Properties

Label 1197.2.a.f.1.1
Level $1197$
Weight $2$
Character 1197.1
Self dual yes
Analytic conductor $9.558$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1197,2,Mod(1,1197)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1197.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1197, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1197 = 3^{2} \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1197.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-2,0,2,-4,0,2,-6,0,4,-4,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.55809312195\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.41421\) of defining polynomial
Character \(\chi\) \(=\) 1197.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.41421 q^{2} +3.82843 q^{4} -2.00000 q^{5} +1.00000 q^{7} -4.41421 q^{8} +4.82843 q^{10} +0.828427 q^{11} +2.00000 q^{13} -2.41421 q^{14} +3.00000 q^{16} +2.00000 q^{17} -1.00000 q^{19} -7.65685 q^{20} -2.00000 q^{22} -0.828427 q^{23} -1.00000 q^{25} -4.82843 q^{26} +3.82843 q^{28} +1.17157 q^{29} +4.00000 q^{31} +1.58579 q^{32} -4.82843 q^{34} -2.00000 q^{35} -3.65685 q^{37} +2.41421 q^{38} +8.82843 q^{40} -3.17157 q^{41} -1.65685 q^{43} +3.17157 q^{44} +2.00000 q^{46} +2.82843 q^{47} +1.00000 q^{49} +2.41421 q^{50} +7.65685 q^{52} +8.48528 q^{53} -1.65685 q^{55} -4.41421 q^{56} -2.82843 q^{58} -1.65685 q^{59} +0.343146 q^{61} -9.65685 q^{62} -9.82843 q^{64} -4.00000 q^{65} +9.65685 q^{67} +7.65685 q^{68} +4.82843 q^{70} +2.00000 q^{71} +3.65685 q^{73} +8.82843 q^{74} -3.82843 q^{76} +0.828427 q^{77} -11.3137 q^{79} -6.00000 q^{80} +7.65685 q^{82} -12.4853 q^{83} -4.00000 q^{85} +4.00000 q^{86} -3.65685 q^{88} +4.82843 q^{89} +2.00000 q^{91} -3.17157 q^{92} -6.82843 q^{94} +2.00000 q^{95} +0.343146 q^{97} -2.41421 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 2 q^{4} - 4 q^{5} + 2 q^{7} - 6 q^{8} + 4 q^{10} - 4 q^{11} + 4 q^{13} - 2 q^{14} + 6 q^{16} + 4 q^{17} - 2 q^{19} - 4 q^{20} - 4 q^{22} + 4 q^{23} - 2 q^{25} - 4 q^{26} + 2 q^{28} + 8 q^{29}+ \cdots - 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.41421 −1.70711 −0.853553 0.521005i \(-0.825557\pi\)
−0.853553 + 0.521005i \(0.825557\pi\)
\(3\) 0 0
\(4\) 3.82843 1.91421
\(5\) −2.00000 −0.894427 −0.447214 0.894427i \(-0.647584\pi\)
−0.447214 + 0.894427i \(0.647584\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) −4.41421 −1.56066
\(9\) 0 0
\(10\) 4.82843 1.52688
\(11\) 0.828427 0.249780 0.124890 0.992171i \(-0.460142\pi\)
0.124890 + 0.992171i \(0.460142\pi\)
\(12\) 0 0
\(13\) 2.00000 0.554700 0.277350 0.960769i \(-0.410544\pi\)
0.277350 + 0.960769i \(0.410544\pi\)
\(14\) −2.41421 −0.645226
\(15\) 0 0
\(16\) 3.00000 0.750000
\(17\) 2.00000 0.485071 0.242536 0.970143i \(-0.422021\pi\)
0.242536 + 0.970143i \(0.422021\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) −7.65685 −1.71212
\(21\) 0 0
\(22\) −2.00000 −0.426401
\(23\) −0.828427 −0.172739 −0.0863695 0.996263i \(-0.527527\pi\)
−0.0863695 + 0.996263i \(0.527527\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) −4.82843 −0.946932
\(27\) 0 0
\(28\) 3.82843 0.723505
\(29\) 1.17157 0.217556 0.108778 0.994066i \(-0.465306\pi\)
0.108778 + 0.994066i \(0.465306\pi\)
\(30\) 0 0
\(31\) 4.00000 0.718421 0.359211 0.933257i \(-0.383046\pi\)
0.359211 + 0.933257i \(0.383046\pi\)
\(32\) 1.58579 0.280330
\(33\) 0 0
\(34\) −4.82843 −0.828068
\(35\) −2.00000 −0.338062
\(36\) 0 0
\(37\) −3.65685 −0.601183 −0.300592 0.953753i \(-0.597184\pi\)
−0.300592 + 0.953753i \(0.597184\pi\)
\(38\) 2.41421 0.391637
\(39\) 0 0
\(40\) 8.82843 1.39590
\(41\) −3.17157 −0.495316 −0.247658 0.968847i \(-0.579661\pi\)
−0.247658 + 0.968847i \(0.579661\pi\)
\(42\) 0 0
\(43\) −1.65685 −0.252668 −0.126334 0.991988i \(-0.540321\pi\)
−0.126334 + 0.991988i \(0.540321\pi\)
\(44\) 3.17157 0.478133
\(45\) 0 0
\(46\) 2.00000 0.294884
\(47\) 2.82843 0.412568 0.206284 0.978492i \(-0.433863\pi\)
0.206284 + 0.978492i \(0.433863\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 2.41421 0.341421
\(51\) 0 0
\(52\) 7.65685 1.06181
\(53\) 8.48528 1.16554 0.582772 0.812636i \(-0.301968\pi\)
0.582772 + 0.812636i \(0.301968\pi\)
\(54\) 0 0
\(55\) −1.65685 −0.223410
\(56\) −4.41421 −0.589874
\(57\) 0 0
\(58\) −2.82843 −0.371391
\(59\) −1.65685 −0.215704 −0.107852 0.994167i \(-0.534397\pi\)
−0.107852 + 0.994167i \(0.534397\pi\)
\(60\) 0 0
\(61\) 0.343146 0.0439353 0.0219677 0.999759i \(-0.493007\pi\)
0.0219677 + 0.999759i \(0.493007\pi\)
\(62\) −9.65685 −1.22642
\(63\) 0 0
\(64\) −9.82843 −1.22855
\(65\) −4.00000 −0.496139
\(66\) 0 0
\(67\) 9.65685 1.17977 0.589886 0.807486i \(-0.299173\pi\)
0.589886 + 0.807486i \(0.299173\pi\)
\(68\) 7.65685 0.928530
\(69\) 0 0
\(70\) 4.82843 0.577107
\(71\) 2.00000 0.237356 0.118678 0.992933i \(-0.462134\pi\)
0.118678 + 0.992933i \(0.462134\pi\)
\(72\) 0 0
\(73\) 3.65685 0.428002 0.214001 0.976833i \(-0.431350\pi\)
0.214001 + 0.976833i \(0.431350\pi\)
\(74\) 8.82843 1.02628
\(75\) 0 0
\(76\) −3.82843 −0.439151
\(77\) 0.828427 0.0944080
\(78\) 0 0
\(79\) −11.3137 −1.27289 −0.636446 0.771321i \(-0.719596\pi\)
−0.636446 + 0.771321i \(0.719596\pi\)
\(80\) −6.00000 −0.670820
\(81\) 0 0
\(82\) 7.65685 0.845558
\(83\) −12.4853 −1.37044 −0.685219 0.728337i \(-0.740293\pi\)
−0.685219 + 0.728337i \(0.740293\pi\)
\(84\) 0 0
\(85\) −4.00000 −0.433861
\(86\) 4.00000 0.431331
\(87\) 0 0
\(88\) −3.65685 −0.389822
\(89\) 4.82843 0.511812 0.255906 0.966702i \(-0.417626\pi\)
0.255906 + 0.966702i \(0.417626\pi\)
\(90\) 0 0
\(91\) 2.00000 0.209657
\(92\) −3.17157 −0.330659
\(93\) 0 0
\(94\) −6.82843 −0.704298
\(95\) 2.00000 0.205196
\(96\) 0 0
\(97\) 0.343146 0.0348412 0.0174206 0.999848i \(-0.494455\pi\)
0.0174206 + 0.999848i \(0.494455\pi\)
\(98\) −2.41421 −0.243872
\(99\) 0 0
\(100\) −3.82843 −0.382843
\(101\) 4.34315 0.432159 0.216080 0.976376i \(-0.430673\pi\)
0.216080 + 0.976376i \(0.430673\pi\)
\(102\) 0 0
\(103\) 12.0000 1.18240 0.591198 0.806527i \(-0.298655\pi\)
0.591198 + 0.806527i \(0.298655\pi\)
\(104\) −8.82843 −0.865699
\(105\) 0 0
\(106\) −20.4853 −1.98971
\(107\) 13.3137 1.28708 0.643542 0.765410i \(-0.277464\pi\)
0.643542 + 0.765410i \(0.277464\pi\)
\(108\) 0 0
\(109\) 13.3137 1.27522 0.637611 0.770358i \(-0.279923\pi\)
0.637611 + 0.770358i \(0.279923\pi\)
\(110\) 4.00000 0.381385
\(111\) 0 0
\(112\) 3.00000 0.283473
\(113\) 12.4853 1.17452 0.587258 0.809400i \(-0.300207\pi\)
0.587258 + 0.809400i \(0.300207\pi\)
\(114\) 0 0
\(115\) 1.65685 0.154502
\(116\) 4.48528 0.416448
\(117\) 0 0
\(118\) 4.00000 0.368230
\(119\) 2.00000 0.183340
\(120\) 0 0
\(121\) −10.3137 −0.937610
\(122\) −0.828427 −0.0750023
\(123\) 0 0
\(124\) 15.3137 1.37521
\(125\) 12.0000 1.07331
\(126\) 0 0
\(127\) 16.9706 1.50589 0.752947 0.658081i \(-0.228632\pi\)
0.752947 + 0.658081i \(0.228632\pi\)
\(128\) 20.5563 1.81694
\(129\) 0 0
\(130\) 9.65685 0.846962
\(131\) 20.4853 1.78981 0.894904 0.446259i \(-0.147244\pi\)
0.894904 + 0.446259i \(0.147244\pi\)
\(132\) 0 0
\(133\) −1.00000 −0.0867110
\(134\) −23.3137 −2.01400
\(135\) 0 0
\(136\) −8.82843 −0.757031
\(137\) 9.65685 0.825041 0.412520 0.910948i \(-0.364649\pi\)
0.412520 + 0.910948i \(0.364649\pi\)
\(138\) 0 0
\(139\) 21.6569 1.83691 0.918455 0.395525i \(-0.129437\pi\)
0.918455 + 0.395525i \(0.129437\pi\)
\(140\) −7.65685 −0.647122
\(141\) 0 0
\(142\) −4.82843 −0.405193
\(143\) 1.65685 0.138553
\(144\) 0 0
\(145\) −2.34315 −0.194588
\(146\) −8.82843 −0.730646
\(147\) 0 0
\(148\) −14.0000 −1.15079
\(149\) −0.686292 −0.0562232 −0.0281116 0.999605i \(-0.508949\pi\)
−0.0281116 + 0.999605i \(0.508949\pi\)
\(150\) 0 0
\(151\) −11.3137 −0.920697 −0.460348 0.887738i \(-0.652275\pi\)
−0.460348 + 0.887738i \(0.652275\pi\)
\(152\) 4.41421 0.358040
\(153\) 0 0
\(154\) −2.00000 −0.161165
\(155\) −8.00000 −0.642575
\(156\) 0 0
\(157\) 11.6569 0.930318 0.465159 0.885227i \(-0.345997\pi\)
0.465159 + 0.885227i \(0.345997\pi\)
\(158\) 27.3137 2.17296
\(159\) 0 0
\(160\) −3.17157 −0.250735
\(161\) −0.828427 −0.0652892
\(162\) 0 0
\(163\) 1.65685 0.129775 0.0648874 0.997893i \(-0.479331\pi\)
0.0648874 + 0.997893i \(0.479331\pi\)
\(164\) −12.1421 −0.948141
\(165\) 0 0
\(166\) 30.1421 2.33948
\(167\) −0.686292 −0.0531068 −0.0265534 0.999647i \(-0.508453\pi\)
−0.0265534 + 0.999647i \(0.508453\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 9.65685 0.740647
\(171\) 0 0
\(172\) −6.34315 −0.483660
\(173\) 19.1716 1.45759 0.728794 0.684733i \(-0.240081\pi\)
0.728794 + 0.684733i \(0.240081\pi\)
\(174\) 0 0
\(175\) −1.00000 −0.0755929
\(176\) 2.48528 0.187335
\(177\) 0 0
\(178\) −11.6569 −0.873718
\(179\) 9.31371 0.696139 0.348070 0.937469i \(-0.386837\pi\)
0.348070 + 0.937469i \(0.386837\pi\)
\(180\) 0 0
\(181\) −0.343146 −0.0255058 −0.0127529 0.999919i \(-0.504059\pi\)
−0.0127529 + 0.999919i \(0.504059\pi\)
\(182\) −4.82843 −0.357907
\(183\) 0 0
\(184\) 3.65685 0.269587
\(185\) 7.31371 0.537715
\(186\) 0 0
\(187\) 1.65685 0.121161
\(188\) 10.8284 0.789744
\(189\) 0 0
\(190\) −4.82843 −0.350291
\(191\) −21.7990 −1.57732 −0.788660 0.614830i \(-0.789225\pi\)
−0.788660 + 0.614830i \(0.789225\pi\)
\(192\) 0 0
\(193\) 3.65685 0.263226 0.131613 0.991301i \(-0.457984\pi\)
0.131613 + 0.991301i \(0.457984\pi\)
\(194\) −0.828427 −0.0594776
\(195\) 0 0
\(196\) 3.82843 0.273459
\(197\) −12.9706 −0.924114 −0.462057 0.886850i \(-0.652889\pi\)
−0.462057 + 0.886850i \(0.652889\pi\)
\(198\) 0 0
\(199\) 11.3137 0.802008 0.401004 0.916076i \(-0.368661\pi\)
0.401004 + 0.916076i \(0.368661\pi\)
\(200\) 4.41421 0.312132
\(201\) 0 0
\(202\) −10.4853 −0.737742
\(203\) 1.17157 0.0822283
\(204\) 0 0
\(205\) 6.34315 0.443025
\(206\) −28.9706 −2.01847
\(207\) 0 0
\(208\) 6.00000 0.416025
\(209\) −0.828427 −0.0573035
\(210\) 0 0
\(211\) −9.65685 −0.664805 −0.332403 0.943138i \(-0.607859\pi\)
−0.332403 + 0.943138i \(0.607859\pi\)
\(212\) 32.4853 2.23110
\(213\) 0 0
\(214\) −32.1421 −2.19719
\(215\) 3.31371 0.225993
\(216\) 0 0
\(217\) 4.00000 0.271538
\(218\) −32.1421 −2.17694
\(219\) 0 0
\(220\) −6.34315 −0.427655
\(221\) 4.00000 0.269069
\(222\) 0 0
\(223\) 16.0000 1.07144 0.535720 0.844396i \(-0.320040\pi\)
0.535720 + 0.844396i \(0.320040\pi\)
\(224\) 1.58579 0.105955
\(225\) 0 0
\(226\) −30.1421 −2.00503
\(227\) −4.00000 −0.265489 −0.132745 0.991150i \(-0.542379\pi\)
−0.132745 + 0.991150i \(0.542379\pi\)
\(228\) 0 0
\(229\) 10.0000 0.660819 0.330409 0.943838i \(-0.392813\pi\)
0.330409 + 0.943838i \(0.392813\pi\)
\(230\) −4.00000 −0.263752
\(231\) 0 0
\(232\) −5.17157 −0.339530
\(233\) 4.00000 0.262049 0.131024 0.991379i \(-0.458173\pi\)
0.131024 + 0.991379i \(0.458173\pi\)
\(234\) 0 0
\(235\) −5.65685 −0.369012
\(236\) −6.34315 −0.412904
\(237\) 0 0
\(238\) −4.82843 −0.312980
\(239\) −6.48528 −0.419498 −0.209749 0.977755i \(-0.567265\pi\)
−0.209749 + 0.977755i \(0.567265\pi\)
\(240\) 0 0
\(241\) 3.65685 0.235559 0.117779 0.993040i \(-0.462422\pi\)
0.117779 + 0.993040i \(0.462422\pi\)
\(242\) 24.8995 1.60060
\(243\) 0 0
\(244\) 1.31371 0.0841016
\(245\) −2.00000 −0.127775
\(246\) 0 0
\(247\) −2.00000 −0.127257
\(248\) −17.6569 −1.12121
\(249\) 0 0
\(250\) −28.9706 −1.83226
\(251\) −0.485281 −0.0306307 −0.0153153 0.999883i \(-0.504875\pi\)
−0.0153153 + 0.999883i \(0.504875\pi\)
\(252\) 0 0
\(253\) −0.686292 −0.0431468
\(254\) −40.9706 −2.57072
\(255\) 0 0
\(256\) −29.9706 −1.87316
\(257\) 29.7990 1.85881 0.929405 0.369062i \(-0.120321\pi\)
0.929405 + 0.369062i \(0.120321\pi\)
\(258\) 0 0
\(259\) −3.65685 −0.227226
\(260\) −15.3137 −0.949716
\(261\) 0 0
\(262\) −49.4558 −3.05539
\(263\) −6.48528 −0.399900 −0.199950 0.979806i \(-0.564078\pi\)
−0.199950 + 0.979806i \(0.564078\pi\)
\(264\) 0 0
\(265\) −16.9706 −1.04249
\(266\) 2.41421 0.148025
\(267\) 0 0
\(268\) 36.9706 2.25834
\(269\) −23.4558 −1.43013 −0.715064 0.699059i \(-0.753602\pi\)
−0.715064 + 0.699059i \(0.753602\pi\)
\(270\) 0 0
\(271\) −12.9706 −0.787906 −0.393953 0.919131i \(-0.628893\pi\)
−0.393953 + 0.919131i \(0.628893\pi\)
\(272\) 6.00000 0.363803
\(273\) 0 0
\(274\) −23.3137 −1.40843
\(275\) −0.828427 −0.0499560
\(276\) 0 0
\(277\) −18.0000 −1.08152 −0.540758 0.841178i \(-0.681862\pi\)
−0.540758 + 0.841178i \(0.681862\pi\)
\(278\) −52.2843 −3.13580
\(279\) 0 0
\(280\) 8.82843 0.527599
\(281\) −8.48528 −0.506189 −0.253095 0.967442i \(-0.581448\pi\)
−0.253095 + 0.967442i \(0.581448\pi\)
\(282\) 0 0
\(283\) −26.6274 −1.58284 −0.791418 0.611276i \(-0.790657\pi\)
−0.791418 + 0.611276i \(0.790657\pi\)
\(284\) 7.65685 0.454351
\(285\) 0 0
\(286\) −4.00000 −0.236525
\(287\) −3.17157 −0.187212
\(288\) 0 0
\(289\) −13.0000 −0.764706
\(290\) 5.65685 0.332182
\(291\) 0 0
\(292\) 14.0000 0.819288
\(293\) 3.17157 0.185285 0.0926426 0.995699i \(-0.470469\pi\)
0.0926426 + 0.995699i \(0.470469\pi\)
\(294\) 0 0
\(295\) 3.31371 0.192932
\(296\) 16.1421 0.938243
\(297\) 0 0
\(298\) 1.65685 0.0959790
\(299\) −1.65685 −0.0958184
\(300\) 0 0
\(301\) −1.65685 −0.0954995
\(302\) 27.3137 1.57173
\(303\) 0 0
\(304\) −3.00000 −0.172062
\(305\) −0.686292 −0.0392969
\(306\) 0 0
\(307\) 23.3137 1.33058 0.665292 0.746583i \(-0.268307\pi\)
0.665292 + 0.746583i \(0.268307\pi\)
\(308\) 3.17157 0.180717
\(309\) 0 0
\(310\) 19.3137 1.09694
\(311\) −1.85786 −0.105350 −0.0526749 0.998612i \(-0.516775\pi\)
−0.0526749 + 0.998612i \(0.516775\pi\)
\(312\) 0 0
\(313\) −3.65685 −0.206698 −0.103349 0.994645i \(-0.532956\pi\)
−0.103349 + 0.994645i \(0.532956\pi\)
\(314\) −28.1421 −1.58815
\(315\) 0 0
\(316\) −43.3137 −2.43659
\(317\) −24.4853 −1.37523 −0.687615 0.726075i \(-0.741342\pi\)
−0.687615 + 0.726075i \(0.741342\pi\)
\(318\) 0 0
\(319\) 0.970563 0.0543411
\(320\) 19.6569 1.09885
\(321\) 0 0
\(322\) 2.00000 0.111456
\(323\) −2.00000 −0.111283
\(324\) 0 0
\(325\) −2.00000 −0.110940
\(326\) −4.00000 −0.221540
\(327\) 0 0
\(328\) 14.0000 0.773021
\(329\) 2.82843 0.155936
\(330\) 0 0
\(331\) 12.0000 0.659580 0.329790 0.944054i \(-0.393022\pi\)
0.329790 + 0.944054i \(0.393022\pi\)
\(332\) −47.7990 −2.62331
\(333\) 0 0
\(334\) 1.65685 0.0906590
\(335\) −19.3137 −1.05522
\(336\) 0 0
\(337\) 9.31371 0.507350 0.253675 0.967290i \(-0.418361\pi\)
0.253675 + 0.967290i \(0.418361\pi\)
\(338\) 21.7279 1.18184
\(339\) 0 0
\(340\) −15.3137 −0.830502
\(341\) 3.31371 0.179447
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 7.31371 0.394329
\(345\) 0 0
\(346\) −46.2843 −2.48826
\(347\) 20.8284 1.11813 0.559064 0.829124i \(-0.311160\pi\)
0.559064 + 0.829124i \(0.311160\pi\)
\(348\) 0 0
\(349\) 14.0000 0.749403 0.374701 0.927146i \(-0.377745\pi\)
0.374701 + 0.927146i \(0.377745\pi\)
\(350\) 2.41421 0.129045
\(351\) 0 0
\(352\) 1.31371 0.0700209
\(353\) −14.0000 −0.745145 −0.372572 0.928003i \(-0.621524\pi\)
−0.372572 + 0.928003i \(0.621524\pi\)
\(354\) 0 0
\(355\) −4.00000 −0.212298
\(356\) 18.4853 0.979718
\(357\) 0 0
\(358\) −22.4853 −1.18838
\(359\) −10.4853 −0.553392 −0.276696 0.960958i \(-0.589239\pi\)
−0.276696 + 0.960958i \(0.589239\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0.828427 0.0435412
\(363\) 0 0
\(364\) 7.65685 0.401328
\(365\) −7.31371 −0.382817
\(366\) 0 0
\(367\) 22.6274 1.18114 0.590571 0.806986i \(-0.298903\pi\)
0.590571 + 0.806986i \(0.298903\pi\)
\(368\) −2.48528 −0.129554
\(369\) 0 0
\(370\) −17.6569 −0.917936
\(371\) 8.48528 0.440534
\(372\) 0 0
\(373\) 17.3137 0.896470 0.448235 0.893916i \(-0.352053\pi\)
0.448235 + 0.893916i \(0.352053\pi\)
\(374\) −4.00000 −0.206835
\(375\) 0 0
\(376\) −12.4853 −0.643879
\(377\) 2.34315 0.120678
\(378\) 0 0
\(379\) 12.0000 0.616399 0.308199 0.951322i \(-0.400274\pi\)
0.308199 + 0.951322i \(0.400274\pi\)
\(380\) 7.65685 0.392788
\(381\) 0 0
\(382\) 52.6274 2.69265
\(383\) −16.9706 −0.867155 −0.433578 0.901116i \(-0.642749\pi\)
−0.433578 + 0.901116i \(0.642749\pi\)
\(384\) 0 0
\(385\) −1.65685 −0.0844411
\(386\) −8.82843 −0.449355
\(387\) 0 0
\(388\) 1.31371 0.0666934
\(389\) −0.970563 −0.0492095 −0.0246047 0.999697i \(-0.507833\pi\)
−0.0246047 + 0.999697i \(0.507833\pi\)
\(390\) 0 0
\(391\) −1.65685 −0.0837907
\(392\) −4.41421 −0.222951
\(393\) 0 0
\(394\) 31.3137 1.57756
\(395\) 22.6274 1.13851
\(396\) 0 0
\(397\) −32.6274 −1.63752 −0.818762 0.574134i \(-0.805339\pi\)
−0.818762 + 0.574134i \(0.805339\pi\)
\(398\) −27.3137 −1.36911
\(399\) 0 0
\(400\) −3.00000 −0.150000
\(401\) −33.4558 −1.67071 −0.835353 0.549715i \(-0.814736\pi\)
−0.835353 + 0.549715i \(0.814736\pi\)
\(402\) 0 0
\(403\) 8.00000 0.398508
\(404\) 16.6274 0.827245
\(405\) 0 0
\(406\) −2.82843 −0.140372
\(407\) −3.02944 −0.150164
\(408\) 0 0
\(409\) 9.31371 0.460533 0.230267 0.973128i \(-0.426040\pi\)
0.230267 + 0.973128i \(0.426040\pi\)
\(410\) −15.3137 −0.756290
\(411\) 0 0
\(412\) 45.9411 2.26336
\(413\) −1.65685 −0.0815285
\(414\) 0 0
\(415\) 24.9706 1.22576
\(416\) 3.17157 0.155499
\(417\) 0 0
\(418\) 2.00000 0.0978232
\(419\) −30.1421 −1.47254 −0.736270 0.676688i \(-0.763415\pi\)
−0.736270 + 0.676688i \(0.763415\pi\)
\(420\) 0 0
\(421\) 6.97056 0.339724 0.169862 0.985468i \(-0.445668\pi\)
0.169862 + 0.985468i \(0.445668\pi\)
\(422\) 23.3137 1.13489
\(423\) 0 0
\(424\) −37.4558 −1.81902
\(425\) −2.00000 −0.0970143
\(426\) 0 0
\(427\) 0.343146 0.0166060
\(428\) 50.9706 2.46376
\(429\) 0 0
\(430\) −8.00000 −0.385794
\(431\) −33.3137 −1.60466 −0.802332 0.596877i \(-0.796408\pi\)
−0.802332 + 0.596877i \(0.796408\pi\)
\(432\) 0 0
\(433\) 2.97056 0.142756 0.0713781 0.997449i \(-0.477260\pi\)
0.0713781 + 0.997449i \(0.477260\pi\)
\(434\) −9.65685 −0.463544
\(435\) 0 0
\(436\) 50.9706 2.44105
\(437\) 0.828427 0.0396290
\(438\) 0 0
\(439\) 8.00000 0.381819 0.190910 0.981608i \(-0.438856\pi\)
0.190910 + 0.981608i \(0.438856\pi\)
\(440\) 7.31371 0.348667
\(441\) 0 0
\(442\) −9.65685 −0.459330
\(443\) −25.7990 −1.22575 −0.612873 0.790181i \(-0.709986\pi\)
−0.612873 + 0.790181i \(0.709986\pi\)
\(444\) 0 0
\(445\) −9.65685 −0.457779
\(446\) −38.6274 −1.82906
\(447\) 0 0
\(448\) −9.82843 −0.464350
\(449\) −15.7990 −0.745600 −0.372800 0.927912i \(-0.621602\pi\)
−0.372800 + 0.927912i \(0.621602\pi\)
\(450\) 0 0
\(451\) −2.62742 −0.123720
\(452\) 47.7990 2.24828
\(453\) 0 0
\(454\) 9.65685 0.453219
\(455\) −4.00000 −0.187523
\(456\) 0 0
\(457\) 20.6274 0.964910 0.482455 0.875921i \(-0.339745\pi\)
0.482455 + 0.875921i \(0.339745\pi\)
\(458\) −24.1421 −1.12809
\(459\) 0 0
\(460\) 6.34315 0.295751
\(461\) −6.97056 −0.324651 −0.162326 0.986737i \(-0.551900\pi\)
−0.162326 + 0.986737i \(0.551900\pi\)
\(462\) 0 0
\(463\) −11.3137 −0.525793 −0.262896 0.964824i \(-0.584678\pi\)
−0.262896 + 0.964824i \(0.584678\pi\)
\(464\) 3.51472 0.163167
\(465\) 0 0
\(466\) −9.65685 −0.447345
\(467\) 34.8284 1.61167 0.805834 0.592142i \(-0.201718\pi\)
0.805834 + 0.592142i \(0.201718\pi\)
\(468\) 0 0
\(469\) 9.65685 0.445912
\(470\) 13.6569 0.629944
\(471\) 0 0
\(472\) 7.31371 0.336641
\(473\) −1.37258 −0.0631114
\(474\) 0 0
\(475\) 1.00000 0.0458831
\(476\) 7.65685 0.350951
\(477\) 0 0
\(478\) 15.6569 0.716128
\(479\) 3.79899 0.173580 0.0867901 0.996227i \(-0.472339\pi\)
0.0867901 + 0.996227i \(0.472339\pi\)
\(480\) 0 0
\(481\) −7.31371 −0.333476
\(482\) −8.82843 −0.402124
\(483\) 0 0
\(484\) −39.4853 −1.79479
\(485\) −0.686292 −0.0311629
\(486\) 0 0
\(487\) 5.65685 0.256337 0.128168 0.991752i \(-0.459090\pi\)
0.128168 + 0.991752i \(0.459090\pi\)
\(488\) −1.51472 −0.0685681
\(489\) 0 0
\(490\) 4.82843 0.218126
\(491\) 36.8284 1.66204 0.831022 0.556240i \(-0.187756\pi\)
0.831022 + 0.556240i \(0.187756\pi\)
\(492\) 0 0
\(493\) 2.34315 0.105530
\(494\) 4.82843 0.217241
\(495\) 0 0
\(496\) 12.0000 0.538816
\(497\) 2.00000 0.0897123
\(498\) 0 0
\(499\) 39.3137 1.75992 0.879962 0.475045i \(-0.157568\pi\)
0.879962 + 0.475045i \(0.157568\pi\)
\(500\) 45.9411 2.05455
\(501\) 0 0
\(502\) 1.17157 0.0522899
\(503\) 1.17157 0.0522379 0.0261189 0.999659i \(-0.491685\pi\)
0.0261189 + 0.999659i \(0.491685\pi\)
\(504\) 0 0
\(505\) −8.68629 −0.386535
\(506\) 1.65685 0.0736562
\(507\) 0 0
\(508\) 64.9706 2.88260
\(509\) −13.5147 −0.599029 −0.299515 0.954092i \(-0.596825\pi\)
−0.299515 + 0.954092i \(0.596825\pi\)
\(510\) 0 0
\(511\) 3.65685 0.161770
\(512\) 31.2426 1.38074
\(513\) 0 0
\(514\) −71.9411 −3.17319
\(515\) −24.0000 −1.05757
\(516\) 0 0
\(517\) 2.34315 0.103051
\(518\) 8.82843 0.387899
\(519\) 0 0
\(520\) 17.6569 0.774304
\(521\) 40.8284 1.78873 0.894363 0.447342i \(-0.147629\pi\)
0.894363 + 0.447342i \(0.147629\pi\)
\(522\) 0 0
\(523\) 12.6863 0.554733 0.277366 0.960764i \(-0.410538\pi\)
0.277366 + 0.960764i \(0.410538\pi\)
\(524\) 78.4264 3.42607
\(525\) 0 0
\(526\) 15.6569 0.682671
\(527\) 8.00000 0.348485
\(528\) 0 0
\(529\) −22.3137 −0.970161
\(530\) 40.9706 1.77965
\(531\) 0 0
\(532\) −3.82843 −0.165983
\(533\) −6.34315 −0.274752
\(534\) 0 0
\(535\) −26.6274 −1.15120
\(536\) −42.6274 −1.84122
\(537\) 0 0
\(538\) 56.6274 2.44138
\(539\) 0.828427 0.0356829
\(540\) 0 0
\(541\) −6.68629 −0.287466 −0.143733 0.989616i \(-0.545911\pi\)
−0.143733 + 0.989616i \(0.545911\pi\)
\(542\) 31.3137 1.34504
\(543\) 0 0
\(544\) 3.17157 0.135980
\(545\) −26.6274 −1.14059
\(546\) 0 0
\(547\) 42.6274 1.82262 0.911308 0.411724i \(-0.135073\pi\)
0.911308 + 0.411724i \(0.135073\pi\)
\(548\) 36.9706 1.57930
\(549\) 0 0
\(550\) 2.00000 0.0852803
\(551\) −1.17157 −0.0499107
\(552\) 0 0
\(553\) −11.3137 −0.481108
\(554\) 43.4558 1.84626
\(555\) 0 0
\(556\) 82.9117 3.51624
\(557\) 39.3137 1.66578 0.832888 0.553442i \(-0.186686\pi\)
0.832888 + 0.553442i \(0.186686\pi\)
\(558\) 0 0
\(559\) −3.31371 −0.140155
\(560\) −6.00000 −0.253546
\(561\) 0 0
\(562\) 20.4853 0.864119
\(563\) 8.68629 0.366084 0.183042 0.983105i \(-0.441406\pi\)
0.183042 + 0.983105i \(0.441406\pi\)
\(564\) 0 0
\(565\) −24.9706 −1.05052
\(566\) 64.2843 2.70207
\(567\) 0 0
\(568\) −8.82843 −0.370433
\(569\) −40.4853 −1.69723 −0.848616 0.529010i \(-0.822563\pi\)
−0.848616 + 0.529010i \(0.822563\pi\)
\(570\) 0 0
\(571\) 10.6274 0.444744 0.222372 0.974962i \(-0.428620\pi\)
0.222372 + 0.974962i \(0.428620\pi\)
\(572\) 6.34315 0.265220
\(573\) 0 0
\(574\) 7.65685 0.319591
\(575\) 0.828427 0.0345478
\(576\) 0 0
\(577\) −14.9706 −0.623233 −0.311616 0.950208i \(-0.600870\pi\)
−0.311616 + 0.950208i \(0.600870\pi\)
\(578\) 31.3848 1.30543
\(579\) 0 0
\(580\) −8.97056 −0.372482
\(581\) −12.4853 −0.517977
\(582\) 0 0
\(583\) 7.02944 0.291130
\(584\) −16.1421 −0.667966
\(585\) 0 0
\(586\) −7.65685 −0.316302
\(587\) 9.45584 0.390284 0.195142 0.980775i \(-0.437483\pi\)
0.195142 + 0.980775i \(0.437483\pi\)
\(588\) 0 0
\(589\) −4.00000 −0.164817
\(590\) −8.00000 −0.329355
\(591\) 0 0
\(592\) −10.9706 −0.450887
\(593\) −11.6569 −0.478690 −0.239345 0.970935i \(-0.576933\pi\)
−0.239345 + 0.970935i \(0.576933\pi\)
\(594\) 0 0
\(595\) −4.00000 −0.163984
\(596\) −2.62742 −0.107623
\(597\) 0 0
\(598\) 4.00000 0.163572
\(599\) 26.9706 1.10199 0.550994 0.834509i \(-0.314249\pi\)
0.550994 + 0.834509i \(0.314249\pi\)
\(600\) 0 0
\(601\) −14.9706 −0.610662 −0.305331 0.952246i \(-0.598767\pi\)
−0.305331 + 0.952246i \(0.598767\pi\)
\(602\) 4.00000 0.163028
\(603\) 0 0
\(604\) −43.3137 −1.76241
\(605\) 20.6274 0.838624
\(606\) 0 0
\(607\) 12.6863 0.514921 0.257460 0.966289i \(-0.417114\pi\)
0.257460 + 0.966289i \(0.417114\pi\)
\(608\) −1.58579 −0.0643121
\(609\) 0 0
\(610\) 1.65685 0.0670841
\(611\) 5.65685 0.228852
\(612\) 0 0
\(613\) −47.2548 −1.90860 −0.954302 0.298843i \(-0.903399\pi\)
−0.954302 + 0.298843i \(0.903399\pi\)
\(614\) −56.2843 −2.27145
\(615\) 0 0
\(616\) −3.65685 −0.147339
\(617\) −3.02944 −0.121961 −0.0609803 0.998139i \(-0.519423\pi\)
−0.0609803 + 0.998139i \(0.519423\pi\)
\(618\) 0 0
\(619\) 20.2843 0.815294 0.407647 0.913140i \(-0.366349\pi\)
0.407647 + 0.913140i \(0.366349\pi\)
\(620\) −30.6274 −1.23003
\(621\) 0 0
\(622\) 4.48528 0.179843
\(623\) 4.82843 0.193447
\(624\) 0 0
\(625\) −19.0000 −0.760000
\(626\) 8.82843 0.352855
\(627\) 0 0
\(628\) 44.6274 1.78083
\(629\) −7.31371 −0.291617
\(630\) 0 0
\(631\) 5.65685 0.225196 0.112598 0.993641i \(-0.464083\pi\)
0.112598 + 0.993641i \(0.464083\pi\)
\(632\) 49.9411 1.98655
\(633\) 0 0
\(634\) 59.1127 2.34767
\(635\) −33.9411 −1.34691
\(636\) 0 0
\(637\) 2.00000 0.0792429
\(638\) −2.34315 −0.0927660
\(639\) 0 0
\(640\) −41.1127 −1.62512
\(641\) 5.17157 0.204265 0.102132 0.994771i \(-0.467433\pi\)
0.102132 + 0.994771i \(0.467433\pi\)
\(642\) 0 0
\(643\) −18.6274 −0.734594 −0.367297 0.930104i \(-0.619717\pi\)
−0.367297 + 0.930104i \(0.619717\pi\)
\(644\) −3.17157 −0.124977
\(645\) 0 0
\(646\) 4.82843 0.189972
\(647\) 15.5147 0.609947 0.304973 0.952361i \(-0.401352\pi\)
0.304973 + 0.952361i \(0.401352\pi\)
\(648\) 0 0
\(649\) −1.37258 −0.0538786
\(650\) 4.82843 0.189386
\(651\) 0 0
\(652\) 6.34315 0.248417
\(653\) −38.6274 −1.51161 −0.755804 0.654798i \(-0.772754\pi\)
−0.755804 + 0.654798i \(0.772754\pi\)
\(654\) 0 0
\(655\) −40.9706 −1.60085
\(656\) −9.51472 −0.371487
\(657\) 0 0
\(658\) −6.82843 −0.266200
\(659\) 4.34315 0.169185 0.0845925 0.996416i \(-0.473041\pi\)
0.0845925 + 0.996416i \(0.473041\pi\)
\(660\) 0 0
\(661\) −43.9411 −1.70911 −0.854556 0.519360i \(-0.826171\pi\)
−0.854556 + 0.519360i \(0.826171\pi\)
\(662\) −28.9706 −1.12597
\(663\) 0 0
\(664\) 55.1127 2.13879
\(665\) 2.00000 0.0775567
\(666\) 0 0
\(667\) −0.970563 −0.0375803
\(668\) −2.62742 −0.101658
\(669\) 0 0
\(670\) 46.6274 1.80137
\(671\) 0.284271 0.0109742
\(672\) 0 0
\(673\) 27.6569 1.06609 0.533047 0.846086i \(-0.321047\pi\)
0.533047 + 0.846086i \(0.321047\pi\)
\(674\) −22.4853 −0.866101
\(675\) 0 0
\(676\) −34.4558 −1.32522
\(677\) −39.1716 −1.50549 −0.752743 0.658315i \(-0.771270\pi\)
−0.752743 + 0.658315i \(0.771270\pi\)
\(678\) 0 0
\(679\) 0.343146 0.0131687
\(680\) 17.6569 0.677109
\(681\) 0 0
\(682\) −8.00000 −0.306336
\(683\) −43.9411 −1.68136 −0.840680 0.541532i \(-0.817845\pi\)
−0.840680 + 0.541532i \(0.817845\pi\)
\(684\) 0 0
\(685\) −19.3137 −0.737939
\(686\) −2.41421 −0.0921751
\(687\) 0 0
\(688\) −4.97056 −0.189501
\(689\) 16.9706 0.646527
\(690\) 0 0
\(691\) −8.97056 −0.341256 −0.170628 0.985335i \(-0.554580\pi\)
−0.170628 + 0.985335i \(0.554580\pi\)
\(692\) 73.3970 2.79013
\(693\) 0 0
\(694\) −50.2843 −1.90876
\(695\) −43.3137 −1.64298
\(696\) 0 0
\(697\) −6.34315 −0.240264
\(698\) −33.7990 −1.27931
\(699\) 0 0
\(700\) −3.82843 −0.144701
\(701\) 38.6274 1.45894 0.729469 0.684014i \(-0.239767\pi\)
0.729469 + 0.684014i \(0.239767\pi\)
\(702\) 0 0
\(703\) 3.65685 0.137921
\(704\) −8.14214 −0.306868
\(705\) 0 0
\(706\) 33.7990 1.27204
\(707\) 4.34315 0.163341
\(708\) 0 0
\(709\) −30.0000 −1.12667 −0.563337 0.826227i \(-0.690483\pi\)
−0.563337 + 0.826227i \(0.690483\pi\)
\(710\) 9.65685 0.362415
\(711\) 0 0
\(712\) −21.3137 −0.798765
\(713\) −3.31371 −0.124099
\(714\) 0 0
\(715\) −3.31371 −0.123926
\(716\) 35.6569 1.33256
\(717\) 0 0
\(718\) 25.3137 0.944699
\(719\) 42.1421 1.57164 0.785818 0.618458i \(-0.212242\pi\)
0.785818 + 0.618458i \(0.212242\pi\)
\(720\) 0 0
\(721\) 12.0000 0.446903
\(722\) −2.41421 −0.0898477
\(723\) 0 0
\(724\) −1.31371 −0.0488236
\(725\) −1.17157 −0.0435111
\(726\) 0 0
\(727\) 22.3431 0.828661 0.414331 0.910126i \(-0.364016\pi\)
0.414331 + 0.910126i \(0.364016\pi\)
\(728\) −8.82843 −0.327203
\(729\) 0 0
\(730\) 17.6569 0.653509
\(731\) −3.31371 −0.122562
\(732\) 0 0
\(733\) −5.02944 −0.185767 −0.0928833 0.995677i \(-0.529608\pi\)
−0.0928833 + 0.995677i \(0.529608\pi\)
\(734\) −54.6274 −2.01633
\(735\) 0 0
\(736\) −1.31371 −0.0484239
\(737\) 8.00000 0.294684
\(738\) 0 0
\(739\) −14.3431 −0.527621 −0.263811 0.964575i \(-0.584979\pi\)
−0.263811 + 0.964575i \(0.584979\pi\)
\(740\) 28.0000 1.02930
\(741\) 0 0
\(742\) −20.4853 −0.752038
\(743\) −18.6863 −0.685534 −0.342767 0.939421i \(-0.611364\pi\)
−0.342767 + 0.939421i \(0.611364\pi\)
\(744\) 0 0
\(745\) 1.37258 0.0502876
\(746\) −41.7990 −1.53037
\(747\) 0 0
\(748\) 6.34315 0.231928
\(749\) 13.3137 0.486472
\(750\) 0 0
\(751\) −16.0000 −0.583848 −0.291924 0.956441i \(-0.594295\pi\)
−0.291924 + 0.956441i \(0.594295\pi\)
\(752\) 8.48528 0.309426
\(753\) 0 0
\(754\) −5.65685 −0.206010
\(755\) 22.6274 0.823496
\(756\) 0 0
\(757\) −38.0000 −1.38113 −0.690567 0.723269i \(-0.742639\pi\)
−0.690567 + 0.723269i \(0.742639\pi\)
\(758\) −28.9706 −1.05226
\(759\) 0 0
\(760\) −8.82843 −0.320241
\(761\) −16.6274 −0.602743 −0.301372 0.953507i \(-0.597444\pi\)
−0.301372 + 0.953507i \(0.597444\pi\)
\(762\) 0 0
\(763\) 13.3137 0.481989
\(764\) −83.4558 −3.01933
\(765\) 0 0
\(766\) 40.9706 1.48033
\(767\) −3.31371 −0.119651
\(768\) 0 0
\(769\) −5.02944 −0.181366 −0.0906831 0.995880i \(-0.528905\pi\)
−0.0906831 + 0.995880i \(0.528905\pi\)
\(770\) 4.00000 0.144150
\(771\) 0 0
\(772\) 14.0000 0.503871
\(773\) −33.5147 −1.20544 −0.602720 0.797953i \(-0.705917\pi\)
−0.602720 + 0.797953i \(0.705917\pi\)
\(774\) 0 0
\(775\) −4.00000 −0.143684
\(776\) −1.51472 −0.0543752
\(777\) 0 0
\(778\) 2.34315 0.0840058
\(779\) 3.17157 0.113633
\(780\) 0 0
\(781\) 1.65685 0.0592869
\(782\) 4.00000 0.143040
\(783\) 0 0
\(784\) 3.00000 0.107143
\(785\) −23.3137 −0.832102
\(786\) 0 0
\(787\) 35.3137 1.25880 0.629399 0.777082i \(-0.283301\pi\)
0.629399 + 0.777082i \(0.283301\pi\)
\(788\) −49.6569 −1.76895
\(789\) 0 0
\(790\) −54.6274 −1.94356
\(791\) 12.4853 0.443925
\(792\) 0 0
\(793\) 0.686292 0.0243709
\(794\) 78.7696 2.79543
\(795\) 0 0
\(796\) 43.3137 1.53521
\(797\) 6.48528 0.229720 0.114860 0.993382i \(-0.463358\pi\)
0.114860 + 0.993382i \(0.463358\pi\)
\(798\) 0 0
\(799\) 5.65685 0.200125
\(800\) −1.58579 −0.0560660
\(801\) 0 0
\(802\) 80.7696 2.85207
\(803\) 3.02944 0.106907
\(804\) 0 0
\(805\) 1.65685 0.0583964
\(806\) −19.3137 −0.680296
\(807\) 0 0
\(808\) −19.1716 −0.674454
\(809\) −27.3137 −0.960299 −0.480149 0.877187i \(-0.659418\pi\)
−0.480149 + 0.877187i \(0.659418\pi\)
\(810\) 0 0
\(811\) 16.0000 0.561836 0.280918 0.959732i \(-0.409361\pi\)
0.280918 + 0.959732i \(0.409361\pi\)
\(812\) 4.48528 0.157403
\(813\) 0 0
\(814\) 7.31371 0.256345
\(815\) −3.31371 −0.116074
\(816\) 0 0
\(817\) 1.65685 0.0579660
\(818\) −22.4853 −0.786179
\(819\) 0 0
\(820\) 24.2843 0.848044
\(821\) 10.6274 0.370899 0.185450 0.982654i \(-0.440626\pi\)
0.185450 + 0.982654i \(0.440626\pi\)
\(822\) 0 0
\(823\) −40.9706 −1.42814 −0.714072 0.700072i \(-0.753151\pi\)
−0.714072 + 0.700072i \(0.753151\pi\)
\(824\) −52.9706 −1.84532
\(825\) 0 0
\(826\) 4.00000 0.139178
\(827\) 13.3137 0.462963 0.231482 0.972839i \(-0.425643\pi\)
0.231482 + 0.972839i \(0.425643\pi\)
\(828\) 0 0
\(829\) 33.5980 1.16691 0.583453 0.812147i \(-0.301701\pi\)
0.583453 + 0.812147i \(0.301701\pi\)
\(830\) −60.2843 −2.09250
\(831\) 0 0
\(832\) −19.6569 −0.681479
\(833\) 2.00000 0.0692959
\(834\) 0 0
\(835\) 1.37258 0.0475002
\(836\) −3.17157 −0.109691
\(837\) 0 0
\(838\) 72.7696 2.51378
\(839\) −40.2843 −1.39077 −0.695384 0.718639i \(-0.744766\pi\)
−0.695384 + 0.718639i \(0.744766\pi\)
\(840\) 0 0
\(841\) −27.6274 −0.952670
\(842\) −16.8284 −0.579946
\(843\) 0 0
\(844\) −36.9706 −1.27258
\(845\) 18.0000 0.619219
\(846\) 0 0
\(847\) −10.3137 −0.354383
\(848\) 25.4558 0.874157
\(849\) 0 0
\(850\) 4.82843 0.165614
\(851\) 3.02944 0.103848
\(852\) 0 0
\(853\) 39.9411 1.36756 0.683779 0.729689i \(-0.260335\pi\)
0.683779 + 0.729689i \(0.260335\pi\)
\(854\) −0.828427 −0.0283482
\(855\) 0 0
\(856\) −58.7696 −2.00870
\(857\) 1.51472 0.0517418 0.0258709 0.999665i \(-0.491764\pi\)
0.0258709 + 0.999665i \(0.491764\pi\)
\(858\) 0 0
\(859\) 2.62742 0.0896463 0.0448232 0.998995i \(-0.485728\pi\)
0.0448232 + 0.998995i \(0.485728\pi\)
\(860\) 12.6863 0.432599
\(861\) 0 0
\(862\) 80.4264 2.73933
\(863\) 7.37258 0.250966 0.125483 0.992096i \(-0.459952\pi\)
0.125483 + 0.992096i \(0.459952\pi\)
\(864\) 0 0
\(865\) −38.3431 −1.30371
\(866\) −7.17157 −0.243700
\(867\) 0 0
\(868\) 15.3137 0.519781
\(869\) −9.37258 −0.317943
\(870\) 0 0
\(871\) 19.3137 0.654420
\(872\) −58.7696 −1.99019
\(873\) 0 0
\(874\) −2.00000 −0.0676510
\(875\) 12.0000 0.405674
\(876\) 0 0
\(877\) −40.6274 −1.37189 −0.685945 0.727653i \(-0.740611\pi\)
−0.685945 + 0.727653i \(0.740611\pi\)
\(878\) −19.3137 −0.651806
\(879\) 0 0
\(880\) −4.97056 −0.167558
\(881\) 40.6274 1.36877 0.684386 0.729120i \(-0.260070\pi\)
0.684386 + 0.729120i \(0.260070\pi\)
\(882\) 0 0
\(883\) 23.3137 0.784569 0.392284 0.919844i \(-0.371685\pi\)
0.392284 + 0.919844i \(0.371685\pi\)
\(884\) 15.3137 0.515056
\(885\) 0 0
\(886\) 62.2843 2.09248
\(887\) 8.68629 0.291657 0.145829 0.989310i \(-0.453415\pi\)
0.145829 + 0.989310i \(0.453415\pi\)
\(888\) 0 0
\(889\) 16.9706 0.569174
\(890\) 23.3137 0.781477
\(891\) 0 0
\(892\) 61.2548 2.05096
\(893\) −2.82843 −0.0946497
\(894\) 0 0
\(895\) −18.6274 −0.622646
\(896\) 20.5563 0.686739
\(897\) 0 0
\(898\) 38.1421 1.27282
\(899\) 4.68629 0.156297
\(900\) 0 0
\(901\) 16.9706 0.565371
\(902\) 6.34315 0.211204
\(903\) 0 0
\(904\) −55.1127 −1.83302
\(905\) 0.686292 0.0228131
\(906\) 0 0
\(907\) −16.2843 −0.540710 −0.270355 0.962761i \(-0.587141\pi\)
−0.270355 + 0.962761i \(0.587141\pi\)
\(908\) −15.3137 −0.508203
\(909\) 0 0
\(910\) 9.65685 0.320122
\(911\) 17.0294 0.564210 0.282105 0.959383i \(-0.408967\pi\)
0.282105 + 0.959383i \(0.408967\pi\)
\(912\) 0 0
\(913\) −10.3431 −0.342308
\(914\) −49.7990 −1.64720
\(915\) 0 0
\(916\) 38.2843 1.26495
\(917\) 20.4853 0.676484
\(918\) 0 0
\(919\) 6.62742 0.218618 0.109309 0.994008i \(-0.465136\pi\)
0.109309 + 0.994008i \(0.465136\pi\)
\(920\) −7.31371 −0.241126
\(921\) 0 0
\(922\) 16.8284 0.554215
\(923\) 4.00000 0.131662
\(924\) 0 0
\(925\) 3.65685 0.120237
\(926\) 27.3137 0.897584
\(927\) 0 0
\(928\) 1.85786 0.0609874
\(929\) 46.9706 1.54105 0.770527 0.637407i \(-0.219993\pi\)
0.770527 + 0.637407i \(0.219993\pi\)
\(930\) 0 0
\(931\) −1.00000 −0.0327737
\(932\) 15.3137 0.501617
\(933\) 0 0
\(934\) −84.0833 −2.75129
\(935\) −3.31371 −0.108370
\(936\) 0 0
\(937\) −52.6274 −1.71926 −0.859631 0.510915i \(-0.829307\pi\)
−0.859631 + 0.510915i \(0.829307\pi\)
\(938\) −23.3137 −0.761220
\(939\) 0 0
\(940\) −21.6569 −0.706369
\(941\) 19.8579 0.647348 0.323674 0.946169i \(-0.395082\pi\)
0.323674 + 0.946169i \(0.395082\pi\)
\(942\) 0 0
\(943\) 2.62742 0.0855605
\(944\) −4.97056 −0.161778
\(945\) 0 0
\(946\) 3.31371 0.107738
\(947\) −21.7990 −0.708372 −0.354186 0.935175i \(-0.615242\pi\)
−0.354186 + 0.935175i \(0.615242\pi\)
\(948\) 0 0
\(949\) 7.31371 0.237413
\(950\) −2.41421 −0.0783274
\(951\) 0 0
\(952\) −8.82843 −0.286131
\(953\) −41.1716 −1.33368 −0.666839 0.745202i \(-0.732353\pi\)
−0.666839 + 0.745202i \(0.732353\pi\)
\(954\) 0 0
\(955\) 43.5980 1.41080
\(956\) −24.8284 −0.803009
\(957\) 0 0
\(958\) −9.17157 −0.296320
\(959\) 9.65685 0.311836
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 17.6569 0.569280
\(963\) 0 0
\(964\) 14.0000 0.450910
\(965\) −7.31371 −0.235437
\(966\) 0 0
\(967\) 31.5980 1.01612 0.508061 0.861321i \(-0.330362\pi\)
0.508061 + 0.861321i \(0.330362\pi\)
\(968\) 45.5269 1.46329
\(969\) 0 0
\(970\) 1.65685 0.0531984
\(971\) 22.6274 0.726148 0.363074 0.931760i \(-0.381727\pi\)
0.363074 + 0.931760i \(0.381727\pi\)
\(972\) 0 0
\(973\) 21.6569 0.694287
\(974\) −13.6569 −0.437594
\(975\) 0 0
\(976\) 1.02944 0.0329515
\(977\) 23.1127 0.739441 0.369720 0.929143i \(-0.379453\pi\)
0.369720 + 0.929143i \(0.379453\pi\)
\(978\) 0 0
\(979\) 4.00000 0.127841
\(980\) −7.65685 −0.244589
\(981\) 0 0
\(982\) −88.9117 −2.83729
\(983\) 41.9411 1.33771 0.668857 0.743391i \(-0.266784\pi\)
0.668857 + 0.743391i \(0.266784\pi\)
\(984\) 0 0
\(985\) 25.9411 0.826553
\(986\) −5.65685 −0.180151
\(987\) 0 0
\(988\) −7.65685 −0.243597
\(989\) 1.37258 0.0436456
\(990\) 0 0
\(991\) 12.2843 0.390223 0.195111 0.980781i \(-0.437493\pi\)
0.195111 + 0.980781i \(0.437493\pi\)
\(992\) 6.34315 0.201395
\(993\) 0 0
\(994\) −4.82843 −0.153148
\(995\) −22.6274 −0.717337
\(996\) 0 0
\(997\) 45.5980 1.44410 0.722051 0.691840i \(-0.243199\pi\)
0.722051 + 0.691840i \(0.243199\pi\)
\(998\) −94.9117 −3.00438
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1197.2.a.f.1.1 2
3.2 odd 2 1197.2.a.i.1.2 yes 2
7.6 odd 2 8379.2.a.v.1.1 2
21.20 even 2 8379.2.a.bg.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1197.2.a.f.1.1 2 1.1 even 1 trivial
1197.2.a.i.1.2 yes 2 3.2 odd 2
8379.2.a.v.1.1 2 7.6 odd 2
8379.2.a.bg.1.2 2 21.20 even 2