Properties

Label 119.4.a.c
Level $119$
Weight $4$
Character orbit 119.a
Self dual yes
Analytic conductor $7.021$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [119,4,Mod(1,119)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("119.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(119, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 119 = 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 119.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(7.02122729068\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.68557.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 6x^{2} + 5x + 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{2} - 1) q^{2} + ( - \beta_{3} - \beta_1 - 2) q^{3} + (\beta_{2} + \beta_1) q^{4} + (3 \beta_{3} + \beta_{2} - 1) q^{5} + (2 \beta_{2} + 3 \beta_1 + 5) q^{6} + 7 q^{7} + ( - 2 \beta_{3} + 7 \beta_{2} + \cdots - 3) q^{8}+ \cdots + (22 \beta_{3} + 116 \beta_{2} + \cdots + 348) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} - 7 q^{3} - 2 q^{4} - 9 q^{5} + 16 q^{6} + 28 q^{7} - 24 q^{8} - 29 q^{9} - 26 q^{10} - 26 q^{11} - 46 q^{12} - 88 q^{13} - 14 q^{14} - 86 q^{15} - 126 q^{16} - 68 q^{17} - 110 q^{18} - 258 q^{19}+ \cdots + 1138 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 2x^{3} - 6x^{2} + 5x + 6 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 2\nu - 1 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 4 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 2\nu^{2} - 5\nu + 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta _1 + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 2\beta_{2} + \beta _1 + 9 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 2\beta_{3} + 4\beta_{2} + 7\beta _1 + 17 ) / 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
3.20326
−1.81679
−0.753937
1.36747
−4.05760 −6.73668 8.46411 0.0480909 27.3347 7.00000 −1.88319 18.3828 −0.195134
1.2 −2.11753 3.14786 −3.51605 −1.42528 −6.66570 7.00000 24.3856 −17.0910 3.01809
1.3 1.67764 −4.69642 −5.18552 11.9352 −7.87891 7.00000 −22.1206 −4.94368 20.0230
1.4 2.49749 1.28523 −1.76254 −19.5580 3.20986 7.00000 −24.3819 −25.3482 −48.8460
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(7\) \( -1 \)
\(17\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 119.4.a.c 4
3.b odd 2 1 1071.4.a.h 4
4.b odd 2 1 1904.4.a.k 4
7.b odd 2 1 833.4.a.e 4
17.b even 2 1 2023.4.a.f 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
119.4.a.c 4 1.a even 1 1 trivial
833.4.a.e 4 7.b odd 2 1
1071.4.a.h 4 3.b odd 2 1
1904.4.a.k 4 4.b odd 2 1
2023.4.a.f 4 17.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} + 2T_{2}^{3} - 13T_{2}^{2} - 10T_{2} + 36 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(119))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 2 T^{3} + \cdots + 36 \) Copy content Toggle raw display
$3$ \( T^{4} + 7 T^{3} + \cdots + 128 \) Copy content Toggle raw display
$5$ \( T^{4} + 9 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$7$ \( (T - 7)^{4} \) Copy content Toggle raw display
$11$ \( T^{4} + 26 T^{3} + \cdots + 284048 \) Copy content Toggle raw display
$13$ \( T^{4} + 88 T^{3} + \cdots + 619904 \) Copy content Toggle raw display
$17$ \( (T + 17)^{4} \) Copy content Toggle raw display
$19$ \( T^{4} + 258 T^{3} + \cdots + 5985472 \) Copy content Toggle raw display
$23$ \( T^{4} - 14 T^{3} + \cdots + 3541376 \) Copy content Toggle raw display
$29$ \( T^{4} - 198 T^{3} + \cdots + 66432 \) Copy content Toggle raw display
$31$ \( T^{4} + 299 T^{3} + \cdots - 141944832 \) Copy content Toggle raw display
$37$ \( T^{4} + 360 T^{3} + \cdots - 442304768 \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots - 1955297756 \) Copy content Toggle raw display
$43$ \( T^{4} - 121 T^{3} + \cdots - 269580256 \) Copy content Toggle raw display
$47$ \( T^{4} + 584 T^{3} + \cdots + 608891904 \) Copy content Toggle raw display
$53$ \( T^{4} - 317 T^{3} + \cdots - 5003748 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 1111403392 \) Copy content Toggle raw display
$61$ \( T^{4} + 1359 T^{3} + \cdots - 156781656 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 95078496768 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots - 4894576576 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots - 67996830348 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 314824499904 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots - 116777879424 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 31539023856 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 2011586283188 \) Copy content Toggle raw display
show more
show less