Defining parameters
| Level: | \( N \) | \(=\) | \( 11900 = 2^{2} \cdot 5^{2} \cdot 7 \cdot 17 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 11900.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 33 \) | ||
| Sturm bound: | \(4320\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(11900))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 2196 | 152 | 2044 |
| Cusp forms | 2125 | 152 | 1973 |
| Eisenstein series | 71 | 0 | 71 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(5\) | \(7\) | \(17\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||||||
| \(+\) | \(+\) | \(+\) | \(+\) | \(+\) | \(120\) | \(0\) | \(120\) | \(115\) | \(0\) | \(115\) | \(5\) | \(0\) | \(5\) | |||
| \(+\) | \(+\) | \(+\) | \(-\) | \(-\) | \(156\) | \(0\) | \(156\) | \(150\) | \(0\) | \(150\) | \(6\) | \(0\) | \(6\) | |||
| \(+\) | \(+\) | \(-\) | \(+\) | \(-\) | \(150\) | \(0\) | \(150\) | \(144\) | \(0\) | \(144\) | \(6\) | \(0\) | \(6\) | |||
| \(+\) | \(+\) | \(-\) | \(-\) | \(+\) | \(126\) | \(0\) | \(126\) | \(120\) | \(0\) | \(120\) | \(6\) | \(0\) | \(6\) | |||
| \(+\) | \(-\) | \(+\) | \(+\) | \(-\) | \(146\) | \(0\) | \(146\) | \(140\) | \(0\) | \(140\) | \(6\) | \(0\) | \(6\) | |||
| \(+\) | \(-\) | \(+\) | \(-\) | \(+\) | \(130\) | \(0\) | \(130\) | \(124\) | \(0\) | \(124\) | \(6\) | \(0\) | \(6\) | |||
| \(+\) | \(-\) | \(-\) | \(+\) | \(+\) | \(136\) | \(0\) | \(136\) | \(130\) | \(0\) | \(130\) | \(6\) | \(0\) | \(6\) | |||
| \(+\) | \(-\) | \(-\) | \(-\) | \(-\) | \(140\) | \(0\) | \(140\) | \(134\) | \(0\) | \(134\) | \(6\) | \(0\) | \(6\) | |||
| \(-\) | \(+\) | \(+\) | \(+\) | \(-\) | \(132\) | \(18\) | \(114\) | \(129\) | \(18\) | \(111\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(+\) | \(+\) | \(-\) | \(+\) | \(141\) | \(18\) | \(123\) | \(138\) | \(18\) | \(120\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(+\) | \(-\) | \(+\) | \(+\) | \(147\) | \(18\) | \(129\) | \(144\) | \(18\) | \(126\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(+\) | \(-\) | \(-\) | \(-\) | \(126\) | \(18\) | \(108\) | \(123\) | \(18\) | \(105\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(-\) | \(+\) | \(+\) | \(+\) | \(136\) | \(20\) | \(116\) | \(133\) | \(20\) | \(113\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(-\) | \(+\) | \(-\) | \(-\) | \(137\) | \(20\) | \(117\) | \(134\) | \(20\) | \(114\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(-\) | \(-\) | \(+\) | \(-\) | \(131\) | \(20\) | \(111\) | \(128\) | \(20\) | \(108\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(-\) | \(-\) | \(-\) | \(+\) | \(142\) | \(20\) | \(122\) | \(139\) | \(20\) | \(119\) | \(3\) | \(0\) | \(3\) | |||
| Plus space | \(+\) | \(1078\) | \(76\) | \(1002\) | \(1043\) | \(76\) | \(967\) | \(35\) | \(0\) | \(35\) | ||||||
| Minus space | \(-\) | \(1118\) | \(76\) | \(1042\) | \(1082\) | \(76\) | \(1006\) | \(36\) | \(0\) | \(36\) | ||||||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(11900))\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 5 | 7 | 17 | |||||||
| 11900.2.a.a | $1$ | $95.022$ | \(\Q\) | None | \(0\) | \(-2\) | \(0\) | \(1\) | $-$ | $-$ | $-$ | $+$ | \(q-2q^{3}+q^{7}+q^{9}-3q^{11}-4q^{13}+\cdots\) | |
| 11900.2.a.b | $1$ | $95.022$ | \(\Q\) | None | \(0\) | \(0\) | \(0\) | \(-1\) | $-$ | $-$ | $+$ | $-$ | \(q-q^{7}-3q^{9}+7q^{13}+q^{17}+4q^{19}+\cdots\) | |
| 11900.2.a.c | $1$ | $95.022$ | \(\Q\) | None | \(0\) | \(0\) | \(0\) | \(-1\) | $-$ | $-$ | $+$ | $-$ | \(q-q^{7}-3q^{9}+5q^{11}+2q^{13}+q^{17}+\cdots\) | |
| 11900.2.a.d | $1$ | $95.022$ | \(\Q\) | None | \(0\) | \(0\) | \(0\) | \(-1\) | $-$ | $-$ | $+$ | $-$ | \(q-q^{7}-3q^{9}+6q^{11}-2q^{13}+q^{17}+\cdots\) | |
| 11900.2.a.e | $1$ | $95.022$ | \(\Q\) | None | \(0\) | \(0\) | \(0\) | \(1\) | $-$ | $-$ | $-$ | $+$ | \(q+q^{7}-3q^{9}-7q^{13}-q^{17}+4q^{19}+\cdots\) | |
| 11900.2.a.f | $1$ | $95.022$ | \(\Q\) | None | \(0\) | \(0\) | \(0\) | \(1\) | $-$ | $+$ | $-$ | $+$ | \(q+q^{7}-3q^{9}+5q^{11}-2q^{13}-q^{17}+\cdots\) | |
| 11900.2.a.g | $1$ | $95.022$ | \(\Q\) | None | \(0\) | \(0\) | \(0\) | \(1\) | $-$ | $-$ | $-$ | $+$ | \(q+q^{7}-3q^{9}+6q^{11}+2q^{13}-q^{17}+\cdots\) | |
| 11900.2.a.h | $1$ | $95.022$ | \(\Q\) | None | \(0\) | \(2\) | \(0\) | \(-1\) | $-$ | $+$ | $+$ | $-$ | \(q+2q^{3}-q^{7}+q^{9}-3q^{11}+4q^{13}+\cdots\) | |
| 11900.2.a.i | $1$ | $95.022$ | \(\Q\) | None | \(0\) | \(2\) | \(0\) | \(-1\) | $-$ | $+$ | $+$ | $-$ | \(q+2q^{3}-q^{7}+q^{9}+6q^{11}-5q^{13}+\cdots\) | |
| 11900.2.a.j | $2$ | $95.022$ | \(\Q(\sqrt{13}) \) | None | \(0\) | \(-1\) | \(0\) | \(-2\) | $-$ | $+$ | $+$ | $+$ | ||
| 11900.2.a.k | $2$ | $95.022$ | \(\Q(\sqrt{5}) \) | None | \(0\) | \(1\) | \(0\) | \(2\) | $-$ | $+$ | $-$ | $+$ | ||
| 11900.2.a.l | $2$ | $95.022$ | \(\Q(\sqrt{13}) \) | None | \(0\) | \(1\) | \(0\) | \(2\) | $-$ | $+$ | $-$ | $-$ | ||
| 11900.2.a.m | $2$ | $95.022$ | \(\Q(\sqrt{13}) \) | None | \(0\) | \(3\) | \(0\) | \(-2\) | $-$ | $+$ | $+$ | $-$ | ||
| 11900.2.a.n | $3$ | $95.022$ | \(\Q(\zeta_{18})^+\) | None | \(0\) | \(0\) | \(0\) | \(-3\) | $-$ | $+$ | $+$ | $-$ | ||
| 11900.2.a.o | $3$ | $95.022$ | \(\Q(\zeta_{14})^+\) | None | \(0\) | \(4\) | \(0\) | \(-3\) | $-$ | $+$ | $+$ | $+$ | ||
| 11900.2.a.p | $4$ | $95.022$ | 4.4.32081.1 | None | \(0\) | \(-4\) | \(0\) | \(-4\) | $-$ | $+$ | $+$ | $-$ | ||
| 11900.2.a.q | $4$ | $95.022$ | 4.4.16609.1 | None | \(0\) | \(-4\) | \(0\) | \(4\) | $-$ | $+$ | $-$ | $+$ | ||
| 11900.2.a.r | $4$ | $95.022$ | 4.4.53121.1 | None | \(0\) | \(0\) | \(0\) | \(4\) | $-$ | $+$ | $-$ | $-$ | ||
| 11900.2.a.s | $4$ | $95.022$ | 4.4.35537.3 | None | \(0\) | \(2\) | \(0\) | \(4\) | $-$ | $+$ | $-$ | $-$ | ||
| 11900.2.a.t | $4$ | $95.022$ | 4.4.30273.1 | None | \(0\) | \(2\) | \(0\) | \(4\) | $-$ | $+$ | $-$ | $+$ | ||
| 11900.2.a.u | $5$ | $95.022$ | 5.5.11858473.1 | None | \(0\) | \(-2\) | \(0\) | \(-5\) | $-$ | $+$ | $+$ | $+$ | ||
| 11900.2.a.v | $7$ | $95.022$ | \(\mathbb{Q}[x]/(x^{7} - \cdots)\) | None | \(0\) | \(-4\) | \(0\) | \(-7\) | $-$ | $+$ | $+$ | $-$ | ||
| 11900.2.a.w | $7$ | $95.022$ | \(\mathbb{Q}[x]/(x^{7} - \cdots)\) | None | \(0\) | \(-2\) | \(0\) | \(7\) | $-$ | $+$ | $-$ | $+$ | ||
| 11900.2.a.x | $7$ | $95.022$ | \(\mathbb{Q}[x]/(x^{7} - \cdots)\) | None | \(0\) | \(2\) | \(0\) | \(-7\) | $-$ | $-$ | $+$ | $-$ | ||
| 11900.2.a.y | $7$ | $95.022$ | \(\mathbb{Q}[x]/(x^{7} - \cdots)\) | None | \(0\) | \(4\) | \(0\) | \(7\) | $-$ | $-$ | $-$ | $+$ | ||
| 11900.2.a.z | $8$ | $95.022$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(0\) | \(-2\) | \(0\) | \(-8\) | $-$ | $-$ | $+$ | $+$ | ||
| 11900.2.a.ba | $8$ | $95.022$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(0\) | \(-2\) | \(0\) | \(8\) | $-$ | $-$ | $-$ | $-$ | ||
| 11900.2.a.bb | $8$ | $95.022$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(0\) | \(2\) | \(0\) | \(-8\) | $-$ | $+$ | $+$ | $+$ | ||
| 11900.2.a.bc | $8$ | $95.022$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(0\) | \(2\) | \(0\) | \(8\) | $-$ | $+$ | $-$ | $-$ | ||
| 11900.2.a.bd | $10$ | $95.022$ | \(\mathbb{Q}[x]/(x^{10} - \cdots)\) | None | \(0\) | \(-2\) | \(0\) | \(-10\) | $-$ | $-$ | $+$ | $-$ | ||
| 11900.2.a.be | $10$ | $95.022$ | \(\mathbb{Q}[x]/(x^{10} - \cdots)\) | None | \(0\) | \(2\) | \(0\) | \(10\) | $-$ | $-$ | $-$ | $+$ | ||
| 11900.2.a.bf | $12$ | $95.022$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(0\) | \(-2\) | \(0\) | \(12\) | $-$ | $-$ | $-$ | $-$ | ||
| 11900.2.a.bg | $12$ | $95.022$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(0\) | \(2\) | \(0\) | \(-12\) | $-$ | $-$ | $+$ | $+$ | ||
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(11900))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(11900)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(17))\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(34))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(35))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(50))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(68))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(70))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(85))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(100))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(119))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(140))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(170))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(175))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(238))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(340))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(350))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(425))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(476))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(595))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(700))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(850))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1190))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1700))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2380))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2975))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(5950))\)\(^{\oplus 2}\)