0.914327 1.58366i
\(690\) 0 0
\(691\) −20.5000 + 35.5070i −0.779857 + 1.35075i 0.152167 + 0.988355i \(0.451375\pi\)
−0.932024 + 0.362397i \(0.881959\pi\)
\(692\) −28.0000 −1.06440
\(693\) 0 0
\(694\) 58.0000 2.20165
\(695\) −6.00000 + 10.3923i −0.227593 + 0.394203i
\(696\) 0 0
\(697\) −3.00000 5.19615i −0.113633 0.196818i
\(698\) 13.0000 22.5167i 0.492057 0.852268i
\(699\) 0 0
\(700\) −4.00000 20.7846i −0.151186 0.785584i
\(701\) 21.0000 0.793159 0.396580 0.918000i \(-0.370197\pi\)
0.396580 + 0.918000i \(0.370197\pi\)
\(702\) 0 0
\(703\) −3.00000 5.19615i −0.113147 0.195977i
\(704\) −16.0000 27.7128i −0.603023 1.04447i
\(705\) 0 0
\(706\) −52.0000 −1.95705
\(707\) 27.5000 + 9.52628i 1.03424 + 0.358273i
\(708\) 0 0
\(709\) −10.5000 + 18.1865i −0.394336 + 0.683010i −0.993016 0.117978i \(-0.962359\pi\)
0.598680 + 0.800988i \(0.295692\pi\)
\(710\) 6.00000 + 10.3923i 0.225176 + 0.390016i
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 16.0000 0.598366
\(716\) −16.0000 + 27.7128i −0.597948 + 1.03568i
\(717\) 0 0
\(718\) −20.0000 34.6410i −0.746393 1.29279i
\(719\) 10.5000 18.1865i 0.391584 0.678243i −0.601075 0.799193i \(-0.705261\pi\)
0.992659 + 0.120950i \(0.0385939\pi\)
\(720\) 0 0
\(721\) 4.00000 + 20.7846i 0.148968 + 0.774059i
\(722\) −2.00000 −0.0744323
\(723\) 0 0
\(724\) 14.0000 + 24.2487i 0.520306 + 0.901196i
\(725\) −20.0000 34.6410i −0.742781 1.28654i
\(726\) 0 0
\(727\) 47.0000 1.74313 0.871567 0.490277i \(-0.163104\pi\)
0.871567 + 0.490277i \(0.163104\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −6.00000 + 10.3923i −0.222070 + 0.384636i
\(731\) −10.5000 18.1865i −0.388357 0.672653i
\(732\) 0 0
\(733\) 15.0000 25.9808i 0.554038 0.959621i −0.443940 0.896056i \(-0.646420\pi\)
0.997978 0.0635649i \(-0.0202470\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 24.0000 0.884652
\(737\) 20.0000 34.6410i 0.736709 1.27602i
\(738\) 0 0
\(739\) −25.5000 44.1673i −0.938033 1.62472i −0.769135 0.639087i \(-0.779313\pi\)
−0.168898 0.985634i \(-0.554021\pi\)
\(740\) −6.00000 + 10.3923i −0.220564 + 0.382029i
\(741\) 0 0
\(742\) −48.0000 + 41.5692i −1.76214 + 1.52605i
\(743\) 24.0000 0.880475 0.440237 0.897881i \(-0.354894\pi\)
0.440237 + 0.897881i \(0.354894\pi\)
\(744\) 0 0
\(745\) 4.50000 + 7.79423i 0.164867 + 0.285558i
\(746\) 32.0000 + 55.4256i 1.17160 + 2.02928i
\(747\) 0 0
\(748\) 24.0000 0.877527
\(749\) −5.00000 25.9808i −0.182696 0.949316i
\(750\) 0 0
\(751\) 7.00000 12.1244i 0.255434 0.442424i −0.709580 0.704625i \(-0.751115\pi\)
0.965013 + 0.262201i \(0.0844484\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) −40.0000 + 69.2820i −1.45671 + 2.52310i
\(755\) 10.0000 0.363937
\(756\) 0 0
\(757\) 2.00000 0.0726912 0.0363456 0.999339i \(-0.488428\pi\)
0.0363456 + 0.999339i \(0.488428\pi\)
\(758\) 12.0000 20.7846i 0.435860 0.754931i
\(759\) 0 0
\(760\) 0 0
\(761\) −10.5000 + 18.1865i −0.380625 + 0.659261i −0.991152 0.132734i \(-0.957624\pi\)
0.610527 + 0.791995i \(0.290958\pi\)
\(762\) 0 0
\(763\) 15.0000 + 5.19615i 0.543036 + 0.188113i
\(764\) 34.0000 1.23008
\(765\) 0 0
\(766\) −12.0000 20.7846i −0.433578 0.750978i
\(767\) 24.0000 + 41.5692i 0.866590 + 1.50098i
\(768\) 0 0
\(769\) −37.0000 −1.33425 −0.667127 0.744944i \(-0.732476\pi\)
−0.667127 + 0.744944i \(0.732476\pi\)
\(770\) −4.00000 20.7846i −0.144150 0.749025i
\(771\) 0 0
\(772\) 16.0000 27.7128i 0.575853 0.997406i
\(773\) −14.0000 24.2487i −0.503545 0.872166i −0.999992 0.00409826i \(-0.998695\pi\)
0.496447 0.868067i \(-0.334638\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) −6.00000 −0.215110
\(779\) −1.00000 + 1.73205i −0.0358287 + 0.0620572i
\(780\) 0 0
\(781\) −12.0000 20.7846i −0.429394 0.743732i
\(782\) −9.00000 + 15.5885i −0.321839 + 0.557442i
\(783\) 0 0
\(784\) −22.0000 17.3205i −0.785714 0.618590i
\(785\) −1.00000 −0.0356915
\(786\) 0 0
\(787\) −23.0000 39.8372i −0.819861 1.42004i −0.905784 0.423740i \(-0.860717\pi\)
0.0859225 0.996302i \(-0.472616\pi\)
\(788\) −11.0000 19.0526i −0.391859 0.678719i
\(789\) 0 0
\(790\) −20.0000 −0.711568
\(791\) 16.0000 13.8564i 0.568895 0.492677i
\(792\) 0 0
\(793\) −20.0000 + 34.6410i −0.710221 + 1.23014i
\(794\) −15.0000 25.9808i −0.532330 0.922023i
\(795\) 0 0
\(796\) 27.0000 46.7654i 0.956990 1.65755i
\(797\) −4.00000 −0.141687 −0.0708436 0.997487i \(-0.522569\pi\)
−0.0708436 + 0.997487i \(0.522569\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 16.0000 27.7128i 0.565685 0.979796i
\(801\) 0 0
\(802\) 12.0000 + 20.7846i 0.423735 + 0.733930i
\(803\) 12.0000 20.7846i 0.423471 0.733473i
\(804\) 0 0
\(805\) 7.50000 + 2.59808i 0.264340 + 0.0915702i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −13.5000 23.3827i −0.474635 0.822091i 0.524943 0.851137i \(-0.324086\pi\)
−0.999578 + 0.0290457i \(0.990753\pi\)
\(810\) 0 0
\(811\) 32.0000 1.12367 0.561836 0.827249i \(-0.310095\pi\)
0.561836 + 0.827249i \(0.310095\pi\)
\(812\) 50.0000 + 17.3205i 1.75466 + 0.607831i
\(813\) 0 0
\(814\) 24.0000 41.5692i 0.841200 1.45700i
\(815\) 9.50000 + 16.4545i 0.332770 + 0.576375i
\(816\) 0 0
\(817\) −3.50000 + 6.06218i −0.122449 + 0.212089i
\(818\) −64.0000 −2.23771
\(819\) 0 0
\(820\) 4.00000 0.139686
\(821\) −5.00000 + 8.66025i −0.174501 + 0.302245i −0.939989 0.341206i \(-0.889165\pi\)
0.765487 + 0.643451i \(0.222498\pi\)
\(822\) 0 0
\(823\) 12.0000 + 20.7846i 0.418294 + 0.724506i 0.995768 0.0919029i \(-0.0292950\pi\)
−0.577474 + 0.816409i \(0.695962\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 48.0000 41.5692i 1.67013 1.44638i
\(827\) 6.00000 0.208640 0.104320 0.994544i \(-0.466733\pi\)
0.104320 + 0.994544i \(0.466733\pi\)
\(828\) 0 0
\(829\) 26.0000 + 45.0333i 0.903017 + 1.56407i 0.823557 + 0.567234i \(0.191986\pi\)
0.0794606 + 0.996838i \(0.474680\pi\)
\(830\) 3.00000 + 5.19615i 0.104132 + 0.180361i
\(831\) 0 0
\(832\) −32.0000 −1.10940
\(833\) 19.5000 7.79423i 0.675635 0.270054i
\(834\) 0 0
\(835\) 1.00000 1.73205i 0.0346064 0.0599401i
\(836\) −4.00000 6.92820i −0.138343 0.239617i
\(837\) 0 0
\(838\) 9.00000 15.5885i 0.310900 0.538494i
\(839\) 56.0000 1.93333 0.966667 0.256036i \(-0.0824164\pi\)
0.966667 + 0.256036i \(0.0824164\pi\)
\(840\) 0 0
\(841\) 71.0000 2.44828
\(842\) 8.00000 13.8564i 0.275698 0.477523i
\(843\) 0 0
\(844\) −4.00000 6.92820i −0.137686 0.238479i
\(845\) 1.50000 2.59808i 0.0516016 0.0893765i
\(846\) 0 0
\(847\) 2.50000 + 12.9904i 0.0859010 + 0.446355i
\(848\) −48.0000 −1.64833
\(849\) 0 0
\(850\) 12.0000 + 20.7846i 0.411597 + 0.712906i
\(851\) 9.00000 + 15.5885i 0.308516 + 0.534365i
\(852\) 0 0
\(853\) −37.0000 −1.26686 −0.633428 0.773802i \(-0.718353\pi\)
−0.633428 + 0.773802i \(0.718353\pi\)
\(854\) 50.0000 + 17.3205i 1.71096 + 0.592696i
\(855\) 0 0
\(856\) 0 0
\(857\) 20.0000 + 34.6410i 0.683187 + 1.18331i 0.974003 + 0.226536i \(0.0727399\pi\)
−0.290816 + 0.956779i \(0.593927\pi\)
\(858\) 0 0
\(859\) −8.50000 + 14.7224i −0.290016 + 0.502323i −0.973813 0.227349i \(-0.926994\pi\)
0.683797 + 0.729672i \(0.260327\pi\)
\(860\) 14.0000 0.477396
\(861\) 0 0
\(862\) −24.0000 −0.817443
\(863\) −6.00000 + 10.3923i −0.204242 + 0.353758i −0.949891 0.312581i \(-0.898806\pi\)
0.745649 + 0.666339i \(0.232140\pi\)
\(864\) 0 0
\(865\) −7.00000 12.1244i −0.238007 0.412240i
\(866\) −14.0000 + 24.2487i −0.475739 + 0.824005i
\(867\) 0 0
\(868\) 0 0
\(869\) 40.0000 1.35691
\(870\) 0 0
\(871\) −20.0000 34.6410i −0.677674 1.17377i
\(872\) 0 0
\(873\) 0 0
\(874\) 6.00000 0.202953
\(875\) 18.0000 15.5885i 0.608511 0.526986i
\(876\) 0 0
\(877\) 16.0000 27.7128i 0.540282 0.935795i −0.458606 0.888640i \(-0.651651\pi\)
0.998888 0.0471555i \(-0.0150156\pi\)
\(878\) 30.0000 + 51.9615i 1.01245 + 1.75362i
\(879\) 0 0
\(880\) 8.00000 13.8564i 0.269680 0.467099i
\(881\) −15.0000 −0.505363 −0.252681 0.967550i \(-0.581312\pi\)
−0.252681 + 0.967550i \(0.581312\pi\)
\(882\) 0 0
\(883\) 47.0000 1.58168 0.790838 0.612026i \(-0.209645\pi\)
0.790838 + 0.612026i \(0.209645\pi\)
\(884\) 12.0000 20.7846i 0.403604 0.699062i
\(885\) 0 0
\(886\) 21.0000 + 36.3731i 0.705509 + 1.22198i
\(887\) 7.00000 12.1244i 0.235037 0.407096i −0.724246 0.689541i \(-0.757812\pi\)
0.959283 + 0.282445i \(0.0911455\pi\)
\(888\) 0 0
\(889\) 24.0000 20.7846i 0.804934 0.697093i
\(890\) 28.0000 0.938562
\(891\) 0 0
\(892\) −10.0000 17.3205i −0.334825 0.579934i
\(893\) 0 0
\(894\) 0 0
\(895\) −16.0000 −0.534821
\(896\) 0 0
\(897\) 0 0
\(898\) −6.00000 + 10.3923i −0.200223 + 0.346796i
\(899\) 0 0
\(900\) 0 0
\(901\) 18.0000 31.1769i 0.599667 1.03865i
\(902\) −16.0000 −0.532742
\(903\) 0 0
\(904\) 0 0
\(905\) −7.00000 + 12.1244i −0.232688 + 0.403027i
\(906\) 0 0
\(907\) −10.0000 17.3205i −0.332045 0.575118i 0.650868 0.759191i \(-0.274405\pi\)
−0.982913 + 0.184073i \(0.941072\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) −20.0000 6.92820i −0.662994 0.229668i
\(911\) 42.0000 1.39152 0.695761 0.718273i \(-0.255067\pi\)
0.695761 + 0.718273i \(0.255067\pi\)
\(912\) 0 0
\(913\) −6.00000 10.3923i −0.198571 0.343935i
\(914\) 22.0000 + 38.1051i 0.727695 + 1.26041i
\(915\) 0 0
\(916\) −14.0000 −0.462573
\(917\) 2.50000 + 12.9904i 0.0825573 + 0.428980i
\(918\) 0 0
\(919\) 3.50000 6.06218i 0.115454 0.199973i −0.802507 0.596643i \(-0.796501\pi\)
0.917961 + 0.396670i \(0.129834\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −26.0000 + 45.0333i −0.856264 + 1.48309i
\(923\) −24.0000 −0.789970
\(924\) 0 0
\(925\) 24.0000 0.789115
\(926\) 4.00000 6.92820i 0.131448 0.227675i
\(927\) 0 0
\(928\) 40.0000 + 69.2820i 1.31306 + 2.27429i
\(929\) −27.5000 + 47.6314i −0.902246 + 1.56274i −0.0776734 + 0.996979i \(0.524749\pi\)
−0.824572 + 0.565757i \(0.808584\pi\)
\(930\) 0 0
\(931\) −5.50000 4.33013i −0.180255 0.141914i
\(932\) −18.0000 −0.589610
\(933\) 0 0
\(934\) −36.0000 62.3538i −1.17796 2.04028i
\(935\) 6.00000 + 10.3923i 0.196221 + 0.339865i
\(936\) 0 0
\(937\) 57.0000 1.86211 0.931054 0.364880i \(-0.118890\pi\)
0.931054 + 0.364880i \(0.118890\pi\)
\(938\) −40.0000 + 34.6410i −1.30605 + 1.13107i
\(939\) 0 0
\(940\) 0 0
\(941\) 10.0000 + 17.3205i 0.325991 + 0.564632i 0.981712 0.190370i \(-0.0609689\pi\)
−0.655722 + 0.755003i \(0.727636\pi\)
\(942\) 0 0
\(943\) 3.00000 5.19615i 0.0976934 0.169210i
\(944\) 48.0000 1.56227
\(945\) 0 0
\(946\) −56.0000 −1.82072
\(947\) −14.0000 + 24.2487i −0.454939 + 0.787977i −0.998685 0.0512727i \(-0.983672\pi\)
0.543746 + 0.839250i \(0.317006\pi\)
\(948\) 0 0
\(949\) −12.0000 20.7846i −0.389536 0.674697i
\(950\) 4.00000 6.92820i 0.129777 0.224781i
\(951\) 0 0
\(952\) 0 0
\(953\) 34.0000 1.10137 0.550684 0.834714i \(-0.314367\pi\)
0.550684 + 0.834714i \(0.314367\pi\)
\(954\) 0 0
\(955\) 8.50000 + 14.7224i 0.275054 + 0.476407i
\(956\) 9.00000 + 15.5885i 0.291081 + 0.504167i
\(957\) 0 0
\(958\) 22.0000 0.710788
\(959\) −45.0000 15.5885i −1.45313 0.503378i
\(960\) 0 0
\(961\) 15.5000 26.8468i 0.500000 0.866025i
\(962\) −24.0000 41.5692i −0.773791 1.34025i
\(963\) 0 0
\(964\) 28.0000 48.4974i 0.901819 1.56200i
\(965\) 16.0000 0.515058
\(966\) 0 0
\(967\) −32.0000 −1.02905 −0.514525 0.857475i \(-0.672032\pi\)
−0.514525 + 0.857475i \(0.672032\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 12.0000 + 20.7846i 0.385297 + 0.667354i
\(971\) 24.0000 41.5692i 0.770197 1.33402i −0.167258 0.985913i \(-0.553491\pi\)
0.937455 0.348107i \(-0.113175\pi\)
\(972\) 0 0
\(973\) −24.0000 + 20.7846i −0.769405 + 0.666324i
\(974\) 64.0000 2.05069
\(975\) 0 0
\(976\) 20.0000 + 34.6410i 0.640184 + 1.10883i
\(977\) −21.0000 36.3731i −0.671850 1.16368i −0.977379 0.211495i \(-0.932167\pi\)
0.305530 0.952183i \(-0.401167\pi\)
\(978\) 0 0
\(979\) −56.0000 −1.78977
\(980\) −2.00000 + 13.8564i −0.0638877 + 0.442627i
\(981\) 0 0
\(982\) 1.00000 1.73205i 0.0319113 0.0552720i
\(983\) 12.0000 + 20.7846i 0.382741 + 0.662926i 0.991453 0.130465i \(-0.0416470\pi\)
−0.608712 + 0.793391i \(0.708314\pi\)
\(984\) 0 0
\(985\) 5.50000 9.52628i 0.175245 0.303533i
\(986\) −60.0000 −1.91079
\(987\) 0 0
\(988\) −8.00000 −0.254514
\(989\) 10.5000 18.1865i 0.333881 0.578298i
\(990\) 0 0
\(991\) 8.00000 + 13.8564i 0.254128 + 0.440163i 0.964658 0.263504i \(-0.0848781\pi\)
−0.710530 + 0.703667i \(0.751545\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 6.00000 + 31.1769i 0.190308 + 0.988872i
\(995\) 27.0000 0.855958
\(996\) 0 0
\(997\) −12.5000 21.6506i −0.395879 0.685682i 0.597334 0.801993i \(-0.296227\pi\)
−0.993213 + 0.116310i \(0.962893\pi\)
\(998\) 7.00000 + 12.1244i 0.221581 + 0.383790i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1197.2.j.b.856.1 2
3.2 odd 2 399.2.j.a.58.1 2
7.2 even 3 8379.2.a.b.1.1 1
7.4 even 3 inner 1197.2.j.b.172.1 2
7.5 odd 6 8379.2.a.c.1.1 1
21.2 odd 6 2793.2.a.l.1.1 1
21.5 even 6 2793.2.a.k.1.1 1
21.11 odd 6 399.2.j.a.172.1 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
399.2.j.a.58.1 2 3.2 odd 2
399.2.j.a.172.1 yes 2 21.11 odd 6
1197.2.j.b.172.1 2 7.4 even 3 inner
1197.2.j.b.856.1 2 1.1 even 1 trivial
2793.2.a.k.1.1 1 21.5 even 6
2793.2.a.l.1.1 1 21.2 odd 6
8379.2.a.b.1.1 1 7.2 even 3
8379.2.a.c.1.1 1 7.5 odd 6