Properties

Label 1197.2.j.a.172.1
Level $1197$
Weight $2$
Character 1197.172
Analytic conductor $9.558$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1197,2,Mod(172,1197)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1197.172"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1197, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1197 = 3^{2} \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1197.j (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,2,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.55809312195\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 399)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 172.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 1197.172
Dual form 1197.2.j.a.856.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 - 1.73205i) q^{4} +(1.00000 + 1.73205i) q^{5} +(0.500000 + 2.59808i) q^{7} +(-1.50000 + 2.59808i) q^{11} +2.00000 q^{13} +(-2.00000 - 3.46410i) q^{16} +(-3.50000 + 6.06218i) q^{17} +(0.500000 + 0.866025i) q^{19} +4.00000 q^{20} +(2.50000 + 4.33013i) q^{23} +(0.500000 - 0.866025i) q^{25} +(5.00000 + 1.73205i) q^{28} -2.00000 q^{29} +(-5.00000 + 8.66025i) q^{31} +(-4.00000 + 3.46410i) q^{35} +(-4.00000 - 6.92820i) q^{37} -6.00000 q^{41} +12.0000 q^{43} +(3.00000 + 5.19615i) q^{44} +(-2.50000 - 4.33013i) q^{47} +(-6.50000 + 2.59808i) q^{49} +(2.00000 - 3.46410i) q^{52} +(2.00000 - 3.46410i) q^{53} -6.00000 q^{55} +(7.00000 - 12.1244i) q^{59} +(6.50000 + 11.2583i) q^{61} -8.00000 q^{64} +(2.00000 + 3.46410i) q^{65} +(1.00000 - 1.73205i) q^{67} +(7.00000 + 12.1244i) q^{68} +10.0000 q^{71} +(-0.500000 + 0.866025i) q^{73} +2.00000 q^{76} +(-7.50000 - 2.59808i) q^{77} +(2.00000 + 3.46410i) q^{79} +(4.00000 - 6.92820i) q^{80} +9.00000 q^{83} -14.0000 q^{85} +(9.00000 + 15.5885i) q^{89} +(1.00000 + 5.19615i) q^{91} +10.0000 q^{92} +(-1.00000 + 1.73205i) q^{95} +6.00000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{4} + 2 q^{5} + q^{7} - 3 q^{11} + 4 q^{13} - 4 q^{16} - 7 q^{17} + q^{19} + 8 q^{20} + 5 q^{23} + q^{25} + 10 q^{28} - 4 q^{29} - 10 q^{31} - 8 q^{35} - 8 q^{37} - 12 q^{41} + 24 q^{43} + 6 q^{44}+ \cdots + 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1197\mathbb{Z}\right)^\times\).

\(n\) \(514\) \(533\) \(1009\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(3\) 0 0
\(4\) 1.00000 1.73205i 0.500000 0.866025i
\(5\) 1.00000 + 1.73205i 0.447214 + 0.774597i 0.998203 0.0599153i \(-0.0190830\pi\)
−0.550990 + 0.834512i \(0.685750\pi\)
\(6\) 0 0
\(7\) 0.500000 + 2.59808i 0.188982 + 0.981981i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −1.50000 + 2.59808i −0.452267 + 0.783349i −0.998526 0.0542666i \(-0.982718\pi\)
0.546259 + 0.837616i \(0.316051\pi\)
\(12\) 0 0
\(13\) 2.00000 0.554700 0.277350 0.960769i \(-0.410544\pi\)
0.277350 + 0.960769i \(0.410544\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −2.00000 3.46410i −0.500000 0.866025i
\(17\) −3.50000 + 6.06218i −0.848875 + 1.47029i 0.0333386 + 0.999444i \(0.489386\pi\)
−0.882213 + 0.470850i \(0.843947\pi\)
\(18\) 0 0
\(19\) 0.500000 + 0.866025i 0.114708 + 0.198680i
\(20\) 4.00000 0.894427
\(21\) 0 0
\(22\) 0 0
\(23\) 2.50000 + 4.33013i 0.521286 + 0.902894i 0.999694 + 0.0247559i \(0.00788087\pi\)
−0.478407 + 0.878138i \(0.658786\pi\)
\(24\) 0 0
\(25\) 0.500000 0.866025i 0.100000 0.173205i
\(26\) 0 0
\(27\) 0 0
\(28\) 5.00000 + 1.73205i 0.944911 + 0.327327i
\(29\) −2.00000 −0.371391 −0.185695 0.982607i \(-0.559454\pi\)
−0.185695 + 0.982607i \(0.559454\pi\)
\(30\) 0 0
\(31\) −5.00000 + 8.66025i −0.898027 + 1.55543i −0.0680129 + 0.997684i \(0.521666\pi\)
−0.830014 + 0.557743i \(0.811667\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −4.00000 + 3.46410i −0.676123 + 0.585540i
\(36\) 0 0
\(37\) −4.00000 6.92820i −0.657596 1.13899i −0.981236 0.192809i \(-0.938240\pi\)
0.323640 0.946180i \(-0.395093\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −6.00000 −0.937043 −0.468521 0.883452i \(-0.655213\pi\)
−0.468521 + 0.883452i \(0.655213\pi\)
\(42\) 0 0
\(43\) 12.0000 1.82998 0.914991 0.403473i \(-0.132197\pi\)
0.914991 + 0.403473i \(0.132197\pi\)
\(44\) 3.00000 + 5.19615i 0.452267 + 0.783349i
\(45\) 0 0
\(46\) 0 0
\(47\) −2.50000 4.33013i −0.364662 0.631614i 0.624059 0.781377i \(-0.285482\pi\)
−0.988722 + 0.149763i \(0.952149\pi\)
\(48\) 0 0
\(49\) −6.50000 + 2.59808i −0.928571 + 0.371154i
\(50\) 0 0
\(51\) 0 0
\(52\) 2.00000 3.46410i 0.277350 0.480384i
\(53\) 2.00000 3.46410i 0.274721 0.475831i −0.695344 0.718677i \(-0.744748\pi\)
0.970065 + 0.242846i \(0.0780811\pi\)
\(54\) 0 0
\(55\) −6.00000 −0.809040
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 7.00000 12.1244i 0.911322 1.57846i 0.0991242 0.995075i \(-0.468396\pi\)
0.812198 0.583382i \(-0.198271\pi\)
\(60\) 0 0
\(61\) 6.50000 + 11.2583i 0.832240 + 1.44148i 0.896258 + 0.443533i \(0.146275\pi\)
−0.0640184 + 0.997949i \(0.520392\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −8.00000 −1.00000
\(65\) 2.00000 + 3.46410i 0.248069 + 0.429669i
\(66\) 0 0
\(67\) 1.00000 1.73205i 0.122169 0.211604i −0.798454 0.602056i \(-0.794348\pi\)
0.920623 + 0.390453i \(0.127682\pi\)
\(68\) 7.00000 + 12.1244i 0.848875 + 1.47029i
\(69\) 0 0
\(70\) 0 0
\(71\) 10.0000 1.18678 0.593391 0.804914i \(-0.297789\pi\)
0.593391 + 0.804914i \(0.297789\pi\)
\(72\) 0 0
\(73\) −0.500000 + 0.866025i −0.0585206 + 0.101361i −0.893801 0.448463i \(-0.851972\pi\)
0.835281 + 0.549823i \(0.185305\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 2.00000 0.229416
\(77\) −7.50000 2.59808i −0.854704 0.296078i
\(78\) 0 0
\(79\) 2.00000 + 3.46410i 0.225018 + 0.389742i 0.956325 0.292306i \(-0.0944227\pi\)
−0.731307 + 0.682048i \(0.761089\pi\)
\(80\) 4.00000 6.92820i 0.447214 0.774597i
\(81\) 0 0
\(82\) 0 0
\(83\) 9.00000 0.987878 0.493939 0.869496i \(-0.335557\pi\)
0.493939 + 0.869496i \(0.335557\pi\)
\(84\) 0 0
\(85\) −14.0000 −1.51851
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 9.00000 + 15.5885i 0.953998 + 1.65237i 0.736644 + 0.676280i \(0.236409\pi\)
0.217354 + 0.976093i \(0.430258\pi\)
\(90\) 0 0
\(91\) 1.00000 + 5.19615i 0.104828 + 0.544705i
\(92\) 10.0000 1.04257
\(93\) 0 0
\(94\) 0 0
\(95\) −1.00000 + 1.73205i −0.102598 + 0.177705i
\(96\) 0 0
\(97\) 6.00000 0.609208 0.304604 0.952479i \(-0.401476\pi\)
0.304604 + 0.952479i \(0.401476\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −1.00000 1.73205i −0.100000 0.173205i
\(101\) 6.50000 11.2583i 0.646774 1.12025i −0.337115 0.941464i \(-0.609451\pi\)
0.983889 0.178782i \(-0.0572157\pi\)
\(102\) 0 0
\(103\) −4.00000 6.92820i −0.394132 0.682656i 0.598858 0.800855i \(-0.295621\pi\)
−0.992990 + 0.118199i \(0.962288\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −9.00000 15.5885i −0.870063 1.50699i −0.861931 0.507026i \(-0.830745\pi\)
−0.00813215 0.999967i \(-0.502589\pi\)
\(108\) 0 0
\(109\) −3.00000 + 5.19615i −0.287348 + 0.497701i −0.973176 0.230063i \(-0.926107\pi\)
0.685828 + 0.727764i \(0.259440\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 8.00000 6.92820i 0.755929 0.654654i
\(113\) −12.0000 −1.12887 −0.564433 0.825479i \(-0.690905\pi\)
−0.564433 + 0.825479i \(0.690905\pi\)
\(114\) 0 0
\(115\) −5.00000 + 8.66025i −0.466252 + 0.807573i
\(116\) −2.00000 + 3.46410i −0.185695 + 0.321634i
\(117\) 0 0
\(118\) 0 0
\(119\) −17.5000 6.06218i −1.60422 0.555719i
\(120\) 0 0
\(121\) 1.00000 + 1.73205i 0.0909091 + 0.157459i
\(122\) 0 0
\(123\) 0 0
\(124\) 10.0000 + 17.3205i 0.898027 + 1.55543i
\(125\) 12.0000 1.07331
\(126\) 0 0
\(127\) 16.0000 1.41977 0.709885 0.704317i \(-0.248747\pi\)
0.709885 + 0.704317i \(0.248747\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0.500000 + 0.866025i 0.0436852 + 0.0756650i 0.887041 0.461690i \(-0.152757\pi\)
−0.843356 + 0.537355i \(0.819423\pi\)
\(132\) 0 0
\(133\) −2.00000 + 1.73205i −0.173422 + 0.150188i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −1.50000 + 2.59808i −0.128154 + 0.221969i −0.922961 0.384893i \(-0.874238\pi\)
0.794808 + 0.606861i \(0.207572\pi\)
\(138\) 0 0
\(139\) 5.00000 0.424094 0.212047 0.977259i \(-0.431987\pi\)
0.212047 + 0.977259i \(0.431987\pi\)
\(140\) 2.00000 + 10.3923i 0.169031 + 0.878310i
\(141\) 0 0
\(142\) 0 0
\(143\) −3.00000 + 5.19615i −0.250873 + 0.434524i
\(144\) 0 0
\(145\) −2.00000 3.46410i −0.166091 0.287678i
\(146\) 0 0
\(147\) 0 0
\(148\) −16.0000 −1.31519
\(149\) 3.00000 + 5.19615i 0.245770 + 0.425685i 0.962348 0.271821i \(-0.0876260\pi\)
−0.716578 + 0.697507i \(0.754293\pi\)
\(150\) 0 0
\(151\) 4.00000 6.92820i 0.325515 0.563809i −0.656101 0.754673i \(-0.727796\pi\)
0.981617 + 0.190864i \(0.0611289\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −20.0000 −1.60644
\(156\) 0 0
\(157\) −2.50000 + 4.33013i −0.199522 + 0.345582i −0.948373 0.317156i \(-0.897272\pi\)
0.748852 + 0.662738i \(0.230606\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −10.0000 + 8.66025i −0.788110 + 0.682524i
\(162\) 0 0
\(163\) −4.50000 7.79423i −0.352467 0.610491i 0.634214 0.773158i \(-0.281324\pi\)
−0.986681 + 0.162667i \(0.947991\pi\)
\(164\) −6.00000 + 10.3923i −0.468521 + 0.811503i
\(165\) 0 0
\(166\) 0 0
\(167\) −14.0000 −1.08335 −0.541676 0.840587i \(-0.682210\pi\)
−0.541676 + 0.840587i \(0.682210\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) 0 0
\(172\) 12.0000 20.7846i 0.914991 1.58481i
\(173\) 2.00000 + 3.46410i 0.152057 + 0.263371i 0.931984 0.362500i \(-0.118077\pi\)
−0.779926 + 0.625871i \(0.784744\pi\)
\(174\) 0 0
\(175\) 2.50000 + 0.866025i 0.188982 + 0.0654654i
\(176\) 12.0000 0.904534
\(177\) 0 0
\(178\) 0 0
\(179\) 5.00000 8.66025i 0.373718 0.647298i −0.616417 0.787420i \(-0.711416\pi\)
0.990134 + 0.140122i \(0.0447496\pi\)
\(180\) 0 0
\(181\) 16.0000 1.18927 0.594635 0.803996i \(-0.297296\pi\)
0.594635 + 0.803996i \(0.297296\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 8.00000 13.8564i 0.588172 1.01874i
\(186\) 0 0
\(187\) −10.5000 18.1865i −0.767836 1.32993i
\(188\) −10.0000 −0.729325
\(189\) 0 0
\(190\) 0 0
\(191\) −4.00000 6.92820i −0.289430 0.501307i 0.684244 0.729253i \(-0.260132\pi\)
−0.973674 + 0.227946i \(0.926799\pi\)
\(192\) 0 0
\(193\) −4.00000 + 6.92820i −0.287926 + 0.498703i −0.973315 0.229475i \(-0.926299\pi\)
0.685388 + 0.728178i \(0.259632\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −2.00000 + 13.8564i −0.142857 + 0.989743i
\(197\) 5.00000 0.356235 0.178118 0.984009i \(-0.442999\pi\)
0.178118 + 0.984009i \(0.442999\pi\)
\(198\) 0 0
\(199\) 8.00000 13.8564i 0.567105 0.982255i −0.429745 0.902950i \(-0.641397\pi\)
0.996850 0.0793045i \(-0.0252700\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −1.00000 5.19615i −0.0701862 0.364698i
\(204\) 0 0
\(205\) −6.00000 10.3923i −0.419058 0.725830i
\(206\) 0 0
\(207\) 0 0
\(208\) −4.00000 6.92820i −0.277350 0.480384i
\(209\) −3.00000 −0.207514
\(210\) 0 0
\(211\) −8.00000 −0.550743 −0.275371 0.961338i \(-0.588801\pi\)
−0.275371 + 0.961338i \(0.588801\pi\)
\(212\) −4.00000 6.92820i −0.274721 0.475831i
\(213\) 0 0
\(214\) 0 0
\(215\) 12.0000 + 20.7846i 0.818393 + 1.41750i
\(216\) 0 0
\(217\) −25.0000 8.66025i −1.69711 0.587896i
\(218\) 0 0
\(219\) 0 0
\(220\) −6.00000 + 10.3923i −0.404520 + 0.700649i
\(221\) −7.00000 + 12.1244i −0.470871 + 0.815572i
\(222\) 0 0
\(223\) 2.00000 0.133930 0.0669650 0.997755i \(-0.478668\pi\)
0.0669650 + 0.997755i \(0.478668\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 5.00000 8.66025i 0.331862 0.574801i −0.651015 0.759065i \(-0.725657\pi\)
0.982877 + 0.184263i \(0.0589899\pi\)
\(228\) 0 0
\(229\) −0.500000 0.866025i −0.0330409 0.0572286i 0.849032 0.528341i \(-0.177186\pi\)
−0.882073 + 0.471113i \(0.843853\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −10.5000 18.1865i −0.687878 1.19144i −0.972523 0.232806i \(-0.925209\pi\)
0.284645 0.958633i \(-0.408124\pi\)
\(234\) 0 0
\(235\) 5.00000 8.66025i 0.326164 0.564933i
\(236\) −14.0000 24.2487i −0.911322 1.57846i
\(237\) 0 0
\(238\) 0 0
\(239\) 1.00000 0.0646846 0.0323423 0.999477i \(-0.489703\pi\)
0.0323423 + 0.999477i \(0.489703\pi\)
\(240\) 0 0
\(241\) 4.00000 6.92820i 0.257663 0.446285i −0.707953 0.706260i \(-0.750381\pi\)
0.965615 + 0.259975i \(0.0837143\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 26.0000 1.66448
\(245\) −11.0000 8.66025i −0.702764 0.553283i
\(246\) 0 0
\(247\) 1.00000 + 1.73205i 0.0636285 + 0.110208i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −16.0000 −1.00991 −0.504956 0.863145i \(-0.668491\pi\)
−0.504956 + 0.863145i \(0.668491\pi\)
\(252\) 0 0
\(253\) −15.0000 −0.943042
\(254\) 0 0
\(255\) 0 0
\(256\) −8.00000 + 13.8564i −0.500000 + 0.866025i
\(257\) −6.00000 10.3923i −0.374270 0.648254i 0.615948 0.787787i \(-0.288773\pi\)
−0.990217 + 0.139533i \(0.955440\pi\)
\(258\) 0 0
\(259\) 16.0000 13.8564i 0.994192 0.860995i
\(260\) 8.00000 0.496139
\(261\) 0 0
\(262\) 0 0
\(263\) −5.50000 + 9.52628i −0.339145 + 0.587416i −0.984272 0.176659i \(-0.943471\pi\)
0.645128 + 0.764075i \(0.276804\pi\)
\(264\) 0 0
\(265\) 8.00000 0.491436
\(266\) 0 0
\(267\) 0 0
\(268\) −2.00000 3.46410i −0.122169 0.211604i
\(269\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(270\) 0 0
\(271\) 0.500000 + 0.866025i 0.0303728 + 0.0526073i 0.880812 0.473466i \(-0.156997\pi\)
−0.850439 + 0.526073i \(0.823664\pi\)
\(272\) 28.0000 1.69775
\(273\) 0 0
\(274\) 0 0
\(275\) 1.50000 + 2.59808i 0.0904534 + 0.156670i
\(276\) 0 0
\(277\) −8.50000 + 14.7224i −0.510716 + 0.884585i 0.489207 + 0.872167i \(0.337286\pi\)
−0.999923 + 0.0124177i \(0.996047\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 20.0000 1.19310 0.596550 0.802576i \(-0.296538\pi\)
0.596550 + 0.802576i \(0.296538\pi\)
\(282\) 0 0
\(283\) 2.00000 3.46410i 0.118888 0.205919i −0.800439 0.599414i \(-0.795400\pi\)
0.919327 + 0.393494i \(0.128734\pi\)
\(284\) 10.0000 17.3205i 0.593391 1.02778i
\(285\) 0 0
\(286\) 0 0
\(287\) −3.00000 15.5885i −0.177084 0.920158i
\(288\) 0 0
\(289\) −16.0000 27.7128i −0.941176 1.63017i
\(290\) 0 0
\(291\) 0 0
\(292\) 1.00000 + 1.73205i 0.0585206 + 0.101361i
\(293\) 18.0000 1.05157 0.525786 0.850617i \(-0.323771\pi\)
0.525786 + 0.850617i \(0.323771\pi\)
\(294\) 0 0
\(295\) 28.0000 1.63022
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 5.00000 + 8.66025i 0.289157 + 0.500835i
\(300\) 0 0
\(301\) 6.00000 + 31.1769i 0.345834 + 1.79701i
\(302\) 0 0
\(303\) 0 0
\(304\) 2.00000 3.46410i 0.114708 0.198680i
\(305\) −13.0000 + 22.5167i −0.744378 + 1.28930i
\(306\) 0 0
\(307\) 16.0000 0.913168 0.456584 0.889680i \(-0.349073\pi\)
0.456584 + 0.889680i \(0.349073\pi\)
\(308\) −12.0000 + 10.3923i −0.683763 + 0.592157i
\(309\) 0 0
\(310\) 0 0
\(311\) 2.50000 4.33013i 0.141762 0.245539i −0.786398 0.617720i \(-0.788057\pi\)
0.928160 + 0.372181i \(0.121390\pi\)
\(312\) 0 0
\(313\) −9.50000 16.4545i −0.536972 0.930062i −0.999065 0.0432311i \(-0.986235\pi\)
0.462093 0.886831i \(-0.347098\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 8.00000 0.450035
\(317\) −15.0000 25.9808i −0.842484 1.45922i −0.887788 0.460252i \(-0.847759\pi\)
0.0453045 0.998973i \(-0.485574\pi\)
\(318\) 0 0
\(319\) 3.00000 5.19615i 0.167968 0.290929i
\(320\) −8.00000 13.8564i −0.447214 0.774597i
\(321\) 0 0
\(322\) 0 0
\(323\) −7.00000 −0.389490
\(324\) 0 0
\(325\) 1.00000 1.73205i 0.0554700 0.0960769i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 10.0000 8.66025i 0.551318 0.477455i
\(330\) 0 0
\(331\) −13.0000 22.5167i −0.714545 1.23763i −0.963135 0.269019i \(-0.913301\pi\)
0.248590 0.968609i \(-0.420033\pi\)
\(332\) 9.00000 15.5885i 0.493939 0.855528i
\(333\) 0 0
\(334\) 0 0
\(335\) 4.00000 0.218543
\(336\) 0 0
\(337\) 12.0000 0.653682 0.326841 0.945079i \(-0.394016\pi\)
0.326841 + 0.945079i \(0.394016\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) −14.0000 + 24.2487i −0.759257 + 1.31507i
\(341\) −15.0000 25.9808i −0.812296 1.40694i
\(342\) 0 0
\(343\) −10.0000 15.5885i −0.539949 0.841698i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −6.00000 + 10.3923i −0.322097 + 0.557888i −0.980921 0.194409i \(-0.937721\pi\)
0.658824 + 0.752297i \(0.271054\pi\)
\(348\) 0 0
\(349\) −27.0000 −1.44528 −0.722638 0.691226i \(-0.757071\pi\)
−0.722638 + 0.691226i \(0.757071\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −7.00000 + 12.1244i −0.372572 + 0.645314i −0.989960 0.141344i \(-0.954858\pi\)
0.617388 + 0.786659i \(0.288191\pi\)
\(354\) 0 0
\(355\) 10.0000 + 17.3205i 0.530745 + 0.919277i
\(356\) 36.0000 1.90800
\(357\) 0 0
\(358\) 0 0
\(359\) −15.5000 26.8468i −0.818059 1.41692i −0.907111 0.420892i \(-0.861717\pi\)
0.0890519 0.996027i \(-0.471616\pi\)
\(360\) 0 0
\(361\) −0.500000 + 0.866025i −0.0263158 + 0.0455803i
\(362\) 0 0
\(363\) 0 0
\(364\) 10.0000 + 3.46410i 0.524142 + 0.181568i
\(365\) −2.00000 −0.104685
\(366\) 0 0
\(367\) −8.00000 + 13.8564i −0.417597 + 0.723299i −0.995697 0.0926670i \(-0.970461\pi\)
0.578101 + 0.815966i \(0.303794\pi\)
\(368\) 10.0000 17.3205i 0.521286 0.902894i
\(369\) 0 0
\(370\) 0 0
\(371\) 10.0000 + 3.46410i 0.519174 + 0.179847i
\(372\) 0 0
\(373\) 5.00000 + 8.66025i 0.258890 + 0.448411i 0.965945 0.258748i \(-0.0833099\pi\)
−0.707055 + 0.707159i \(0.749977\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −4.00000 −0.206010
\(378\) 0 0
\(379\) 8.00000 0.410932 0.205466 0.978664i \(-0.434129\pi\)
0.205466 + 0.978664i \(0.434129\pi\)
\(380\) 2.00000 + 3.46410i 0.102598 + 0.177705i
\(381\) 0 0
\(382\) 0 0
\(383\) 3.00000 + 5.19615i 0.153293 + 0.265511i 0.932436 0.361335i \(-0.117679\pi\)
−0.779143 + 0.626846i \(0.784346\pi\)
\(384\) 0 0
\(385\) −3.00000 15.5885i −0.152894 0.794461i
\(386\) 0 0
\(387\) 0 0
\(388\) 6.00000 10.3923i 0.304604 0.527589i
\(389\) −14.5000 + 25.1147i −0.735179 + 1.27337i 0.219465 + 0.975620i \(0.429569\pi\)
−0.954645 + 0.297747i \(0.903765\pi\)
\(390\) 0 0
\(391\) −35.0000 −1.77003
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −4.00000 + 6.92820i −0.201262 + 0.348596i
\(396\) 0 0
\(397\) 11.5000 + 19.9186i 0.577168 + 0.999685i 0.995802 + 0.0915300i \(0.0291757\pi\)
−0.418634 + 0.908155i \(0.637491\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −4.00000 −0.200000
\(401\) −3.00000 5.19615i −0.149813 0.259483i 0.781345 0.624099i \(-0.214534\pi\)
−0.931158 + 0.364615i \(0.881200\pi\)
\(402\) 0 0
\(403\) −10.0000 + 17.3205i −0.498135 + 0.862796i
\(404\) −13.0000 22.5167i −0.646774 1.12025i
\(405\) 0 0
\(406\) 0 0
\(407\) 24.0000 1.18964
\(408\) 0 0
\(409\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −16.0000 −0.788263
\(413\) 35.0000 + 12.1244i 1.72224 + 0.596601i
\(414\) 0 0
\(415\) 9.00000 + 15.5885i 0.441793 + 0.765207i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 9.00000 0.439679 0.219839 0.975536i \(-0.429447\pi\)
0.219839 + 0.975536i \(0.429447\pi\)
\(420\) 0 0
\(421\) 4.00000 0.194948 0.0974740 0.995238i \(-0.468924\pi\)
0.0974740 + 0.995238i \(0.468924\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 3.50000 + 6.06218i 0.169775 + 0.294059i
\(426\) 0 0
\(427\) −26.0000 + 22.5167i −1.25823 + 1.08966i
\(428\) −36.0000 −1.74013
\(429\) 0 0
\(430\) 0 0
\(431\) −3.00000 + 5.19615i −0.144505 + 0.250290i −0.929188 0.369607i \(-0.879492\pi\)
0.784683 + 0.619897i \(0.212826\pi\)
\(432\) 0 0
\(433\) −18.0000 −0.865025 −0.432512 0.901628i \(-0.642373\pi\)
−0.432512 + 0.901628i \(0.642373\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 6.00000 + 10.3923i 0.287348 + 0.497701i
\(437\) −2.50000 + 4.33013i −0.119591 + 0.207138i
\(438\) 0 0
\(439\) −7.00000 12.1244i −0.334092 0.578664i 0.649218 0.760602i \(-0.275096\pi\)
−0.983310 + 0.181938i \(0.941763\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 10.5000 + 18.1865i 0.498870 + 0.864068i 0.999999 0.00130426i \(-0.000415158\pi\)
−0.501129 + 0.865373i \(0.667082\pi\)
\(444\) 0 0
\(445\) −18.0000 + 31.1769i −0.853282 + 1.47793i
\(446\) 0 0
\(447\) 0 0
\(448\) −4.00000 20.7846i −0.188982 0.981981i
\(449\) 18.0000 0.849473 0.424736 0.905317i \(-0.360367\pi\)
0.424736 + 0.905317i \(0.360367\pi\)
\(450\) 0 0
\(451\) 9.00000 15.5885i 0.423793 0.734032i
\(452\) −12.0000 + 20.7846i −0.564433 + 0.977626i
\(453\) 0 0
\(454\) 0 0
\(455\) −8.00000 + 6.92820i −0.375046 + 0.324799i
\(456\) 0 0
\(457\) 12.5000 + 21.6506i 0.584725 + 1.01277i 0.994910 + 0.100771i \(0.0321310\pi\)
−0.410184 + 0.912003i \(0.634536\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 10.0000 + 17.3205i 0.466252 + 0.807573i
\(461\) 15.0000 0.698620 0.349310 0.937007i \(-0.386416\pi\)
0.349310 + 0.937007i \(0.386416\pi\)
\(462\) 0 0
\(463\) −9.00000 −0.418265 −0.209133 0.977887i \(-0.567064\pi\)
−0.209133 + 0.977887i \(0.567064\pi\)
\(464\) 4.00000 + 6.92820i 0.185695 + 0.321634i
\(465\) 0 0
\(466\) 0 0
\(467\) −2.50000 4.33013i −0.115686 0.200374i 0.802368 0.596830i \(-0.203573\pi\)
−0.918054 + 0.396456i \(0.870240\pi\)
\(468\) 0 0
\(469\) 5.00000 + 1.73205i 0.230879 + 0.0799787i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −18.0000 + 31.1769i −0.827641 + 1.43352i
\(474\) 0 0
\(475\) 1.00000 0.0458831
\(476\) −28.0000 + 24.2487i −1.28338 + 1.11144i
\(477\) 0 0
\(478\) 0 0
\(479\) 15.5000 26.8468i 0.708213 1.22666i −0.257306 0.966330i \(-0.582835\pi\)
0.965519 0.260331i \(-0.0838317\pi\)
\(480\) 0 0
\(481\) −8.00000 13.8564i −0.364769 0.631798i
\(482\) 0 0
\(483\) 0 0
\(484\) 4.00000 0.181818
\(485\) 6.00000 + 10.3923i 0.272446 + 0.471890i
\(486\) 0 0
\(487\) −1.00000 + 1.73205i −0.0453143 + 0.0784867i −0.887793 0.460243i \(-0.847762\pi\)
0.842479 + 0.538730i \(0.181096\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −27.0000 −1.21849 −0.609246 0.792981i \(-0.708528\pi\)
−0.609246 + 0.792981i \(0.708528\pi\)
\(492\) 0 0
\(493\) 7.00000 12.1244i 0.315264 0.546054i
\(494\) 0 0
\(495\) 0 0
\(496\) 40.0000 1.79605
\(497\) 5.00000 + 25.9808i 0.224281 + 1.16540i
\(498\) 0 0
\(499\) 6.00000 + 10.3923i 0.268597 + 0.465223i 0.968500 0.249015i \(-0.0801067\pi\)
−0.699903 + 0.714238i \(0.746773\pi\)
\(500\) 12.0000 20.7846i 0.536656 0.929516i
\(501\) 0 0
\(502\) 0 0
\(503\) 11.0000 0.490466 0.245233 0.969464i \(-0.421136\pi\)
0.245233 + 0.969464i \(0.421136\pi\)
\(504\) 0 0
\(505\) 26.0000 1.15698
\(506\) 0 0
\(507\) 0 0
\(508\) 16.0000 27.7128i 0.709885 1.22956i
\(509\) 15.0000 + 25.9808i 0.664863 + 1.15158i 0.979322 + 0.202306i \(0.0648436\pi\)
−0.314459 + 0.949271i \(0.601823\pi\)
\(510\) 0 0
\(511\) −2.50000 0.866025i −0.110593 0.0383107i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 8.00000 13.8564i 0.352522 0.610586i
\(516\) 0 0
\(517\) 15.0000 0.659699
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −14.0000 + 24.2487i −0.613351 + 1.06236i 0.377320 + 0.926083i \(0.376846\pi\)
−0.990671 + 0.136272i \(0.956488\pi\)
\(522\) 0 0
\(523\) −17.0000 29.4449i −0.743358 1.28753i −0.950958 0.309320i \(-0.899899\pi\)
0.207600 0.978214i \(-0.433435\pi\)
\(524\) 2.00000 0.0873704
\(525\) 0 0
\(526\) 0 0
\(527\) −35.0000 60.6218i −1.52462 2.64073i
\(528\) 0 0
\(529\) −1.00000 + 1.73205i −0.0434783 + 0.0753066i
\(530\) 0 0
\(531\) 0 0
\(532\) 1.00000 + 5.19615i 0.0433555 + 0.225282i
\(533\) −12.0000 −0.519778
\(534\) 0 0
\(535\) 18.0000 31.1769i 0.778208 1.34790i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 3.00000 20.7846i 0.129219 0.895257i
\(540\) 0 0
\(541\) 7.00000 + 12.1244i 0.300954 + 0.521267i 0.976352 0.216186i \(-0.0693618\pi\)
−0.675399 + 0.737453i \(0.736028\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −12.0000 −0.514024
\(546\) 0 0
\(547\) −14.0000 −0.598597 −0.299298 0.954160i \(-0.596753\pi\)
−0.299298 + 0.954160i \(0.596753\pi\)
\(548\) 3.00000 + 5.19615i 0.128154 + 0.221969i
\(549\) 0 0
\(550\) 0 0
\(551\) −1.00000 1.73205i −0.0426014 0.0737878i
\(552\) 0 0
\(553\) −8.00000 + 6.92820i −0.340195 + 0.294617i
\(554\) 0 0
\(555\) 0 0
\(556\) 5.00000 8.66025i 0.212047 0.367277i
\(557\) −5.00000 + 8.66025i −0.211857 + 0.366947i −0.952296 0.305177i \(-0.901284\pi\)
0.740439 + 0.672124i \(0.234618\pi\)
\(558\) 0 0
\(559\) 24.0000 1.01509
\(560\) 20.0000 + 6.92820i 0.845154 + 0.292770i
\(561\) 0 0
\(562\) 0 0
\(563\) −5.00000 + 8.66025i −0.210725 + 0.364986i −0.951942 0.306280i \(-0.900916\pi\)
0.741217 + 0.671266i \(0.234249\pi\)
\(564\) 0 0
\(565\) −12.0000 20.7846i −0.504844 0.874415i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 10.0000 + 17.3205i 0.419222 + 0.726113i 0.995861 0.0908852i \(-0.0289696\pi\)
−0.576640 + 0.816999i \(0.695636\pi\)
\(570\) 0 0
\(571\) −23.5000 + 40.7032i −0.983444 + 1.70338i −0.334790 + 0.942293i \(0.608665\pi\)
−0.648655 + 0.761083i \(0.724668\pi\)
\(572\) 6.00000 + 10.3923i 0.250873 + 0.434524i
\(573\) 0 0
\(574\) 0 0
\(575\) 5.00000 0.208514
\(576\) 0 0
\(577\) 14.5000 25.1147i 0.603643 1.04554i −0.388621 0.921397i \(-0.627049\pi\)
0.992264 0.124143i \(-0.0396180\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) −8.00000 −0.332182
\(581\) 4.50000 + 23.3827i 0.186691 + 0.970077i
\(582\) 0 0
\(583\) 6.00000 + 10.3923i 0.248495 + 0.430405i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 15.0000 0.619116 0.309558 0.950881i \(-0.399819\pi\)
0.309558 + 0.950881i \(0.399819\pi\)
\(588\) 0 0
\(589\) −10.0000 −0.412043
\(590\) 0 0
\(591\) 0 0
\(592\) −16.0000 + 27.7128i −0.657596 + 1.13899i
\(593\) 3.50000 + 6.06218i 0.143728 + 0.248944i 0.928898 0.370337i \(-0.120758\pi\)
−0.785170 + 0.619281i \(0.787424\pi\)
\(594\) 0 0
\(595\) −7.00000 36.3731i −0.286972 1.49115i
\(596\) 12.0000 0.491539
\(597\) 0 0
\(598\) 0 0
\(599\) −8.00000 + 13.8564i −0.326871 + 0.566157i −0.981889 0.189456i \(-0.939328\pi\)
0.655018 + 0.755613i \(0.272661\pi\)
\(600\) 0 0
\(601\) −20.0000 −0.815817 −0.407909 0.913023i \(-0.633742\pi\)
−0.407909 + 0.913023i \(0.633742\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −8.00000 13.8564i −0.325515 0.563809i
\(605\) −2.00000 + 3.46410i −0.0813116 + 0.140836i
\(606\) 0 0
\(607\) 9.00000 + 15.5885i 0.365299 + 0.632716i 0.988824 0.149087i \(-0.0476335\pi\)
−0.623525 + 0.781803i \(0.714300\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −5.00000 8.66025i −0.202278 0.350356i
\(612\) 0 0
\(613\) 21.5000 37.2391i 0.868377 1.50407i 0.00472215 0.999989i \(-0.498497\pi\)
0.863655 0.504084i \(-0.168170\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −10.0000 −0.402585 −0.201292 0.979531i \(-0.564514\pi\)
−0.201292 + 0.979531i \(0.564514\pi\)
\(618\) 0 0
\(619\) −19.5000 + 33.7750i −0.783771 + 1.35753i 0.145959 + 0.989291i \(0.453373\pi\)
−0.929730 + 0.368241i \(0.879960\pi\)
\(620\) −20.0000 + 34.6410i −0.803219 + 1.39122i
\(621\) 0 0
\(622\) 0 0
\(623\) −36.0000 + 31.1769i −1.44231 + 1.24908i
\(624\) 0 0
\(625\) 9.50000 + 16.4545i 0.380000 + 0.658179i
\(626\) 0 0
\(627\) 0 0
\(628\) 5.00000 + 8.66025i 0.199522 + 0.345582i
\(629\) 56.0000 2.23287
\(630\) 0 0
\(631\) 48.0000 1.91085 0.955425 0.295234i \(-0.0953977\pi\)
0.955425 + 0.295234i \(0.0953977\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 16.0000 + 27.7128i 0.634941 + 1.09975i
\(636\) 0 0
\(637\) −13.0000 + 5.19615i −0.515079 + 0.205879i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 13.0000 22.5167i 0.513469 0.889355i −0.486409 0.873731i \(-0.661693\pi\)
0.999878 0.0156233i \(-0.00497325\pi\)
\(642\) 0 0
\(643\) −9.00000 −0.354925 −0.177463 0.984128i \(-0.556789\pi\)
−0.177463 + 0.984128i \(0.556789\pi\)
\(644\) 5.00000 + 25.9808i 0.197028 + 1.02379i
\(645\) 0 0
\(646\) 0 0
\(647\) 12.0000 20.7846i 0.471769 0.817127i −0.527710 0.849425i \(-0.676949\pi\)
0.999478 + 0.0322975i \(0.0102824\pi\)
\(648\) 0 0
\(649\) 21.0000 + 36.3731i 0.824322 + 1.42777i
\(650\) 0 0
\(651\) 0 0
\(652\) −18.0000 −0.704934
\(653\) −11.5000 19.9186i −0.450030 0.779474i 0.548358 0.836244i \(-0.315253\pi\)
−0.998387 + 0.0567696i \(0.981920\pi\)
\(654\) 0 0
\(655\) −1.00000 + 1.73205i −0.0390732 + 0.0676768i
\(656\) 12.0000 + 20.7846i 0.468521 + 0.811503i
\(657\) 0 0
\(658\) 0 0
\(659\) 18.0000 0.701180 0.350590 0.936529i \(-0.385981\pi\)
0.350590 + 0.936529i \(0.385981\pi\)
\(660\) 0 0
\(661\) −6.00000 + 10.3923i −0.233373 + 0.404214i −0.958799 0.284087i \(-0.908310\pi\)
0.725426 + 0.688301i \(0.241643\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −5.00000 1.73205i −0.193892 0.0671660i
\(666\) 0 0
\(667\) −5.00000 8.66025i −0.193601 0.335326i
\(668\) −14.0000 + 24.2487i −0.541676 + 0.938211i
\(669\) 0 0
\(670\) 0 0
\(671\) −39.0000 −1.50558
\(672\) 0 0
\(673\) 34.0000 1.31060 0.655302 0.755367i \(-0.272541\pi\)
0.655302 + 0.755367i \(0.272541\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) −9.00000 + 15.5885i −0.346154 + 0.599556i
\(677\) −6.00000 10.3923i −0.230599 0.399409i 0.727386 0.686229i \(-0.240735\pi\)
−0.957984 + 0.286820i \(0.907402\pi\)
\(678\) 0 0
\(679\) 3.00000 + 15.5885i 0.115129 + 0.598230i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 22.0000 38.1051i 0.841807 1.45805i −0.0465592 0.998916i \(-0.514826\pi\)
0.888366 0.459136i \(-0.151841\pi\)
\(684\) 0 0
\(685\) −6.00000 −0.229248
\(686\) 0 0
\(687\) 0 0
\(688\) −24.0000 41.5692i −0.914991 1.58481i
\(689\) 4.00000 6.92820i 0.152388 0.263944i
\(690\) 0 0
\(691\) 9.50000 + 16.4545i 0.361397 + 0.625958i 0.988191 0.153227i \(-0.0489666\pi\)
−0.626794 + 0.779185i \(0.715633\pi\)
\(692\) 8.00000 0.304114
\(693\) 0 0
\(694\) 0 0
\(695\) 5.00000 + 8.66025i 0.189661 + 0.328502i
\(696\) 0 0
\(697\) 21.0000 36.3731i 0.795432 1.37773i
\(698\) 0 0
\(699\) 0 0
\(700\) 4.00000 3.46410i 0.151186 0.130931i
\(701\) 15.0000 0.566542 0.283271 0.959040i \(-0.408580\pi\)
0.283271 + 0.959040i \(0.408580\pi\)
\(702\) 0 0
\(703\) 4.00000 6.92820i 0.150863 0.261302i
\(704\) 12.0000 20.7846i 0.452267 0.783349i
\(705\) 0 0
\(706\) 0 0
\(707\) 32.5000 + 11.2583i 1.22229 + 0.423413i
\(708\) 0 0
\(709\) −0.500000 0.866025i −0.0187779 0.0325243i 0.856484 0.516174i \(-0.172644\pi\)
−0.875262 + 0.483650i \(0.839311\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −50.0000 −1.87251
\(714\) 0 0
\(715\) −12.0000 −0.448775
\(716\) −10.0000 17.3205i −0.373718 0.647298i
\(717\) 0 0
\(718\) 0 0
\(719\) 13.5000 + 23.3827i 0.503465 + 0.872027i 0.999992 + 0.00400572i \(0.00127506\pi\)
−0.496527 + 0.868021i \(0.665392\pi\)
\(720\) 0 0
\(721\) 16.0000 13.8564i 0.595871 0.516040i
\(722\) 0 0
\(723\) 0 0
\(724\) 16.0000 27.7128i 0.594635 1.02994i
\(725\) −1.00000 + 1.73205i −0.0371391 + 0.0643268i
\(726\) 0 0
\(727\) 28.0000 1.03846 0.519231 0.854634i \(-0.326218\pi\)
0.519231 + 0.854634i \(0.326218\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −42.0000 + 72.7461i −1.55343 + 2.69061i
\(732\) 0 0
\(733\) 9.00000 + 15.5885i 0.332423 + 0.575773i 0.982986 0.183679i \(-0.0588007\pi\)
−0.650564 + 0.759452i \(0.725467\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 3.00000 + 5.19615i 0.110506 + 0.191403i
\(738\) 0 0
\(739\) 20.5000 35.5070i 0.754105 1.30615i −0.191714 0.981451i \(-0.561404\pi\)
0.945818 0.324697i \(-0.105262\pi\)
\(740\) −16.0000 27.7128i −0.588172 1.01874i
\(741\) 0 0
\(742\) 0 0
\(743\) 44.0000 1.61420 0.807102 0.590412i \(-0.201035\pi\)
0.807102 + 0.590412i \(0.201035\pi\)
\(744\) 0 0
\(745\) −6.00000 + 10.3923i −0.219823 + 0.380745i
\(746\) 0 0
\(747\) 0 0
\(748\) −42.0000 −1.53567
\(749\) 36.0000 31.1769i 1.31541 1.13918i
\(750\) 0 0
\(751\) 19.0000 + 32.9090i 0.693320 + 1.20087i 0.970744 + 0.240118i \(0.0771860\pi\)
−0.277424 + 0.960748i \(0.589481\pi\)
\(752\) −10.0000 + 17.3205i −0.364662 + 0.631614i
\(753\) 0 0
\(754\) 0 0
\(755\) 16.0000 0.582300
\(756\) 0 0
\(757\) −17.0000 −0.617876 −0.308938 0.951082i \(-0.599973\pi\)
−0.308938 + 0.951082i \(0.599973\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 5.00000 + 8.66025i 0.181250 + 0.313934i 0.942306 0.334752i \(-0.108652\pi\)
−0.761057 + 0.648686i \(0.775319\pi\)
\(762\) 0 0
\(763\) −15.0000 5.19615i −0.543036 0.188113i
\(764\) −16.0000 −0.578860
\(765\) 0 0
\(766\) 0 0
\(767\) 14.0000 24.2487i 0.505511 0.875570i
\(768\) 0 0
\(769\) 30.0000 1.08183 0.540914 0.841078i \(-0.318079\pi\)
0.540914 + 0.841078i \(0.318079\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 8.00000 + 13.8564i 0.287926 + 0.498703i
\(773\) −18.0000 + 31.1769i −0.647415 + 1.12136i 0.336323 + 0.941747i \(0.390817\pi\)
−0.983738 + 0.179609i \(0.942517\pi\)
\(774\) 0 0
\(775\) 5.00000 + 8.66025i 0.179605 + 0.311086i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −3.00000 5.19615i −0.107486 0.186171i
\(780\) 0 0
\(781\) −15.0000 + 25.9808i −0.536742 + 0.929665i
\(782\) 0 0
\(783\) 0 0
\(784\) 22.0000 + 17.3205i 0.785714 + 0.618590i
\(785\) −10.0000 −0.356915
\(786\) 0 0
\(787\) −10.0000 + 17.3205i −0.356462 + 0.617409i −0.987367 0.158450i \(-0.949350\pi\)
0.630905 + 0.775860i \(0.282684\pi\)
\(788\) 5.00000 8.66025i 0.178118 0.308509i
\(789\) 0 0
\(790\) 0 0
\(791\) −6.00000 31.1769i −0.213335 1.10852i
\(792\) 0 0
\(793\) 13.0000 + 22.5167i 0.461644 + 0.799590i
\(794\) 0 0
\(795\) 0 0
\(796\) −16.0000 27.7128i −0.567105 0.982255i
\(797\) 22.0000 0.779280 0.389640 0.920967i \(-0.372599\pi\)
0.389640 + 0.920967i \(0.372599\pi\)
\(798\) 0 0
\(799\) 35.0000 1.23821
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −1.50000 2.59808i −0.0529339 0.0916841i
\(804\) 0 0
\(805\) −25.0000 8.66025i −0.881134 0.305234i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −25.0000 + 43.3013i −0.878953 + 1.52239i −0.0264621 + 0.999650i \(0.508424\pi\)
−0.852491 + 0.522742i \(0.824909\pi\)
\(810\) 0 0
\(811\) 14.0000 0.491606 0.245803 0.969320i \(-0.420948\pi\)
0.245803 + 0.969320i \(0.420948\pi\)
\(812\) −10.0000 3.46410i −0.350931 0.121566i
\(813\) 0 0
\(814\) 0 0
\(815\) 9.00000 15.5885i 0.315256 0.546040i
\(816\) 0 0
\(817\) 6.00000 + 10.3923i 0.209913 + 0.363581i
\(818\) 0 0
\(819\) 0 0
\(820\) −24.0000 −0.838116
\(821\) −25.5000 44.1673i −0.889956 1.54145i −0.839926 0.542702i \(-0.817401\pi\)
−0.0500305 0.998748i \(-0.515932\pi\)
\(822\) 0 0
\(823\) 7.50000 12.9904i 0.261434 0.452816i −0.705190 0.709019i \(-0.749138\pi\)
0.966623 + 0.256203i \(0.0824714\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −2.00000 −0.0695468 −0.0347734 0.999395i \(-0.511071\pi\)
−0.0347734 + 0.999395i \(0.511071\pi\)
\(828\) 0 0
\(829\) −17.0000 + 29.4449i −0.590434 + 1.02266i 0.403739 + 0.914874i \(0.367710\pi\)
−0.994174 + 0.107788i \(0.965623\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −16.0000 −0.554700
\(833\) 7.00000 48.4974i 0.242536 1.68034i
\(834\) 0 0
\(835\) −14.0000 24.2487i −0.484490 0.839161i
\(836\) −3.00000 + 5.19615i −0.103757 + 0.179713i
\(837\) 0 0
\(838\) 0 0
\(839\) 12.0000 0.414286 0.207143 0.978311i \(-0.433583\pi\)
0.207143 + 0.978311i \(0.433583\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) 0 0
\(843\) 0 0
\(844\) −8.00000 + 13.8564i −0.275371 + 0.476957i
\(845\) −9.00000 15.5885i −0.309609 0.536259i
\(846\) 0 0
\(847\) −4.00000 + 3.46410i −0.137442 + 0.119028i
\(848\) −16.0000 −0.549442
\(849\) 0 0
\(850\) 0 0
\(851\) 20.0000 34.6410i 0.685591 1.18748i
\(852\) 0 0
\(853\) −5.00000 −0.171197 −0.0855984 0.996330i \(-0.527280\pi\)
−0.0855984 + 0.996330i \(0.527280\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −3.00000 + 5.19615i −0.102478 + 0.177497i −0.912705 0.408619i \(-0.866010\pi\)
0.810227 + 0.586116i \(0.199344\pi\)
\(858\) 0 0
\(859\) −2.00000 3.46410i −0.0682391 0.118194i 0.829887 0.557931i \(-0.188405\pi\)
−0.898126 + 0.439738i \(0.855071\pi\)
\(860\) 48.0000 1.63679
\(861\) 0 0
\(862\) 0 0
\(863\) −6.00000 10.3923i −0.204242 0.353758i 0.745649 0.666339i \(-0.232140\pi\)
−0.949891 + 0.312581i \(0.898806\pi\)
\(864\) 0 0
\(865\) −4.00000 + 6.92820i −0.136004 + 0.235566i
\(866\) 0 0
\(867\) 0 0
\(868\) −40.0000 + 34.6410i −1.35769 + 1.17579i
\(869\) −12.0000 −0.407072
\(870\) 0 0
\(871\) 2.00000 3.46410i 0.0677674 0.117377i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 6.00000 + 31.1769i 0.202837 + 1.05397i
\(876\) 0 0
\(877\) −18.0000 31.1769i −0.607817 1.05277i −0.991600 0.129346i \(-0.958712\pi\)
0.383783 0.923423i \(-0.374621\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 12.0000 + 20.7846i 0.404520 + 0.700649i
\(881\) −33.0000 −1.11180 −0.555899 0.831250i \(-0.687626\pi\)
−0.555899 + 0.831250i \(0.687626\pi\)
\(882\) 0 0
\(883\) −9.00000 −0.302874 −0.151437 0.988467i \(-0.548390\pi\)
−0.151437 + 0.988467i \(0.548390\pi\)
\(884\) 14.0000 + 24.2487i 0.470871 + 0.815572i
\(885\) 0 0
\(886\) 0 0
\(887\) 21.0000 + 36.3731i 0.705111 + 1.22129i 0.966651 + 0.256096i \(0.0824362\pi\)
−0.261540 + 0.965193i \(0.584230\pi\)
\(888\) 0 0
\(889\) 8.00000 + 41.5692i 0.268311 + 1.39419i
\(890\) 0 0
\(891\) 0 0
\(892\) 2.00000 3.46410i 0.0669650 0.115987i
\(893\) 2.50000 4.33013i 0.0836593 0.144902i
\(894\) 0 0
\(895\) 20.0000 0.668526
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 10.0000 17.3205i 0.333519 0.577671i
\(900\) 0 0
\(901\) 14.0000 + 24.2487i 0.466408 + 0.807842i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 16.0000 + 27.7128i 0.531858 + 0.921205i
\(906\) 0 0
\(907\) 1.00000 1.73205i 0.0332045 0.0575118i −0.848946 0.528480i \(-0.822762\pi\)
0.882150 + 0.470968i \(0.156095\pi\)
\(908\) −10.0000 17.3205i −0.331862 0.574801i
\(909\) 0 0
\(910\) 0 0
\(911\) 50.0000 1.65657 0.828287 0.560304i \(-0.189316\pi\)
0.828287 + 0.560304i \(0.189316\pi\)
\(912\) 0 0
\(913\) −13.5000 + 23.3827i −0.446785 + 0.773854i
\(914\) 0 0
\(915\) 0 0
\(916\) −2.00000 −0.0660819
\(917\) −2.00000 + 1.73205i −0.0660458 + 0.0571974i
\(918\) 0 0
\(919\) −1.50000 2.59808i −0.0494804 0.0857026i 0.840224 0.542239i \(-0.182423\pi\)
−0.889705 + 0.456536i \(0.849090\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 20.0000 0.658308
\(924\) 0 0
\(925\) −8.00000 −0.263038
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 17.5000 + 30.3109i 0.574156 + 0.994468i 0.996133 + 0.0878612i \(0.0280032\pi\)
−0.421976 + 0.906607i \(0.638663\pi\)
\(930\) 0 0
\(931\) −5.50000 4.33013i −0.180255 0.141914i
\(932\) −42.0000 −1.37576
\(933\) 0 0
\(934\) 0 0
\(935\) 21.0000 36.3731i 0.686773 1.18953i
\(936\) 0 0
\(937\) −10.0000 −0.326686 −0.163343 0.986569i \(-0.552228\pi\)
−0.163343 + 0.986569i \(0.552228\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −10.0000 17.3205i −0.326164 0.564933i
\(941\) 19.0000 32.9090i 0.619382 1.07280i −0.370216 0.928946i \(-0.620716\pi\)
0.989599 0.143856i \(-0.0459502\pi\)
\(942\) 0 0
\(943\) −15.0000 25.9808i −0.488467 0.846050i
\(944\) −56.0000 −1.82264
\(945\) 0 0
\(946\) 0 0
\(947\) −12.0000 20.7846i −0.389948 0.675409i 0.602494 0.798123i \(-0.294174\pi\)
−0.992442 + 0.122714i \(0.960840\pi\)
\(948\) 0 0
\(949\) −1.00000 + 1.73205i −0.0324614 + 0.0562247i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −26.0000 −0.842223 −0.421111 0.907009i \(-0.638360\pi\)
−0.421111 + 0.907009i \(0.638360\pi\)
\(954\) 0 0
\(955\) 8.00000 13.8564i 0.258874 0.448383i
\(956\) 1.00000 1.73205i 0.0323423 0.0560185i
\(957\) 0 0
\(958\) 0 0
\(959\) −7.50000 2.59808i −0.242188 0.0838963i
\(960\) 0 0
\(961\) −34.5000 59.7558i −1.11290 1.92760i
\(962\) 0 0
\(963\) 0 0
\(964\) −8.00000 13.8564i −0.257663 0.446285i
\(965\) −16.0000 −0.515058
\(966\) 0 0
\(967\) −32.0000 −1.02905 −0.514525 0.857475i \(-0.672032\pi\)
−0.514525 + 0.857475i \(0.672032\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −9.00000 15.5885i −0.288824 0.500257i 0.684706 0.728820i \(-0.259931\pi\)
−0.973529 + 0.228562i \(0.926597\pi\)
\(972\) 0 0
\(973\) 2.50000 + 12.9904i 0.0801463 + 0.416452i
\(974\) 0 0
\(975\) 0 0
\(976\) 26.0000 45.0333i 0.832240 1.44148i
\(977\) −12.0000 + 20.7846i −0.383914 + 0.664959i −0.991618 0.129205i \(-0.958757\pi\)
0.607704 + 0.794164i \(0.292091\pi\)
\(978\) 0 0
\(979\) −54.0000 −1.72585
\(980\) −26.0000 + 10.3923i −0.830540 + 0.331970i
\(981\) 0 0
\(982\) 0 0
\(983\) 20.0000 34.6410i 0.637901 1.10488i −0.347992 0.937498i \(-0.613136\pi\)
0.985893 0.167379i \(-0.0535304\pi\)
\(984\) 0 0
\(985\) 5.00000 + 8.66025i 0.159313 + 0.275939i
\(986\) 0 0
\(987\) 0 0
\(988\) 4.00000 0.127257
\(989\) 30.0000 + 51.9615i 0.953945 + 1.65228i
\(990\) 0 0
\(991\) 21.0000 36.3731i 0.667087 1.15543i −0.311628 0.950204i \(-0.600874\pi\)
0.978715 0.205224i \(-0.0657924\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 32.0000 1.01447
\(996\) 0 0
\(997\) −0.500000 + 0.866025i −0.0158352 + 0.0274273i −0.873834 0.486224i \(-0.838374\pi\)
0.857999 + 0.513651i \(0.171707\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1197.2.j.a.172.1 2
3.2 odd 2 399.2.j.b.172.1 yes 2
7.2 even 3 inner 1197.2.j.a.856.1 2
7.3 odd 6 8379.2.a.i.1.1 1
7.4 even 3 8379.2.a.h.1.1 1
21.2 odd 6 399.2.j.b.58.1 2
21.11 odd 6 2793.2.a.h.1.1 1
21.17 even 6 2793.2.a.g.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
399.2.j.b.58.1 2 21.2 odd 6
399.2.j.b.172.1 yes 2 3.2 odd 2
1197.2.j.a.172.1 2 1.1 even 1 trivial
1197.2.j.a.856.1 2 7.2 even 3 inner
2793.2.a.g.1.1 1 21.17 even 6
2793.2.a.h.1.1 1 21.11 odd 6
8379.2.a.h.1.1 1 7.4 even 3
8379.2.a.i.1.1 1 7.3 odd 6