Properties

Label 1197.2.j.a.856.1
Level $1197$
Weight $2$
Character 1197.856
Analytic conductor $9.558$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1197,2,Mod(172,1197)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1197.172"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1197, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1197 = 3^{2} \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1197.j (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,2,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.55809312195\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 399)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 856.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 1197.856
Dual form 1197.2.j.a.172.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 + 1.73205i) q^{4} +(1.00000 - 1.73205i) q^{5} +(0.500000 - 2.59808i) q^{7} +(-1.50000 - 2.59808i) q^{11} +2.00000 q^{13} +(-2.00000 + 3.46410i) q^{16} +(-3.50000 - 6.06218i) q^{17} +(0.500000 - 0.866025i) q^{19} +4.00000 q^{20} +(2.50000 - 4.33013i) q^{23} +(0.500000 + 0.866025i) q^{25} +(5.00000 - 1.73205i) q^{28} -2.00000 q^{29} +(-5.00000 - 8.66025i) q^{31} +(-4.00000 - 3.46410i) q^{35} +(-4.00000 + 6.92820i) q^{37} -6.00000 q^{41} +12.0000 q^{43} +(3.00000 - 5.19615i) q^{44} +(-2.50000 + 4.33013i) q^{47} +(-6.50000 - 2.59808i) q^{49} +(2.00000 + 3.46410i) q^{52} +(2.00000 + 3.46410i) q^{53} -6.00000 q^{55} +(7.00000 + 12.1244i) q^{59} +(6.50000 - 11.2583i) q^{61} -8.00000 q^{64} +(2.00000 - 3.46410i) q^{65} +(1.00000 + 1.73205i) q^{67} +(7.00000 - 12.1244i) q^{68} +10.0000 q^{71} +(-0.500000 - 0.866025i) q^{73} +2.00000 q^{76} +(-7.50000 + 2.59808i) q^{77} +(2.00000 - 3.46410i) q^{79} +(4.00000 + 6.92820i) q^{80} +9.00000 q^{83} -14.0000 q^{85} +(9.00000 - 15.5885i) q^{89} +(1.00000 - 5.19615i) q^{91} +10.0000 q^{92} +(-1.00000 - 1.73205i) q^{95} +6.00000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{4} + 2 q^{5} + q^{7} - 3 q^{11} + 4 q^{13} - 4 q^{16} - 7 q^{17} + q^{19} + 8 q^{20} + 5 q^{23} + q^{25} + 10 q^{28} - 4 q^{29} - 10 q^{31} - 8 q^{35} - 8 q^{37} - 12 q^{41} + 24 q^{43} + 6 q^{44}+ \cdots + 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1197\mathbb{Z}\right)^\times\).

\(n\) \(514\) \(533\) \(1009\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(3\) 0 0
\(4\) 1.00000 + 1.73205i 0.500000 + 0.866025i
\(5\) 1.00000 1.73205i 0.447214 0.774597i −0.550990 0.834512i \(-0.685750\pi\)
0.998203 + 0.0599153i \(0.0190830\pi\)
\(6\) 0 0
\(7\) 0.500000 2.59808i 0.188982 0.981981i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −1.50000 2.59808i −0.452267 0.783349i 0.546259 0.837616i \(-0.316051\pi\)
−0.998526 + 0.0542666i \(0.982718\pi\)
\(12\) 0 0
\(13\) 2.00000 0.554700 0.277350 0.960769i \(-0.410544\pi\)
0.277350 + 0.960769i \(0.410544\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −2.00000 + 3.46410i −0.500000 + 0.866025i
\(17\) −3.50000 6.06218i −0.848875 1.47029i −0.882213 0.470850i \(-0.843947\pi\)
0.0333386 0.999444i \(-0.489386\pi\)
\(18\) 0 0
\(19\) 0.500000 0.866025i 0.114708 0.198680i
\(20\) 4.00000 0.894427
\(21\) 0 0
\(22\) 0 0
\(23\) 2.50000 4.33013i 0.521286 0.902894i −0.478407 0.878138i \(-0.658786\pi\)
0.999694 0.0247559i \(-0.00788087\pi\)
\(24\) 0 0
\(25\) 0.500000 + 0.866025i 0.100000 + 0.173205i
\(26\) 0 0
\(27\) 0 0
\(28\) 5.00000 1.73205i 0.944911 0.327327i
\(29\) −2.00000 −0.371391 −0.185695 0.982607i \(-0.559454\pi\)
−0.185695 + 0.982607i \(0.559454\pi\)
\(30\) 0 0
\(31\) −5.00000 8.66025i −0.898027 1.55543i −0.830014 0.557743i \(-0.811667\pi\)
−0.0680129 0.997684i \(-0.521666\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −4.00000 3.46410i −0.676123 0.585540i
\(36\) 0 0
\(37\) −4.00000 + 6.92820i −0.657596 + 1.13899i 0.323640 + 0.946180i \(0.395093\pi\)
−0.981236 + 0.192809i \(0.938240\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −6.00000 −0.937043 −0.468521 0.883452i \(-0.655213\pi\)
−0.468521 + 0.883452i \(0.655213\pi\)
\(42\) 0 0
\(43\) 12.0000 1.82998 0.914991 0.403473i \(-0.132197\pi\)
0.914991 + 0.403473i \(0.132197\pi\)
\(44\) 3.00000 5.19615i 0.452267 0.783349i
\(45\) 0 0
\(46\) 0 0
\(47\) −2.50000 + 4.33013i −0.364662 + 0.631614i −0.988722 0.149763i \(-0.952149\pi\)
0.624059 + 0.781377i \(0.285482\pi\)
\(48\) 0 0
\(49\) −6.50000 2.59808i −0.928571 0.371154i
\(50\) 0 0
\(51\) 0 0
\(52\) 2.00000 + 3.46410i 0.277350 + 0.480384i
\(53\) 2.00000 + 3.46410i 0.274721 + 0.475831i 0.970065 0.242846i \(-0.0780811\pi\)
−0.695344 + 0.718677i \(0.744748\pi\)
\(54\) 0 0
\(55\) −6.00000 −0.809040
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 7.00000 + 12.1244i 0.911322 + 1.57846i 0.812198 + 0.583382i \(0.198271\pi\)
0.0991242 + 0.995075i \(0.468396\pi\)
\(60\) 0 0
\(61\) 6.50000 11.2583i 0.832240 1.44148i −0.0640184 0.997949i \(-0.520392\pi\)
0.896258 0.443533i \(-0.146275\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −8.00000 −1.00000
\(65\) 2.00000 3.46410i 0.248069 0.429669i
\(66\) 0 0
\(67\) 1.00000 + 1.73205i 0.122169 + 0.211604i 0.920623 0.390453i \(-0.127682\pi\)
−0.798454 + 0.602056i \(0.794348\pi\)
\(68\) 7.00000 12.1244i 0.848875 1.47029i
\(69\) 0 0
\(70\) 0 0
\(71\) 10.0000 1.18678 0.593391 0.804914i \(-0.297789\pi\)
0.593391 + 0.804914i \(0.297789\pi\)
\(72\) 0 0
\(73\) −0.500000 0.866025i −0.0585206 0.101361i 0.835281 0.549823i \(-0.185305\pi\)
−0.893801 + 0.448463i \(0.851972\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 2.00000 0.229416
\(77\) −7.50000 + 2.59808i −0.854704 + 0.296078i
\(78\) 0 0
\(79\) 2.00000 3.46410i 0.225018 0.389742i −0.731307 0.682048i \(-0.761089\pi\)
0.956325 + 0.292306i \(0.0944227\pi\)
\(80\) 4.00000 + 6.92820i 0.447214 + 0.774597i
\(81\) 0 0
\(82\) 0 0
\(83\) 9.00000 0.987878 0.493939 0.869496i \(-0.335557\pi\)
0.493939 + 0.869496i \(0.335557\pi\)
\(84\) 0 0
\(85\) −14.0000 −1.51851
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 9.00000 15.5885i 0.953998 1.65237i 0.217354 0.976093i \(-0.430258\pi\)
0.736644 0.676280i \(-0.236409\pi\)
\(90\) 0 0
\(91\) 1.00000 5.19615i 0.104828 0.544705i
\(92\) 10.0000 1.04257
\(93\) 0 0
\(94\) 0 0
\(95\) −1.00000 1.73205i −0.102598 0.177705i
\(96\) 0 0
\(97\) 6.00000 0.609208 0.304604 0.952479i \(-0.401476\pi\)
0.304604 + 0.952479i \(0.401476\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −1.00000 + 1.73205i −0.100000 + 0.173205i
\(101\) 6.50000 + 11.2583i 0.646774 + 1.12025i 0.983889 + 0.178782i \(0.0572157\pi\)
−0.337115 + 0.941464i \(0.609451\pi\)
\(102\) 0 0
\(103\) −4.00000 + 6.92820i −0.394132 + 0.682656i −0.992990 0.118199i \(-0.962288\pi\)
0.598858 + 0.800855i \(0.295621\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −9.00000 + 15.5885i −0.870063 + 1.50699i −0.00813215 + 0.999967i \(0.502589\pi\)
−0.861931 + 0.507026i \(0.830745\pi\)
\(108\) 0 0
\(109\) −3.00000 5.19615i −0.287348 0.497701i 0.685828 0.727764i \(-0.259440\pi\)
−0.973176 + 0.230063i \(0.926107\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 8.00000 + 6.92820i 0.755929 + 0.654654i
\(113\) −12.0000 −1.12887 −0.564433 0.825479i \(-0.690905\pi\)
−0.564433 + 0.825479i \(0.690905\pi\)
\(114\) 0 0
\(115\) −5.00000 8.66025i −0.466252 0.807573i
\(116\) −2.00000 3.46410i −0.185695 0.321634i
\(117\) 0 0
\(118\) 0 0
\(119\) −17.5000 + 6.06218i −1.60422 + 0.555719i
\(120\) 0 0
\(121\) 1.00000 1.73205i 0.0909091 0.157459i
\(122\) 0 0
\(123\) 0 0
\(124\) 10.0000 17.3205i 0.898027 1.55543i
\(125\) 12.0000 1.07331
\(126\) 0 0
\(127\) 16.0000 1.41977 0.709885 0.704317i \(-0.248747\pi\)
0.709885 + 0.704317i \(0.248747\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0.500000 0.866025i 0.0436852 0.0756650i −0.843356 0.537355i \(-0.819423\pi\)
0.887041 + 0.461690i \(0.152757\pi\)
\(132\) 0 0
\(133\) −2.00000 1.73205i −0.173422 0.150188i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −1.50000 2.59808i −0.128154 0.221969i 0.794808 0.606861i \(-0.207572\pi\)
−0.922961 + 0.384893i \(0.874238\pi\)
\(138\) 0 0
\(139\) 5.00000 0.424094 0.212047 0.977259i \(-0.431987\pi\)
0.212047 + 0.977259i \(0.431987\pi\)
\(140\) 2.00000 10.3923i 0.169031 0.878310i
\(141\) 0 0
\(142\) 0 0
\(143\) −3.00000 5.19615i −0.250873 0.434524i
\(144\) 0 0
\(145\) −2.00000 + 3.46410i −0.166091 + 0.287678i
\(146\) 0 0
\(147\) 0 0
\(148\) −16.0000 −1.31519
\(149\) 3.00000 5.19615i 0.245770 0.425685i −0.716578 0.697507i \(-0.754293\pi\)
0.962348 + 0.271821i \(0.0876260\pi\)
\(150\) 0 0
\(151\) 4.00000 + 6.92820i 0.325515 + 0.563809i 0.981617 0.190864i \(-0.0611289\pi\)
−0.656101 + 0.754673i \(0.727796\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −20.0000 −1.60644
\(156\) 0 0
\(157\) −2.50000 4.33013i −0.199522 0.345582i 0.748852 0.662738i \(-0.230606\pi\)
−0.948373 + 0.317156i \(0.897272\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −10.0000 8.66025i −0.788110 0.682524i
\(162\) 0 0
\(163\) −4.50000 + 7.79423i −0.352467 + 0.610491i −0.986681 0.162667i \(-0.947991\pi\)
0.634214 + 0.773158i \(0.281324\pi\)
\(164\) −6.00000 10.3923i −0.468521 0.811503i
\(165\) 0 0
\(166\) 0 0
\(167\) −14.0000 −1.08335 −0.541676 0.840587i \(-0.682210\pi\)
−0.541676 + 0.840587i \(0.682210\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) 0 0
\(172\) 12.0000 + 20.7846i 0.914991 + 1.58481i
\(173\) 2.00000 3.46410i 0.152057 0.263371i −0.779926 0.625871i \(-0.784744\pi\)
0.931984 + 0.362500i \(0.118077\pi\)
\(174\) 0 0
\(175\) 2.50000 0.866025i 0.188982 0.0654654i
\(176\) 12.0000 0.904534
\(177\) 0 0
\(178\) 0 0
\(179\) 5.00000 + 8.66025i 0.373718 + 0.647298i 0.990134 0.140122i \(-0.0447496\pi\)
−0.616417 + 0.787420i \(0.711416\pi\)
\(180\) 0 0
\(181\) 16.0000 1.18927 0.594635 0.803996i \(-0.297296\pi\)
0.594635 + 0.803996i \(0.297296\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 8.00000 + 13.8564i 0.588172 + 1.01874i
\(186\) 0 0
\(187\) −10.5000 + 18.1865i −0.767836 + 1.32993i
\(188\) −10.0000 −0.729325
\(189\) 0 0
\(190\) 0 0
\(191\) −4.00000 + 6.92820i −0.289430 + 0.501307i −0.973674 0.227946i \(-0.926799\pi\)
0.684244 + 0.729253i \(0.260132\pi\)
\(192\) 0 0
\(193\) −4.00000 6.92820i −0.287926 0.498703i 0.685388 0.728178i \(-0.259632\pi\)
−0.973315 + 0.229475i \(0.926299\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −2.00000 13.8564i −0.142857 0.989743i
\(197\) 5.00000 0.356235 0.178118 0.984009i \(-0.442999\pi\)
0.178118 + 0.984009i \(0.442999\pi\)
\(198\) 0 0
\(199\) 8.00000 + 13.8564i 0.567105 + 0.982255i 0.996850 + 0.0793045i \(0.0252700\pi\)
−0.429745 + 0.902950i \(0.641397\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −1.00000 + 5.19615i −0.0701862 + 0.364698i
\(204\) 0 0
\(205\) −6.00000 + 10.3923i −0.419058 + 0.725830i
\(206\) 0 0
\(207\) 0 0
\(208\) −4.00000 + 6.92820i −0.277350 + 0.480384i
\(209\) −3.00000 −0.207514
\(210\) 0 0
\(211\) −8.00000 −0.550743 −0.275371 0.961338i \(-0.588801\pi\)
−0.275371 + 0.961338i \(0.588801\pi\)
\(212\) −4.00000 + 6.92820i −0.274721 + 0.475831i
\(213\) 0 0
\(214\) 0 0
\(215\) 12.0000 20.7846i 0.818393 1.41750i
\(216\) 0 0
\(217\) −25.0000 + 8.66025i −1.69711 + 0.587896i
\(218\) 0 0
\(219\) 0 0
\(220\) −6.00000 10.3923i −0.404520 0.700649i
\(221\) −7.00000 12.1244i −0.470871 0.815572i
\(222\) 0 0
\(223\) 2.00000 0.133930 0.0669650 0.997755i \(-0.478668\pi\)
0.0669650 + 0.997755i \(0.478668\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 5.00000 + 8.66025i 0.331862 + 0.574801i 0.982877 0.184263i \(-0.0589899\pi\)
−0.651015 + 0.759065i \(0.725657\pi\)
\(228\) 0 0
\(229\) −0.500000 + 0.866025i −0.0330409 + 0.0572286i −0.882073 0.471113i \(-0.843853\pi\)
0.849032 + 0.528341i \(0.177186\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −10.5000 + 18.1865i −0.687878 + 1.19144i 0.284645 + 0.958633i \(0.408124\pi\)
−0.972523 + 0.232806i \(0.925209\pi\)
\(234\) 0 0
\(235\) 5.00000 + 8.66025i 0.326164 + 0.564933i
\(236\) −14.0000 + 24.2487i −0.911322 + 1.57846i
\(237\) 0 0
\(238\) 0 0
\(239\) 1.00000 0.0646846 0.0323423 0.999477i \(-0.489703\pi\)
0.0323423 + 0.999477i \(0.489703\pi\)
\(240\) 0 0
\(241\) 4.00000 + 6.92820i 0.257663 + 0.446285i 0.965615 0.259975i \(-0.0837143\pi\)
−0.707953 + 0.706260i \(0.750381\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 26.0000 1.66448
\(245\) −11.0000 + 8.66025i −0.702764 + 0.553283i
\(246\) 0 0
\(247\) 1.00000 1.73205i 0.0636285 0.110208i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −16.0000 −1.00991 −0.504956 0.863145i \(-0.668491\pi\)
−0.504956 + 0.863145i \(0.668491\pi\)
\(252\) 0 0
\(253\) −15.0000 −0.943042
\(254\) 0 0
\(255\) 0 0
\(256\) −8.00000 13.8564i −0.500000 0.866025i
\(257\) −6.00000 + 10.3923i −0.374270 + 0.648254i −0.990217 0.139533i \(-0.955440\pi\)
0.615948 + 0.787787i \(0.288773\pi\)
\(258\) 0 0
\(259\) 16.0000 + 13.8564i 0.994192 + 0.860995i
\(260\) 8.00000 0.496139
\(261\) 0 0
\(262\) 0 0
\(263\) −5.50000 9.52628i −0.339145 0.587416i 0.645128 0.764075i \(-0.276804\pi\)
−0.984272 + 0.176659i \(0.943471\pi\)
\(264\) 0 0
\(265\) 8.00000 0.491436
\(266\) 0 0
\(267\) 0 0
\(268\) −2.00000 + 3.46410i −0.122169 + 0.211604i
\(269\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(270\) 0 0
\(271\) 0.500000 0.866025i 0.0303728 0.0526073i −0.850439 0.526073i \(-0.823664\pi\)
0.880812 + 0.473466i \(0.156997\pi\)
\(272\) 28.0000 1.69775
\(273\) 0 0
\(274\) 0 0
\(275\) 1.50000 2.59808i 0.0904534 0.156670i
\(276\) 0 0
\(277\) −8.50000 14.7224i −0.510716 0.884585i −0.999923 0.0124177i \(-0.996047\pi\)
0.489207 0.872167i \(-0.337286\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 20.0000 1.19310 0.596550 0.802576i \(-0.296538\pi\)
0.596550 + 0.802576i \(0.296538\pi\)
\(282\) 0 0
\(283\) 2.00000 + 3.46410i 0.118888 + 0.205919i 0.919327 0.393494i \(-0.128734\pi\)
−0.800439 + 0.599414i \(0.795400\pi\)
\(284\) 10.0000 + 17.3205i 0.593391 + 1.02778i
\(285\) 0 0
\(286\) 0 0
\(287\) −3.00000 + 15.5885i −0.177084 + 0.920158i
\(288\) 0 0
\(289\) −16.0000 + 27.7128i −0.941176 + 1.63017i
\(290\) 0 0
\(291\) 0 0
\(292\) 1.00000 1.73205i 0.0585206 0.101361i
\(293\) 18.0000 1.05157 0.525786 0.850617i \(-0.323771\pi\)
0.525786 + 0.850617i \(0.323771\pi\)
\(294\) 0 0
\(295\) 28.0000 1.63022
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 5.00000 8.66025i 0.289157 0.500835i
\(300\) 0 0
\(301\) 6.00000 31.1769i 0.345834 1.79701i
\(302\) 0 0
\(303\) 0 0
\(304\) 2.00000 + 3.46410i 0.114708 + 0.198680i
\(305\) −13.0000 22.5167i −0.744378 1.28930i
\(306\) 0 0
\(307\) 16.0000 0.913168 0.456584 0.889680i \(-0.349073\pi\)
0.456584 + 0.889680i \(0.349073\pi\)
\(308\) −12.0000 10.3923i −0.683763 0.592157i
\(309\) 0 0
\(310\) 0 0
\(311\) 2.50000 + 4.33013i 0.141762 + 0.245539i 0.928160 0.372181i \(-0.121390\pi\)
−0.786398 + 0.617720i \(0.788057\pi\)
\(312\) 0 0
\(313\) −9.50000 + 16.4545i −0.536972 + 0.930062i 0.462093 + 0.886831i \(0.347098\pi\)
−0.999065 + 0.0432311i \(0.986235\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 8.00000 0.450035
\(317\) −15.0000 + 25.9808i −0.842484 + 1.45922i 0.0453045 + 0.998973i \(0.485574\pi\)
−0.887788 + 0.460252i \(0.847759\pi\)
\(318\) 0 0
\(319\) 3.00000 + 5.19615i 0.167968 + 0.290929i
\(320\) −8.00000 + 13.8564i −0.447214 + 0.774597i
\(321\) 0 0
\(322\) 0 0
\(323\) −7.00000 −0.389490
\(324\) 0 0
\(325\) 1.00000 + 1.73205i 0.0554700 + 0.0960769i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 10.0000 + 8.66025i 0.551318 + 0.477455i
\(330\) 0 0
\(331\) −13.0000 + 22.5167i −0.714545 + 1.23763i 0.248590 + 0.968609i \(0.420033\pi\)
−0.963135 + 0.269019i \(0.913301\pi\)
\(332\) 9.00000 + 15.5885i 0.493939 + 0.855528i
\(333\) 0 0
\(334\) 0 0
\(335\) 4.00000 0.218543
\(336\) 0 0
\(337\) 12.0000 0.653682 0.326841 0.945079i \(-0.394016\pi\)
0.326841 + 0.945079i \(0.394016\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) −14.0000 24.2487i −0.759257 1.31507i
\(341\) −15.0000 + 25.9808i −0.812296 + 1.40694i
\(342\) 0 0
\(343\) −10.0000 + 15.5885i −0.539949 + 0.841698i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −6.00000 10.3923i −0.322097 0.557888i 0.658824 0.752297i \(-0.271054\pi\)
−0.980921 + 0.194409i \(0.937721\pi\)
\(348\) 0 0
\(349\) −27.0000 −1.44528 −0.722638 0.691226i \(-0.757071\pi\)
−0.722638 + 0.691226i \(0.757071\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −7.00000 12.1244i −0.372572 0.645314i 0.617388 0.786659i \(-0.288191\pi\)
−0.989960 + 0.141344i \(0.954858\pi\)
\(354\) 0 0
\(355\) 10.0000 17.3205i 0.530745 0.919277i
\(356\) 36.0000 1.90800
\(357\) 0 0
\(358\) 0 0
\(359\) −15.5000 + 26.8468i −0.818059 + 1.41692i 0.0890519 + 0.996027i \(0.471616\pi\)
−0.907111 + 0.420892i \(0.861717\pi\)
\(360\) 0 0
\(361\) −0.500000 0.866025i −0.0263158 0.0455803i
\(362\) 0 0
\(363\) 0 0
\(364\) 10.0000 3.46410i 0.524142 0.181568i
\(365\) −2.00000 −0.104685
\(366\) 0 0
\(367\) −8.00000 13.8564i −0.417597 0.723299i 0.578101 0.815966i \(-0.303794\pi\)
−0.995697 + 0.0926670i \(0.970461\pi\)
\(368\) 10.0000 + 17.3205i 0.521286 + 0.902894i
\(369\) 0 0
\(370\) 0 0
\(371\) 10.0000 3.46410i 0.519174 0.179847i
\(372\) 0 0
\(373\) 5.00000 8.66025i 0.258890 0.448411i −0.707055 0.707159i \(-0.749977\pi\)
0.965945 + 0.258748i \(0.0833099\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −4.00000 −0.206010
\(378\) 0 0
\(379\) 8.00000 0.410932 0.205466 0.978664i \(-0.434129\pi\)
0.205466 + 0.978664i \(0.434129\pi\)
\(380\) 2.00000 3.46410i 0.102598 0.177705i
\(381\) 0 0
\(382\) 0 0
\(383\) 3.00000 5.19615i 0.153293 0.265511i −0.779143 0.626846i \(-0.784346\pi\)
0.932436 + 0.361335i \(0.117679\pi\)
\(384\) 0 0
\(385\) −3.00000 + 15.5885i −0.152894 + 0.794461i
\(386\) 0 0
\(387\) 0 0
\(388\) 6.00000 + 10.3923i 0.304604 + 0.527589i
\(389\) −14.5000 25.1147i −0.735179 1.27337i −0.954645 0.297747i \(-0.903765\pi\)
0.219465 0.975620i \(-0.429569\pi\)
\(390\) 0 0
\(391\) −35.0000 −1.77003
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −4.00000 6.92820i −0.201262 0.348596i
\(396\) 0 0
\(397\) 11.5000 19.9186i 0.577168 0.999685i −0.418634 0.908155i \(-0.637491\pi\)
0.995802 0.0915300i \(-0.0291757\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −4.00000 −0.200000
\(401\) −3.00000 + 5.19615i −0.149813 + 0.259483i −0.931158 0.364615i \(-0.881200\pi\)
0.781345 + 0.624099i \(0.214534\pi\)
\(402\) 0 0
\(403\) −10.0000 17.3205i −0.498135 0.862796i
\(404\) −13.0000 + 22.5167i −0.646774 + 1.12025i
\(405\) 0 0
\(406\) 0 0
\(407\) 24.0000 1.18964
\(408\) 0 0
\(409\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −16.0000 −0.788263
\(413\) 35.0000 12.1244i 1.72224 0.596601i
\(414\) 0 0
\(415\) 9.00000 15.5885i 0.441793 0.765207i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 9.00000 0.439679 0.219839 0.975536i \(-0.429447\pi\)
0.219839 + 0.975536i \(0.429447\pi\)
\(420\) 0 0
\(421\) 4.00000 0.194948 0.0974740 0.995238i \(-0.468924\pi\)
0.0974740 + 0.995238i \(0.468924\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 3.50000 6.06218i 0.169775 0.294059i
\(426\) 0 0
\(427\) −26.0000 22.5167i −1.25823 1.08966i
\(428\) −36.0000 −1.74013
\(429\) 0 0
\(430\) 0 0
\(431\) −3.00000 5.19615i −0.144505 0.250290i 0.784683 0.619897i \(-0.212826\pi\)
−0.929188 + 0.369607i \(0.879492\pi\)
\(432\) 0 0
\(433\) −18.0000 −0.865025 −0.432512 0.901628i \(-0.642373\pi\)
−0.432512 + 0.901628i \(0.642373\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 6.00000 10.3923i 0.287348 0.497701i
\(437\) −2.50000 4.33013i −0.119591 0.207138i
\(438\) 0 0
\(439\) −7.00000 + 12.1244i −0.334092 + 0.578664i −0.983310 0.181938i \(-0.941763\pi\)
0.649218 + 0.760602i \(0.275096\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 10.5000 18.1865i 0.498870 0.864068i −0.501129 0.865373i \(-0.667082\pi\)
0.999999 + 0.00130426i \(0.000415158\pi\)
\(444\) 0 0
\(445\) −18.0000 31.1769i −0.853282 1.47793i
\(446\) 0 0
\(447\) 0 0
\(448\) −4.00000 + 20.7846i −0.188982 + 0.981981i
\(449\) 18.0000 0.849473 0.424736 0.905317i \(-0.360367\pi\)
0.424736 + 0.905317i \(0.360367\pi\)
\(450\) 0 0
\(451\) 9.00000 + 15.5885i 0.423793 + 0.734032i
\(452\) −12.0000 20.7846i −0.564433 0.977626i
\(453\) 0 0
\(454\) 0 0
\(455\) −8.00000 6.92820i −0.375046 0.324799i
\(456\) 0 0
\(457\) 12.5000 21.6506i 0.584725 1.01277i −0.410184 0.912003i \(-0.634536\pi\)
0.994910 0.100771i \(-0.0321310\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 10.0000 17.3205i 0.466252 0.807573i
\(461\) 15.0000 0.698620 0.349310 0.937007i \(-0.386416\pi\)
0.349310 + 0.937007i \(0.386416\pi\)
\(462\) 0 0
\(463\) −9.00000 −0.418265 −0.209133 0.977887i \(-0.567064\pi\)
−0.209133 + 0.977887i \(0.567064\pi\)
\(464\) 4.00000 6.92820i 0.185695 0.321634i
\(465\) 0 0
\(466\) 0 0
\(467\) −2.50000 + 4.33013i −0.115686 + 0.200374i −0.918054 0.396456i \(-0.870240\pi\)
0.802368 + 0.596830i \(0.203573\pi\)
\(468\) 0 0
\(469\) 5.00000 1.73205i 0.230879 0.0799787i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −18.0000 31.1769i −0.827641 1.43352i
\(474\) 0 0
\(475\) 1.00000 0.0458831
\(476\) −28.0000 24.2487i −1.28338 1.11144i
\(477\) 0 0
\(478\) 0 0
\(479\) 15.5000 + 26.8468i 0.708213 + 1.22666i 0.965519 + 0.260331i \(0.0838317\pi\)
−0.257306 + 0.966330i \(0.582835\pi\)
\(480\) 0 0
\(481\) −8.00000 + 13.8564i −0.364769 + 0.631798i
\(482\) 0 0
\(483\) 0 0
\(484\) 4.00000 0.181818
\(485\) 6.00000 10.3923i 0.272446 0.471890i
\(486\) 0 0
\(487\) −1.00000 1.73205i −0.0453143 0.0784867i 0.842479 0.538730i \(-0.181096\pi\)
−0.887793 + 0.460243i \(0.847762\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −27.0000 −1.21849 −0.609246 0.792981i \(-0.708528\pi\)
−0.609246 + 0.792981i \(0.708528\pi\)
\(492\) 0 0
\(493\) 7.00000 + 12.1244i 0.315264 + 0.546054i
\(494\) 0 0
\(495\) 0 0
\(496\) 40.0000 1.79605
\(497\) 5.00000 25.9808i 0.224281 1.16540i
\(498\) 0 0
\(499\) 6.00000 10.3923i 0.268597 0.465223i −0.699903 0.714238i \(-0.746773\pi\)
0.968500 + 0.249015i \(0.0801067\pi\)
\(500\) 12.0000 + 20.7846i 0.536656 + 0.929516i
\(501\) 0 0
\(502\) 0 0
\(503\) 11.0000 0.490466 0.245233 0.969464i \(-0.421136\pi\)
0.245233 + 0.969464i \(0.421136\pi\)
\(504\) 0 0
\(505\) 26.0000 1.15698
\(506\) 0 0
\(507\) 0 0
\(508\) 16.0000 + 27.7128i 0.709885 + 1.22956i
\(509\) 15.0000 25.9808i 0.664863 1.15158i −0.314459 0.949271i \(-0.601823\pi\)
0.979322 0.202306i \(-0.0648436\pi\)
\(510\) 0 0
\(511\) −2.50000 + 0.866025i −0.110593 + 0.0383107i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 8.00000 + 13.8564i 0.352522 + 0.610586i
\(516\) 0 0
\(517\) 15.0000 0.659699
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −14.0000 24.2487i −0.613351 1.06236i −0.990671 0.136272i \(-0.956488\pi\)
0.377320 0.926083i \(-0.376846\pi\)
\(522\) 0 0
\(523\) −17.0000 + 29.4449i −0.743358 + 1.28753i 0.207600 + 0.978214i \(0.433435\pi\)
−0.950958 + 0.309320i \(0.899899\pi\)
\(524\) 2.00000 0.0873704
\(525\) 0 0
\(526\) 0 0
\(527\) −35.0000 + 60.6218i −1.52462 + 2.64073i
\(528\) 0 0
\(529\) −1.00000 1.73205i −0.0434783 0.0753066i
\(530\) 0 0
\(531\) 0 0
\(532\) 1.00000 5.19615i 0.0433555 0.225282i
\(533\) −12.0000 −0.519778
\(534\) 0 0
\(535\) 18.0000 + 31.1769i 0.778208 + 1.34790i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 3.00000 + 20.7846i 0.129219 + 0.895257i
\(540\) 0 0
\(541\) 7.00000 12.1244i 0.300954 0.521267i −0.675399 0.737453i \(-0.736028\pi\)
0.976352 + 0.216186i \(0.0693618\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −12.0000 −0.514024
\(546\) 0 0
\(547\) −14.0000 −0.598597 −0.299298 0.954160i \(-0.596753\pi\)
−0.299298 + 0.954160i \(0.596753\pi\)
\(548\) 3.00000 5.19615i 0.128154 0.221969i
\(549\) 0 0
\(550\) 0 0
\(551\) −1.00000 + 1.73205i −0.0426014 + 0.0737878i
\(552\) 0 0
\(553\) −8.00000 6.92820i −0.340195 0.294617i
\(554\) 0 0
\(555\) 0 0
\(556\) 5.00000 + 8.66025i 0.212047 + 0.367277i
\(557\) −5.00000 8.66025i −0.211857 0.366947i 0.740439 0.672124i \(-0.234618\pi\)
−0.952296 + 0.305177i \(0.901284\pi\)
\(558\) 0 0
\(559\) 24.0000 1.01509
\(560\) 20.0000 6.92820i 0.845154 0.292770i
\(561\) 0 0
\(562\) 0 0
\(563\) −5.00000 8.66025i −0.210725 0.364986i 0.741217 0.671266i \(-0.234249\pi\)
−0.951942 + 0.306280i \(0.900916\pi\)
\(564\) 0 0
\(565\) −12.0000 + 20.7846i −0.504844 + 0.874415i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 10.0000 17.3205i 0.419222 0.726113i −0.576640 0.816999i \(-0.695636\pi\)
0.995861 + 0.0908852i \(0.0289696\pi\)
\(570\) 0 0
\(571\) −23.5000 40.7032i −0.983444 1.70338i −0.648655 0.761083i \(-0.724668\pi\)
−0.334790 0.942293i \(-0.608665\pi\)
\(572\) 6.00000 10.3923i 0.250873 0.434524i
\(573\) 0 0
\(574\) 0 0
\(575\) 5.00000 0.208514
\(576\) 0 0
\(577\) 14.5000 + 25.1147i 0.603643 + 1.04554i 0.992264 + 0.124143i \(0.0396180\pi\)
−0.388621 + 0.921397i \(0.627049\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) −8.00000 −0.332182
\(581\) 4.50000 23.3827i 0.186691 0.970077i
\(582\) 0 0
\(583\) 6.00000 10.3923i 0.248495 0.430405i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 15.0000 0.619116 0.309558 0.950881i \(-0.399819\pi\)
0.309558 + 0.950881i \(0.399819\pi\)
\(588\) 0 0
\(589\) −10.0000 −0.412043
\(590\) 0 0
\(591\) 0 0
\(592\) −16.0000 27.7128i −0.657596 1.13899i
\(593\) 3.50000 6.06218i 0.143728 0.248944i −0.785170 0.619281i \(-0.787424\pi\)
0.928898 + 0.370337i \(0.120758\pi\)
\(594\) 0 0
\(595\) −7.00000 + 36.3731i −0.286972 + 1.49115i
\(596\) 12.0000 0.491539
\(597\) 0 0
\(598\) 0 0
\(599\) −8.00000 13.8564i −0.326871 0.566157i 0.655018 0.755613i \(-0.272661\pi\)
−0.981889 + 0.189456i \(0.939328\pi\)
\(600\) 0 0
\(601\) −20.0000 −0.815817 −0.407909 0.913023i \(-0.633742\pi\)
−0.407909 + 0.913023i \(0.633742\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −8.00000 + 13.8564i −0.325515 + 0.563809i
\(605\) −2.00000 3.46410i −0.0813116 0.140836i
\(606\) 0 0
\(607\) 9.00000 15.5885i 0.365299 0.632716i −0.623525 0.781803i \(-0.714300\pi\)
0.988824 + 0.149087i \(0.0476335\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −5.00000 + 8.66025i −0.202278 + 0.350356i
\(612\) 0 0
\(613\) 21.5000 + 37.2391i 0.868377 + 1.50407i 0.863655 + 0.504084i \(0.168170\pi\)
0.00472215 + 0.999989i \(0.498497\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −10.0000 −0.402585 −0.201292 0.979531i \(-0.564514\pi\)
−0.201292 + 0.979531i \(0.564514\pi\)
\(618\) 0 0
\(619\) −19.5000 33.7750i −0.783771 1.35753i −0.929730 0.368241i \(-0.879960\pi\)
0.145959 0.989291i \(-0.453373\pi\)
\(620\) −20.0000 34.6410i −0.803219 1.39122i
\(621\) 0 0
\(622\) 0 0
\(623\) −36.0000 31.1769i −1.44231 1.24908i
\(624\) 0 0
\(625\) 9.50000 16.4545i 0.380000 0.658179i
\(626\) 0 0
\(627\) 0 0
\(628\) 5.00000 8.66025i 0.199522 0.345582i
\(629\) 56.0000 2.23287
\(630\) 0 0
\(631\) 48.0000 1.91085 0.955425 0.295234i \(-0.0953977\pi\)
0.955425 + 0.295234i \(0.0953977\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 16.0000 27.7128i 0.634941 1.09975i
\(636\) 0 0
\(637\) −13.0000 5.19615i −0.515079 0.205879i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 13.0000 + 22.5167i 0.513469 + 0.889355i 0.999878 + 0.0156233i \(0.00497325\pi\)
−0.486409 + 0.873731i \(0.661693\pi\)
\(642\) 0 0
\(643\) −9.00000 −0.354925 −0.177463 0.984128i \(-0.556789\pi\)
−0.177463 + 0.984128i \(0.556789\pi\)
\(644\) 5.00000 25.9808i 0.197028 1.02379i
\(645\) 0 0
\(646\) 0 0
\(647\) 12.0000 + 20.7846i 0.471769 + 0.817127i 0.999478 0.0322975i \(-0.0102824\pi\)
−0.527710 + 0.849425i \(0.676949\pi\)
\(648\) 0 0
\(649\) 21.0000 36.3731i 0.824322 1.42777i
\(650\) 0 0
\(651\) 0 0
\(652\) −18.0000 −0.704934
\(653\) −11.5000 + 19.9186i −0.450030 + 0.779474i −0.998387 0.0567696i \(-0.981920\pi\)
0.548358 + 0.836244i \(0.315253\pi\)
\(654\) 0 0
\(655\) −1.00000 1.73205i −0.0390732 0.0676768i
\(656\) 12.0000 20.7846i 0.468521 0.811503i
\(657\) 0 0
\(658\) 0 0
\(659\) 18.0000 0.701180 0.350590 0.936529i \(-0.385981\pi\)
0.350590 + 0.936529i \(0.385981\pi\)
\(660\) 0 0
\(661\) −6.00000 10.3923i −0.233373 0.404214i 0.725426 0.688301i \(-0.241643\pi\)
−0.958799 + 0.284087i \(0.908310\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −5.00000 + 1.73205i −0.193892 + 0.0671660i
\(666\) 0 0
\(667\) −5.00000 + 8.66025i −0.193601 + 0.335326i
\(668\) −14.0000 24.2487i −0.541676 0.938211i
\(669\) 0 0
\(670\) 0 0
\(671\) −39.0000 −1.50558
\(672\) 0 0
\(673\) 34.0000 1.31060 0.655302 0.755367i \(-0.272541\pi\)
0.655302 + 0.755367i \(0.272541\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) −9.00000 15.5885i −0.346154 0.599556i
\(677\) −6.00000 + 10.3923i −0.230599 + 0.399409i −0.957984 0.286820i \(-0.907402\pi\)
0.727386 + 0.686229i \(0.240735\pi\)
\(678\) 0 0
\(679\) 3.00000 15.5885i 0.115129 0.598230i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 22.0000 + 38.1051i 0.841807 + 1.45805i 0.888366 + 0.459136i \(0.151841\pi\)
−0.0465592 + 0.998916i \(0.514826\pi\)
\(684\) 0 0
\(685\) −6.00000 −0.229248
\(686\) 0 0
\(687\) 0 0
\(688\) −24.0000 + 41.5692i −0.914991 + 1.58481i
\(689\) 4.00000 + 6.92820i 0.152388 + 0.263944i
\(690\) 0 0
\(691\) 9.50000 16.4545i 0.361397 0.625958i −0.626794 0.779185i \(-0.715633\pi\)
0.988191 + 0.153227i \(0.0489666\pi\)
\(692\) 8.00000 0.304114
\(693\) 0 0
\(694\) 0 0
\(695\) 5.00000 8.66025i 0.189661 0.328502i
\(696\) 0 0
\(697\) 21.0000 + 36.3731i 0.795432 + 1.37773i
\(698\) 0 0
\(699\) 0 0
\(700\) 4.00000 + 3.46410i 0.151186 + 0.130931i
\(701\) 15.0000 0.566542 0.283271 0.959040i \(-0.408580\pi\)
0.283271 + 0.959040i \(0.408580\pi\)
\(702\) 0 0
\(703\) 4.00000 + 6.92820i 0.150863 + 0.261302i
\(704\) 12.0000 + 20.7846i 0.452267 + 0.783349i
\(705\) 0 0
\(706\) 0 0
\(707\) 32.5000 11.2583i 1.22229 0.423413i
\(708\) 0 0
\(709\) −0.500000 + 0.866025i −0.0187779 + 0.0325243i −0.875262 0.483650i \(-0.839311\pi\)
0.856484 + 0.516174i \(0.172644\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −50.0000 −1.87251
\(714\) 0 0
\(715\) −12.0000 −0.448775
\(716\) −10.0000 + 17.3205i −0.373718 + 0.647298i
\(717\) 0 0
\(718\) 0 0
\(719\) 13.5000 23.3827i 0.503465 0.872027i −0.496527 0.868021i \(-0.665392\pi\)
0.999992 0.00400572i \(-0.00127506\pi\)
\(720\) 0 0
\(721\) 16.0000 + 13.8564i 0.595871 + 0.516040i
\(722\) 0 0
\(723\) 0 0
\(724\) 16.0000 + 27.7128i 0.594635 + 1.02994i
\(725\) −1.00000 1.73205i −0.0371391 0.0643268i
\(726\) 0 0
\(727\) 28.0000 1.03846 0.519231 0.854634i \(-0.326218\pi\)
0.519231 + 0.854634i \(0.326218\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −42.0000 72.7461i −1.55343 2.69061i
\(732\) 0 0
\(733\) 9.00000 15.5885i 0.332423 0.575773i −0.650564 0.759452i \(-0.725467\pi\)
0.982986 + 0.183679i \(0.0588007\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 3.00000 5.19615i 0.110506 0.191403i
\(738\) 0 0
\(739\) 20.5000 + 35.5070i 0.754105 + 1.30615i 0.945818 + 0.324697i \(0.105262\pi\)
−0.191714 + 0.981451i \(0.561404\pi\)
\(740\) −16.0000 + 27.7128i −0.588172 + 1.01874i
\(741\) 0 0
\(742\) 0 0
\(743\) 44.0000 1.61420 0.807102 0.590412i \(-0.201035\pi\)
0.807102 + 0.590412i \(0.201035\pi\)
\(744\) 0 0
\(745\) −6.00000 10.3923i −0.219823 0.380745i
\(746\) 0 0
\(747\) 0 0
\(748\) −42.0000 −1.53567
\(749\) 36.0000 + 31.1769i 1.31541 + 1.13918i
\(750\) 0 0
\(751\) 19.0000 32.9090i 0.693320 1.20087i −0.277424 0.960748i \(-0.589481\pi\)
0.970744 0.240118i \(-0.0771860\pi\)
\(752\) −10.0000 17.3205i −0.364662 0.631614i
\(753\) 0 0
\(754\) 0 0
\(755\) 16.0000 0.582300
\(756\) 0 0
\(757\) −17.0000 −0.617876 −0.308938 0.951082i \(-0.599973\pi\)
−0.308938 + 0.951082i \(0.599973\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 5.00000 8.66025i 0.181250 0.313934i −0.761057 0.648686i \(-0.775319\pi\)
0.942306 + 0.334752i \(0.108652\pi\)
\(762\) 0 0
\(763\) −15.0000 + 5.19615i −0.543036 + 0.188113i
\(764\) −16.0000 −0.578860
\(765\) 0 0
\(766\) 0 0
\(767\) 14.0000 + 24.2487i 0.505511 + 0.875570i
\(768\) 0 0
\(769\) 30.0000 1.08183 0.540914 0.841078i \(-0.318079\pi\)
0.540914 + 0.841078i \(0.318079\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 8.00000 13.8564i 0.287926 0.498703i
\(773\) −18.0000 31.1769i −0.647415 1.12136i −0.983738 0.179609i \(-0.942517\pi\)
0.336323 0.941747i \(-0.390817\pi\)
\(774\) 0 0
\(775\) 5.00000 8.66025i 0.179605 0.311086i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −3.00000 + 5.19615i −0.107486 + 0.186171i
\(780\) 0 0
\(781\) −15.0000 25.9808i −0.536742 0.929665i
\(782\) 0 0
\(783\) 0 0
\(784\) 22.0000 17.3205i 0.785714 0.618590i
\(785\) −10.0000 −0.356915
\(786\) 0 0
\(787\) −10.0000 17.3205i −0.356462 0.617409i 0.630905 0.775860i \(-0.282684\pi\)
−0.987367 + 0.158450i \(0.949350\pi\)
\(788\) 5.00000 + 8.66025i 0.178118 + 0.308509i
\(789\) 0 0
\(790\) 0 0
\(791\) −6.00000 + 31.1769i −0.213335 + 1.10852i
\(792\) 0 0
\(793\) 13.0000 22.5167i 0.461644 0.799590i
\(794\) 0 0
\(795\) 0 0
\(796\) −16.0000 + 27.7128i −0.567105 + 0.982255i
\(797\) 22.0000 0.779280 0.389640 0.920967i \(-0.372599\pi\)
0.389640 + 0.920967i \(0.372599\pi\)
\(798\) 0 0
\(799\) 35.0000 1.23821
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −1.50000 + 2.59808i −0.0529339 + 0.0916841i
\(804\) 0 0
\(805\) −25.0000 + 8.66025i −0.881134 + 0.305234i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −25.0000 43.3013i −0.878953 1.52239i −0.852491 0.522742i \(-0.824909\pi\)
−0.0264621 0.999650i \(-0.508424\pi\)
\(810\) 0 0
\(811\) 14.0000 0.491606 0.245803 0.969320i \(-0.420948\pi\)
0.245803 + 0.969320i \(0.420948\pi\)
\(812\) −10.0000 + 3.46410i −0.350931 + 0.121566i
\(813\) 0 0
\(814\) 0 0
\(815\) 9.00000 + 15.5885i 0.315256 + 0.546040i
\(816\) 0 0
\(817\) 6.00000 10.3923i 0.209913 0.363581i
\(818\) 0 0
\(819\) 0 0
\(820\) −24.0000 −0.838116
\(821\) −25.5000 + 44.1673i −0.889956 + 1.54145i −0.0500305 + 0.998748i \(0.515932\pi\)
−0.839926 + 0.542702i \(0.817401\pi\)
\(822\) 0 0
\(823\) 7.50000 + 12.9904i 0.261434 + 0.452816i 0.966623 0.256203i \(-0.0824714\pi\)
−0.705190 + 0.709019i \(0.749138\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −2.00000 −0.0695468 −0.0347734 0.999395i \(-0.511071\pi\)
−0.0347734 + 0.999395i \(0.511071\pi\)
\(828\) 0 0
\(829\) −17.0000 29.4449i −0.590434 1.02266i −0.994174 0.107788i \(-0.965623\pi\)
0.403739 0.914874i \(-0.367710\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −16.0000 −0.554700
\(833\) 7.00000 + 48.4974i 0.242536 + 1.68034i
\(834\) 0 0
\(835\) −14.0000 + 24.2487i −0.484490 + 0.839161i
\(836\) −3.00000 5.19615i −0.103757 0.179713i
\(837\) 0 0
\(838\) 0 0
\(839\) 12.0000 0.414286 0.207143 0.978311i \(-0.433583\pi\)
0.207143 + 0.978311i \(0.433583\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) 0 0
\(843\) 0 0
\(844\) −8.00000 13.8564i −0.275371 0.476957i
\(845\) −9.00000 + 15.5885i −0.309609 + 0.536259i
\(846\) 0 0
\(847\) −4.00000 3.46410i −0.137442 0.119028i
\(848\) −16.0000 −0.549442
\(849\) 0 0
\(850\) 0 0
\(851\) 20.0000 + 34.6410i 0.685591 + 1.18748i
\(852\) 0 0
\(853\) −5.00000 −0.171197 −0.0855984 0.996330i \(-0.527280\pi\)
−0.0855984 + 0.996330i \(0.527280\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −3.00000 5.19615i −0.102478 0.177497i 0.810227 0.586116i \(-0.199344\pi\)
−0.912705 + 0.408619i \(0.866010\pi\)
\(858\) 0 0
\(859\) −2.00000 + 3.46410i −0.0682391 + 0.118194i −0.898126 0.439738i \(-0.855071\pi\)
0.829887 + 0.557931i \(0.188405\pi\)
\(860\) 48.0000 1.63679
\(861\) 0 0
\(862\) 0 0
\(863\) −6.00000 + 10.3923i −0.204242 + 0.353758i −0.949891 0.312581i \(-0.898806\pi\)
0.745649 + 0.666339i \(0.232140\pi\)
\(864\) 0 0
\(865\) −4.00000 6.92820i −0.136004 0.235566i
\(866\) 0 0
\(867\) 0 0
\(868\) −40.0000 34.6410i −1.35769 1.17579i
\(869\) −12.0000 −0.407072
\(870\) 0 0
\(871\) 2.00000 + 3.46410i 0.0677674 + 0.117377i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 6.00000 31.1769i 0.202837 1.05397i
\(876\) 0 0
\(877\) −18.0000 + 31.1769i −0.607817 + 1.05277i 0.383783 + 0.923423i \(0.374621\pi\)
−0.991600 + 0.129346i \(0.958712\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 12.0000 20.7846i 0.404520 0.700649i
\(881\) −33.0000 −1.11180 −0.555899 0.831250i \(-0.687626\pi\)
−0.555899 + 0.831250i \(0.687626\pi\)
\(882\) 0 0
\(883\) −9.00000 −0.302874 −0.151437 0.988467i \(-0.548390\pi\)
−0.151437 + 0.988467i \(0.548390\pi\)
\(884\) 14.0000 24.2487i 0.470871 0.815572i
\(885\) 0 0
\(886\) 0 0
\(887\) 21.0000 36.3731i 0.705111 1.22129i −0.261540 0.965193i \(-0.584230\pi\)
0.966651 0.256096i \(-0.0824362\pi\)
\(888\) 0 0
\(889\) 8.00000 41.5692i 0.268311 1.39419i
\(890\) 0 0
\(891\) 0 0
\(892\) 2.00000 + 3.46410i 0.0669650 + 0.115987i
\(893\) 2.50000 + 4.33013i 0.0836593 + 0.144902i
\(894\) 0 0
\(895\) 20.0000 0.668526
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 10.0000 + 17.3205i 0.333519 + 0.577671i
\(900\) 0 0
\(901\) 14.0000 24.2487i 0.466408 0.807842i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 16.0000 27.7128i 0.531858 0.921205i
\(906\) 0 0
\(907\) 1.00000 + 1.73205i 0.0332045 + 0.0575118i 0.882150 0.470968i \(-0.156095\pi\)
−0.848946 + 0.528480i \(0.822762\pi\)
\(908\) −10.0000 + 17.3205i −0.331862 + 0.574801i
\(909\) 0 0
\(910\) 0 0
\(911\) 50.0000 1.65657 0.828287 0.560304i \(-0.189316\pi\)
0.828287 + 0.560304i \(0.189316\pi\)
\(912\) 0 0
\(913\) −13.5000 23.3827i −0.446785 0.773854i
\(914\) 0 0
\(915\) 0 0
\(916\) −2.00000 −0.0660819
\(917\) −2.00000 1.73205i −0.0660458 0.0571974i
\(918\) 0 0
\(919\) −1.50000 + 2.59808i −0.0494804 + 0.0857026i −0.889705 0.456536i \(-0.849090\pi\)
0.840224 + 0.542239i \(0.182423\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 20.0000 0.658308
\(924\) 0 0
\(925\) −8.00000 −0.263038
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 17.5000 30.3109i 0.574156 0.994468i −0.421976 0.906607i \(-0.638663\pi\)
0.996133 0.0878612i \(-0.0280032\pi\)
\(930\) 0 0
\(931\) −5.50000 + 4.33013i −0.180255 + 0.141914i
\(932\) −42.0000 −1.37576
\(933\) 0 0
\(934\) 0 0
\(935\) 21.0000 + 36.3731i 0.686773 + 1.18953i
\(936\) 0 0
\(937\) −10.0000 −0.326686 −0.163343 0.986569i \(-0.552228\pi\)
−0.163343 + 0.986569i \(0.552228\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −10.0000 + 17.3205i −0.326164 + 0.564933i
\(941\) 19.0000 + 32.9090i 0.619382 + 1.07280i 0.989599 + 0.143856i \(0.0459502\pi\)
−0.370216 + 0.928946i \(0.620716\pi\)
\(942\) 0 0
\(943\) −15.0000 + 25.9808i −0.488467 + 0.846050i
\(944\) −56.0000 −1.82264
\(945\) 0 0
\(946\) 0 0
\(947\) −12.0000 + 20.7846i −0.389948 + 0.675409i −0.992442 0.122714i \(-0.960840\pi\)
0.602494 + 0.798123i \(0.294174\pi\)
\(948\) 0 0
\(949\) −1.00000 1.73205i −0.0324614 0.0562247i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −26.0000 −0.842223 −0.421111 0.907009i \(-0.638360\pi\)
−0.421111 + 0.907009i \(0.638360\pi\)
\(954\) 0 0
\(955\) 8.00000 + 13.8564i 0.258874 + 0.448383i
\(956\) 1.00000 + 1.73205i 0.0323423 + 0.0560185i
\(957\) 0 0
\(958\) 0 0
\(959\) −7.50000 + 2.59808i −0.242188 + 0.0838963i
\(960\) 0 0
\(961\) −34.5000 + 59.7558i −1.11290 + 1.92760i
\(962\) 0 0
\(963\) 0 0
\(964\) −8.00000 + 13.8564i −0.257663 + 0.446285i
\(965\) −16.0000 −0.515058
\(966\) 0 0
\(967\) −32.0000 −1.02905 −0.514525 0.857475i \(-0.672032\pi\)
−0.514525 + 0.857475i \(0.672032\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −9.00000 + 15.5885i −0.288824 + 0.500257i −0.973529 0.228562i \(-0.926597\pi\)
0.684706 + 0.728820i \(0.259931\pi\)
\(972\) 0 0
\(973\) 2.50000 12.9904i 0.0801463 0.416452i
\(974\) 0 0
\(975\) 0 0
\(976\) 26.0000 + 45.0333i 0.832240 + 1.44148i
\(977\) −12.0000 20.7846i −0.383914 0.664959i 0.607704 0.794164i \(-0.292091\pi\)
−0.991618 + 0.129205i \(0.958757\pi\)
\(978\) 0 0
\(979\) −54.0000 −1.72585
\(980\) −26.0000 10.3923i −0.830540 0.331970i
\(981\) 0 0
\(982\) 0 0
\(983\) 20.0000 + 34.6410i 0.637901 + 1.10488i 0.985893 + 0.167379i \(0.0535304\pi\)
−0.347992 + 0.937498i \(0.613136\pi\)
\(984\) 0 0
\(985\) 5.00000 8.66025i 0.159313 0.275939i
\(986\) 0 0
\(987\) 0 0
\(988\) 4.00000 0.127257
\(989\) 30.0000 51.9615i 0.953945 1.65228i
\(990\) 0 0
\(991\) 21.0000 + 36.3731i 0.667087 + 1.15543i 0.978715 + 0.205224i \(0.0657924\pi\)
−0.311628 + 0.950204i \(0.600874\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 32.0000 1.01447
\(996\) 0 0
\(997\) −0.500000 0.866025i −0.0158352 0.0274273i 0.857999 0.513651i \(-0.171707\pi\)
−0.873834 + 0.486224i \(0.838374\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1197.2.j.a.856.1 2
3.2 odd 2 399.2.j.b.58.1 2
7.2 even 3 8379.2.a.h.1.1 1
7.4 even 3 inner 1197.2.j.a.172.1 2
7.5 odd 6 8379.2.a.i.1.1 1
21.2 odd 6 2793.2.a.h.1.1 1
21.5 even 6 2793.2.a.g.1.1 1
21.11 odd 6 399.2.j.b.172.1 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
399.2.j.b.58.1 2 3.2 odd 2
399.2.j.b.172.1 yes 2 21.11 odd 6
1197.2.j.a.172.1 2 7.4 even 3 inner
1197.2.j.a.856.1 2 1.1 even 1 trivial
2793.2.a.g.1.1 1 21.5 even 6
2793.2.a.h.1.1 1 21.2 odd 6
8379.2.a.h.1.1 1 7.2 even 3
8379.2.a.i.1.1 1 7.5 odd 6