Properties

Label 11900.2.a
Level $11900$
Weight $2$
Character orbit 11900.a
Rep. character $\chi_{11900}(1,\cdot)$
Character field $\Q$
Dimension $152$
Newform subspaces $33$
Sturm bound $4320$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 11900 = 2^{2} \cdot 5^{2} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 11900.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 33 \)
Sturm bound: \(4320\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(11900))\).

Total New Old
Modular forms 2196 152 2044
Cusp forms 2125 152 1973
Eisenstein series 71 0 71

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(5\)\(7\)\(17\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(+\)\(120\)\(0\)\(120\)\(115\)\(0\)\(115\)\(5\)\(0\)\(5\)
\(+\)\(+\)\(+\)\(-\)\(-\)\(156\)\(0\)\(156\)\(150\)\(0\)\(150\)\(6\)\(0\)\(6\)
\(+\)\(+\)\(-\)\(+\)\(-\)\(150\)\(0\)\(150\)\(144\)\(0\)\(144\)\(6\)\(0\)\(6\)
\(+\)\(+\)\(-\)\(-\)\(+\)\(126\)\(0\)\(126\)\(120\)\(0\)\(120\)\(6\)\(0\)\(6\)
\(+\)\(-\)\(+\)\(+\)\(-\)\(146\)\(0\)\(146\)\(140\)\(0\)\(140\)\(6\)\(0\)\(6\)
\(+\)\(-\)\(+\)\(-\)\(+\)\(130\)\(0\)\(130\)\(124\)\(0\)\(124\)\(6\)\(0\)\(6\)
\(+\)\(-\)\(-\)\(+\)\(+\)\(136\)\(0\)\(136\)\(130\)\(0\)\(130\)\(6\)\(0\)\(6\)
\(+\)\(-\)\(-\)\(-\)\(-\)\(140\)\(0\)\(140\)\(134\)\(0\)\(134\)\(6\)\(0\)\(6\)
\(-\)\(+\)\(+\)\(+\)\(-\)\(132\)\(18\)\(114\)\(129\)\(18\)\(111\)\(3\)\(0\)\(3\)
\(-\)\(+\)\(+\)\(-\)\(+\)\(141\)\(18\)\(123\)\(138\)\(18\)\(120\)\(3\)\(0\)\(3\)
\(-\)\(+\)\(-\)\(+\)\(+\)\(147\)\(18\)\(129\)\(144\)\(18\)\(126\)\(3\)\(0\)\(3\)
\(-\)\(+\)\(-\)\(-\)\(-\)\(126\)\(18\)\(108\)\(123\)\(18\)\(105\)\(3\)\(0\)\(3\)
\(-\)\(-\)\(+\)\(+\)\(+\)\(136\)\(20\)\(116\)\(133\)\(20\)\(113\)\(3\)\(0\)\(3\)
\(-\)\(-\)\(+\)\(-\)\(-\)\(137\)\(20\)\(117\)\(134\)\(20\)\(114\)\(3\)\(0\)\(3\)
\(-\)\(-\)\(-\)\(+\)\(-\)\(131\)\(20\)\(111\)\(128\)\(20\)\(108\)\(3\)\(0\)\(3\)
\(-\)\(-\)\(-\)\(-\)\(+\)\(142\)\(20\)\(122\)\(139\)\(20\)\(119\)\(3\)\(0\)\(3\)
Plus space\(+\)\(1078\)\(76\)\(1002\)\(1043\)\(76\)\(967\)\(35\)\(0\)\(35\)
Minus space\(-\)\(1118\)\(76\)\(1042\)\(1082\)\(76\)\(1006\)\(36\)\(0\)\(36\)

Trace form

\( 152 q + 4 q^{3} + 156 q^{9} - 4 q^{11} + 4 q^{13} + 4 q^{19} + 8 q^{23} - 8 q^{27} - 20 q^{29} + 20 q^{31} - 28 q^{33} + 16 q^{37} - 20 q^{39} + 4 q^{41} + 4 q^{43} - 32 q^{47} + 152 q^{49} - 4 q^{51} + 12 q^{53}+ \cdots - 128 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(11900))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 5 7 17
11900.2.a.a 11900.a 1.a $1$ $95.022$ \(\Q\) None \(0\) \(-2\) \(0\) \(1\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-2q^{3}+q^{7}+q^{9}-3q^{11}-4q^{13}+\cdots\)
11900.2.a.b 11900.a 1.a $1$ $95.022$ \(\Q\) None \(0\) \(0\) \(0\) \(-1\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{7}-3q^{9}+7q^{13}+q^{17}+4q^{19}+\cdots\)
11900.2.a.c 11900.a 1.a $1$ $95.022$ \(\Q\) None \(0\) \(0\) \(0\) \(-1\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{7}-3q^{9}+5q^{11}+2q^{13}+q^{17}+\cdots\)
11900.2.a.d 11900.a 1.a $1$ $95.022$ \(\Q\) None \(0\) \(0\) \(0\) \(-1\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{7}-3q^{9}+6q^{11}-2q^{13}+q^{17}+\cdots\)
11900.2.a.e 11900.a 1.a $1$ $95.022$ \(\Q\) None \(0\) \(0\) \(0\) \(1\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{7}-3q^{9}-7q^{13}-q^{17}+4q^{19}+\cdots\)
11900.2.a.f 11900.a 1.a $1$ $95.022$ \(\Q\) None \(0\) \(0\) \(0\) \(1\) $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{7}-3q^{9}+5q^{11}-2q^{13}-q^{17}+\cdots\)
11900.2.a.g 11900.a 1.a $1$ $95.022$ \(\Q\) None \(0\) \(0\) \(0\) \(1\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{7}-3q^{9}+6q^{11}+2q^{13}-q^{17}+\cdots\)
11900.2.a.h 11900.a 1.a $1$ $95.022$ \(\Q\) None \(0\) \(2\) \(0\) \(-1\) $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+2q^{3}-q^{7}+q^{9}-3q^{11}+4q^{13}+\cdots\)
11900.2.a.i 11900.a 1.a $1$ $95.022$ \(\Q\) None \(0\) \(2\) \(0\) \(-1\) $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+2q^{3}-q^{7}+q^{9}+6q^{11}-5q^{13}+\cdots\)
11900.2.a.j 11900.a 1.a $2$ $95.022$ \(\Q(\sqrt{13}) \) None \(0\) \(-1\) \(0\) \(-2\) $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$
11900.2.a.k 11900.a 1.a $2$ $95.022$ \(\Q(\sqrt{5}) \) None \(0\) \(1\) \(0\) \(2\) $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$
11900.2.a.l 11900.a 1.a $2$ $95.022$ \(\Q(\sqrt{13}) \) None \(0\) \(1\) \(0\) \(2\) $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$
11900.2.a.m 11900.a 1.a $2$ $95.022$ \(\Q(\sqrt{13}) \) None \(0\) \(3\) \(0\) \(-2\) $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$
11900.2.a.n 11900.a 1.a $3$ $95.022$ \(\Q(\zeta_{18})^+\) None \(0\) \(0\) \(0\) \(-3\) $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$
11900.2.a.o 11900.a 1.a $3$ $95.022$ \(\Q(\zeta_{14})^+\) None \(0\) \(4\) \(0\) \(-3\) $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$
11900.2.a.p 11900.a 1.a $4$ $95.022$ 4.4.32081.1 None \(0\) \(-4\) \(0\) \(-4\) $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$
11900.2.a.q 11900.a 1.a $4$ $95.022$ 4.4.16609.1 None \(0\) \(-4\) \(0\) \(4\) $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$
11900.2.a.r 11900.a 1.a $4$ $95.022$ 4.4.53121.1 None \(0\) \(0\) \(0\) \(4\) $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$
11900.2.a.s 11900.a 1.a $4$ $95.022$ 4.4.35537.3 None \(0\) \(2\) \(0\) \(4\) $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$
11900.2.a.t 11900.a 1.a $4$ $95.022$ 4.4.30273.1 None \(0\) \(2\) \(0\) \(4\) $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$
11900.2.a.u 11900.a 1.a $5$ $95.022$ 5.5.11858473.1 None \(0\) \(-2\) \(0\) \(-5\) $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$
11900.2.a.v 11900.a 1.a $7$ $95.022$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None \(0\) \(-4\) \(0\) \(-7\) $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$
11900.2.a.w 11900.a 1.a $7$ $95.022$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None \(0\) \(-2\) \(0\) \(7\) $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$
11900.2.a.x 11900.a 1.a $7$ $95.022$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None \(0\) \(2\) \(0\) \(-7\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$
11900.2.a.y 11900.a 1.a $7$ $95.022$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None \(0\) \(4\) \(0\) \(7\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$
11900.2.a.z 11900.a 1.a $8$ $95.022$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None \(0\) \(-2\) \(0\) \(-8\) $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$
11900.2.a.ba 11900.a 1.a $8$ $95.022$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None \(0\) \(-2\) \(0\) \(8\) $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$
11900.2.a.bb 11900.a 1.a $8$ $95.022$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None \(0\) \(2\) \(0\) \(-8\) $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$
11900.2.a.bc 11900.a 1.a $8$ $95.022$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None \(0\) \(2\) \(0\) \(8\) $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$
11900.2.a.bd 11900.a 1.a $10$ $95.022$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None \(0\) \(-2\) \(0\) \(-10\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$
11900.2.a.be 11900.a 1.a $10$ $95.022$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None \(0\) \(2\) \(0\) \(10\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$
11900.2.a.bf 11900.a 1.a $12$ $95.022$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None \(0\) \(-2\) \(0\) \(12\) $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$
11900.2.a.bg 11900.a 1.a $12$ $95.022$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None \(0\) \(2\) \(0\) \(-12\) $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(11900))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(11900)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(17))\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(34))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(35))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(50))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(68))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(70))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(85))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(100))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(119))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(140))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(170))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(175))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(238))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(340))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(350))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(425))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(476))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(595))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(700))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(850))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1190))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1700))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2380))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2975))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(5950))\)\(^{\oplus 2}\)