Properties

Label 119.2.a.b.1.2
Level $119$
Weight $2$
Character 119.1
Self dual yes
Analytic conductor $0.950$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [119,2,Mod(1,119)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(119, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("119.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 119 = 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 119.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(0.950219784053\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.453749.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 5x^{3} + 10x^{2} + x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-0.544198\) of defining polynomial
Character \(\chi\) \(=\) 119.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.40868 q^{2} +2.55982 q^{3} -0.0156267 q^{4} +1.76660 q^{5} -3.60597 q^{6} -1.00000 q^{7} +2.83937 q^{8} +3.55270 q^{9} -2.48857 q^{10} -5.40770 q^{11} -0.0400016 q^{12} +5.90575 q^{13} +1.40868 q^{14} +4.52218 q^{15} -3.96850 q^{16} +1.00000 q^{17} -5.00461 q^{18} +3.08840 q^{19} -0.0276061 q^{20} -2.55982 q^{21} +7.61770 q^{22} -6.03125 q^{23} +7.26829 q^{24} -1.87913 q^{25} -8.31930 q^{26} +1.41482 q^{27} +0.0156267 q^{28} -8.99415 q^{29} -6.37030 q^{30} -2.26465 q^{31} -0.0883958 q^{32} -13.8428 q^{33} -1.40868 q^{34} -1.76660 q^{35} -0.0555169 q^{36} -1.67874 q^{37} -4.35055 q^{38} +15.1177 q^{39} +5.01603 q^{40} +4.25753 q^{41} +3.60597 q^{42} +4.06177 q^{43} +0.0845043 q^{44} +6.27620 q^{45} +8.49609 q^{46} -4.30229 q^{47} -10.1587 q^{48} +1.00000 q^{49} +2.64708 q^{50} +2.55982 q^{51} -0.0922873 q^{52} -0.552702 q^{53} -1.99303 q^{54} -9.55324 q^{55} -2.83937 q^{56} +7.90575 q^{57} +12.6699 q^{58} -2.17679 q^{59} -0.0706667 q^{60} +3.74247 q^{61} +3.19017 q^{62} -3.55270 q^{63} +8.06153 q^{64} +10.4331 q^{65} +19.5000 q^{66} +8.58396 q^{67} -0.0156267 q^{68} -15.4390 q^{69} +2.48857 q^{70} +5.26519 q^{71} +10.0874 q^{72} -1.43821 q^{73} +2.36480 q^{74} -4.81023 q^{75} -0.0482614 q^{76} +5.40770 q^{77} -21.2960 q^{78} -5.93700 q^{79} -7.01075 q^{80} -7.03641 q^{81} -5.99749 q^{82} +9.02540 q^{83} +0.0400016 q^{84} +1.76660 q^{85} -5.72173 q^{86} -23.0234 q^{87} -15.3544 q^{88} +14.0996 q^{89} -8.84115 q^{90} -5.90575 q^{91} +0.0942485 q^{92} -5.79712 q^{93} +6.06055 q^{94} +5.45596 q^{95} -0.226278 q^{96} -0.119116 q^{97} -1.40868 q^{98} -19.2119 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 2 q^{2} - 2 q^{3} + 10 q^{4} - q^{6} - 5 q^{7} + 6 q^{8} + 11 q^{9} + 4 q^{10} - 2 q^{11} - 22 q^{12} + 2 q^{13} - 2 q^{14} + 8 q^{15} + 4 q^{16} + 5 q^{17} - 18 q^{18} + 6 q^{19} - 19 q^{20} + 2 q^{21}+ \cdots - 62 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.40868 −0.996086 −0.498043 0.867152i \(-0.665948\pi\)
−0.498043 + 0.867152i \(0.665948\pi\)
\(3\) 2.55982 1.47792 0.738958 0.673752i \(-0.235318\pi\)
0.738958 + 0.673752i \(0.235318\pi\)
\(4\) −0.0156267 −0.00781334
\(5\) 1.76660 0.790047 0.395024 0.918671i \(-0.370736\pi\)
0.395024 + 0.918671i \(0.370736\pi\)
\(6\) −3.60597 −1.47213
\(7\) −1.00000 −0.377964
\(8\) 2.83937 1.00387
\(9\) 3.55270 1.18423
\(10\) −2.48857 −0.786955
\(11\) −5.40770 −1.63048 −0.815241 0.579122i \(-0.803396\pi\)
−0.815241 + 0.579122i \(0.803396\pi\)
\(12\) −0.0400016 −0.0115475
\(13\) 5.90575 1.63796 0.818980 0.573822i \(-0.194540\pi\)
0.818980 + 0.573822i \(0.194540\pi\)
\(14\) 1.40868 0.376485
\(15\) 4.52218 1.16762
\(16\) −3.96850 −0.992126
\(17\) 1.00000 0.242536
\(18\) −5.00461 −1.17960
\(19\) 3.08840 0.708527 0.354263 0.935146i \(-0.384732\pi\)
0.354263 + 0.935146i \(0.384732\pi\)
\(20\) −0.0276061 −0.00617291
\(21\) −2.55982 −0.558600
\(22\) 7.61770 1.62410
\(23\) −6.03125 −1.25760 −0.628802 0.777566i \(-0.716454\pi\)
−0.628802 + 0.777566i \(0.716454\pi\)
\(24\) 7.26829 1.48363
\(25\) −1.87913 −0.375825
\(26\) −8.31930 −1.63155
\(27\) 1.41482 0.272282
\(28\) 0.0156267 0.00295316
\(29\) −8.99415 −1.67017 −0.835086 0.550120i \(-0.814582\pi\)
−0.835086 + 0.550120i \(0.814582\pi\)
\(30\) −6.37030 −1.16305
\(31\) −2.26465 −0.406744 −0.203372 0.979102i \(-0.565190\pi\)
−0.203372 + 0.979102i \(0.565190\pi\)
\(32\) −0.0883958 −0.0156263
\(33\) −13.8428 −2.40971
\(34\) −1.40868 −0.241586
\(35\) −1.76660 −0.298610
\(36\) −0.0555169 −0.00925282
\(37\) −1.67874 −0.275983 −0.137991 0.990433i \(-0.544065\pi\)
−0.137991 + 0.990433i \(0.544065\pi\)
\(38\) −4.35055 −0.705753
\(39\) 15.1177 2.42077
\(40\) 5.01603 0.793104
\(41\) 4.25753 0.664915 0.332457 0.943118i \(-0.392122\pi\)
0.332457 + 0.943118i \(0.392122\pi\)
\(42\) 3.60597 0.556413
\(43\) 4.06177 0.619414 0.309707 0.950832i \(-0.399769\pi\)
0.309707 + 0.950832i \(0.399769\pi\)
\(44\) 0.0845043 0.0127395
\(45\) 6.27620 0.935601
\(46\) 8.49609 1.25268
\(47\) −4.30229 −0.627554 −0.313777 0.949497i \(-0.601594\pi\)
−0.313777 + 0.949497i \(0.601594\pi\)
\(48\) −10.1587 −1.46628
\(49\) 1.00000 0.142857
\(50\) 2.64708 0.374354
\(51\) 2.55982 0.358447
\(52\) −0.0922873 −0.0127979
\(53\) −0.552702 −0.0759194 −0.0379597 0.999279i \(-0.512086\pi\)
−0.0379597 + 0.999279i \(0.512086\pi\)
\(54\) −1.99303 −0.271216
\(55\) −9.55324 −1.28816
\(56\) −2.83937 −0.379427
\(57\) 7.90575 1.04714
\(58\) 12.6699 1.66363
\(59\) −2.17679 −0.283394 −0.141697 0.989910i \(-0.545256\pi\)
−0.141697 + 0.989910i \(0.545256\pi\)
\(60\) −0.0706667 −0.00912304
\(61\) 3.74247 0.479174 0.239587 0.970875i \(-0.422988\pi\)
0.239587 + 0.970875i \(0.422988\pi\)
\(62\) 3.19017 0.405152
\(63\) −3.55270 −0.447598
\(64\) 8.06153 1.00769
\(65\) 10.4331 1.29407
\(66\) 19.5000 2.40028
\(67\) 8.58396 1.04870 0.524349 0.851504i \(-0.324309\pi\)
0.524349 + 0.851504i \(0.324309\pi\)
\(68\) −0.0156267 −0.00189501
\(69\) −15.4390 −1.85863
\(70\) 2.48857 0.297441
\(71\) 5.26519 0.624863 0.312431 0.949940i \(-0.398857\pi\)
0.312431 + 0.949940i \(0.398857\pi\)
\(72\) 10.0874 1.18882
\(73\) −1.43821 −0.168330 −0.0841651 0.996452i \(-0.526822\pi\)
−0.0841651 + 0.996452i \(0.526822\pi\)
\(74\) 2.36480 0.274902
\(75\) −4.81023 −0.555438
\(76\) −0.0482614 −0.00553596
\(77\) 5.40770 0.616264
\(78\) −21.2960 −2.41129
\(79\) −5.93700 −0.667965 −0.333983 0.942579i \(-0.608393\pi\)
−0.333983 + 0.942579i \(0.608393\pi\)
\(80\) −7.01075 −0.783826
\(81\) −7.03641 −0.781824
\(82\) −5.99749 −0.662312
\(83\) 9.02540 0.990666 0.495333 0.868703i \(-0.335046\pi\)
0.495333 + 0.868703i \(0.335046\pi\)
\(84\) 0.0400016 0.00436453
\(85\) 1.76660 0.191615
\(86\) −5.72173 −0.616990
\(87\) −23.0234 −2.46837
\(88\) −15.3544 −1.63679
\(89\) 14.0996 1.49455 0.747275 0.664515i \(-0.231362\pi\)
0.747275 + 0.664515i \(0.231362\pi\)
\(90\) −8.84115 −0.931939
\(91\) −5.90575 −0.619091
\(92\) 0.0942485 0.00982608
\(93\) −5.79712 −0.601133
\(94\) 6.06055 0.625098
\(95\) 5.45596 0.559770
\(96\) −0.226278 −0.0230944
\(97\) −0.119116 −0.0120944 −0.00604718 0.999982i \(-0.501925\pi\)
−0.00604718 + 0.999982i \(0.501925\pi\)
\(98\) −1.40868 −0.142298
\(99\) −19.2119 −1.93087
\(100\) 0.0293645 0.00293645
\(101\) 9.74124 0.969290 0.484645 0.874711i \(-0.338949\pi\)
0.484645 + 0.874711i \(0.338949\pi\)
\(102\) −3.60597 −0.357044
\(103\) −14.8486 −1.46308 −0.731538 0.681800i \(-0.761197\pi\)
−0.731538 + 0.681800i \(0.761197\pi\)
\(104\) 16.7686 1.64430
\(105\) −4.52218 −0.441320
\(106\) 0.778579 0.0756223
\(107\) −2.86138 −0.276620 −0.138310 0.990389i \(-0.544167\pi\)
−0.138310 + 0.990389i \(0.544167\pi\)
\(108\) −0.0221089 −0.00212743
\(109\) 16.8154 1.61062 0.805311 0.592852i \(-0.201998\pi\)
0.805311 + 0.592852i \(0.201998\pi\)
\(110\) 13.4574 1.28312
\(111\) −4.29727 −0.407879
\(112\) 3.96850 0.374988
\(113\) −12.5273 −1.17847 −0.589237 0.807960i \(-0.700571\pi\)
−0.589237 + 0.807960i \(0.700571\pi\)
\(114\) −11.1367 −1.04304
\(115\) −10.6548 −0.993566
\(116\) 0.140549 0.0130496
\(117\) 20.9814 1.93973
\(118\) 3.06640 0.282285
\(119\) −1.00000 −0.0916698
\(120\) 12.8402 1.17214
\(121\) 18.2432 1.65847
\(122\) −5.27193 −0.477298
\(123\) 10.8985 0.982688
\(124\) 0.0353890 0.00317803
\(125\) −12.1527 −1.08697
\(126\) 5.00461 0.445846
\(127\) 0.0546476 0.00484919 0.00242460 0.999997i \(-0.499228\pi\)
0.00242460 + 0.999997i \(0.499228\pi\)
\(128\) −11.1793 −0.988120
\(129\) 10.3974 0.915442
\(130\) −14.6969 −1.28900
\(131\) 5.63471 0.492307 0.246154 0.969231i \(-0.420833\pi\)
0.246154 + 0.969231i \(0.420833\pi\)
\(132\) 0.216316 0.0188279
\(133\) −3.08840 −0.267798
\(134\) −12.0920 −1.04459
\(135\) 2.49942 0.215116
\(136\) 2.83937 0.243474
\(137\) 19.1717 1.63795 0.818973 0.573832i \(-0.194544\pi\)
0.818973 + 0.573832i \(0.194544\pi\)
\(138\) 21.7485 1.85136
\(139\) 21.6094 1.83288 0.916441 0.400170i \(-0.131049\pi\)
0.916441 + 0.400170i \(0.131049\pi\)
\(140\) 0.0276061 0.00233314
\(141\) −11.0131 −0.927472
\(142\) −7.41695 −0.622417
\(143\) −31.9365 −2.67067
\(144\) −14.0989 −1.17491
\(145\) −15.8891 −1.31951
\(146\) 2.02598 0.167671
\(147\) 2.55982 0.211131
\(148\) 0.0262331 0.00215635
\(149\) −4.41731 −0.361881 −0.180940 0.983494i \(-0.557914\pi\)
−0.180940 + 0.983494i \(0.557914\pi\)
\(150\) 6.77607 0.553264
\(151\) −12.9929 −1.05735 −0.528675 0.848825i \(-0.677311\pi\)
−0.528675 + 0.848825i \(0.677311\pi\)
\(152\) 8.76909 0.711267
\(153\) 3.55270 0.287219
\(154\) −7.61770 −0.613852
\(155\) −4.00074 −0.321347
\(156\) −0.236239 −0.0189143
\(157\) −13.8355 −1.10419 −0.552096 0.833780i \(-0.686172\pi\)
−0.552096 + 0.833780i \(0.686172\pi\)
\(158\) 8.36333 0.665351
\(159\) −1.41482 −0.112203
\(160\) −0.156160 −0.0123455
\(161\) 6.03125 0.475329
\(162\) 9.91204 0.778764
\(163\) 16.5444 1.29585 0.647927 0.761703i \(-0.275636\pi\)
0.647927 + 0.761703i \(0.275636\pi\)
\(164\) −0.0665311 −0.00519520
\(165\) −24.4546 −1.90379
\(166\) −12.7139 −0.986789
\(167\) −6.68337 −0.517174 −0.258587 0.965988i \(-0.583257\pi\)
−0.258587 + 0.965988i \(0.583257\pi\)
\(168\) −7.26829 −0.560760
\(169\) 21.8779 1.68292
\(170\) −2.48857 −0.190865
\(171\) 10.9721 0.839061
\(172\) −0.0634720 −0.00483969
\(173\) 18.6204 1.41568 0.707840 0.706373i \(-0.249670\pi\)
0.707840 + 0.706373i \(0.249670\pi\)
\(174\) 32.4326 2.45871
\(175\) 1.87913 0.142049
\(176\) 21.4605 1.61764
\(177\) −5.57220 −0.418833
\(178\) −19.8617 −1.48870
\(179\) −8.70037 −0.650296 −0.325148 0.945663i \(-0.605414\pi\)
−0.325148 + 0.945663i \(0.605414\pi\)
\(180\) −0.0980762 −0.00731017
\(181\) 2.99611 0.222699 0.111349 0.993781i \(-0.464483\pi\)
0.111349 + 0.993781i \(0.464483\pi\)
\(182\) 8.31930 0.616668
\(183\) 9.58006 0.708179
\(184\) −17.1250 −1.26247
\(185\) −2.96566 −0.218039
\(186\) 8.16627 0.598780
\(187\) −5.40770 −0.395450
\(188\) 0.0672306 0.00490329
\(189\) −1.41482 −0.102913
\(190\) −7.68569 −0.557578
\(191\) 1.76856 0.127969 0.0639843 0.997951i \(-0.479619\pi\)
0.0639843 + 0.997951i \(0.479619\pi\)
\(192\) 20.6361 1.48928
\(193\) −7.54046 −0.542774 −0.271387 0.962470i \(-0.587482\pi\)
−0.271387 + 0.962470i \(0.587482\pi\)
\(194\) 0.167795 0.0120470
\(195\) 26.7069 1.91252
\(196\) −0.0156267 −0.00111619
\(197\) −26.0165 −1.85360 −0.926800 0.375555i \(-0.877452\pi\)
−0.926800 + 0.375555i \(0.877452\pi\)
\(198\) 27.0634 1.92331
\(199\) −8.50657 −0.603015 −0.301508 0.953464i \(-0.597490\pi\)
−0.301508 + 0.953464i \(0.597490\pi\)
\(200\) −5.33553 −0.377279
\(201\) 21.9734 1.54989
\(202\) −13.7223 −0.965496
\(203\) 8.99415 0.631265
\(204\) −0.0400016 −0.00280067
\(205\) 7.52135 0.525314
\(206\) 20.9169 1.45735
\(207\) −21.4272 −1.48930
\(208\) −23.4370 −1.62506
\(209\) −16.7011 −1.15524
\(210\) 6.37030 0.439593
\(211\) −14.9389 −1.02844 −0.514219 0.857659i \(-0.671918\pi\)
−0.514219 + 0.857659i \(0.671918\pi\)
\(212\) 0.00863690 0.000593184 0
\(213\) 13.4780 0.923494
\(214\) 4.03076 0.275537
\(215\) 7.17552 0.489367
\(216\) 4.01720 0.273336
\(217\) 2.26465 0.153735
\(218\) −23.6875 −1.60432
\(219\) −3.68158 −0.248778
\(220\) 0.149285 0.0100648
\(221\) 5.90575 0.397264
\(222\) 6.05347 0.406283
\(223\) −1.84521 −0.123564 −0.0617821 0.998090i \(-0.519678\pi\)
−0.0617821 + 0.998090i \(0.519678\pi\)
\(224\) 0.0883958 0.00590619
\(225\) −6.67597 −0.445065
\(226\) 17.6470 1.17386
\(227\) 4.55074 0.302043 0.151022 0.988530i \(-0.451744\pi\)
0.151022 + 0.988530i \(0.451744\pi\)
\(228\) −0.123541 −0.00818168
\(229\) 11.1709 0.738196 0.369098 0.929390i \(-0.379667\pi\)
0.369098 + 0.929390i \(0.379667\pi\)
\(230\) 15.0092 0.989677
\(231\) 13.8428 0.910787
\(232\) −25.5377 −1.67663
\(233\) 6.33159 0.414796 0.207398 0.978257i \(-0.433500\pi\)
0.207398 + 0.978257i \(0.433500\pi\)
\(234\) −29.5560 −1.93214
\(235\) −7.60043 −0.495797
\(236\) 0.0340160 0.00221425
\(237\) −15.1977 −0.987196
\(238\) 1.40868 0.0913110
\(239\) 4.12428 0.266777 0.133389 0.991064i \(-0.457414\pi\)
0.133389 + 0.991064i \(0.457414\pi\)
\(240\) −17.9463 −1.15843
\(241\) 27.0098 1.73985 0.869927 0.493181i \(-0.164166\pi\)
0.869927 + 0.493181i \(0.164166\pi\)
\(242\) −25.6988 −1.65198
\(243\) −22.2564 −1.42775
\(244\) −0.0584824 −0.00374395
\(245\) 1.76660 0.112864
\(246\) −15.3525 −0.978841
\(247\) 18.2393 1.16054
\(248\) −6.43019 −0.408317
\(249\) 23.1034 1.46412
\(250\) 17.1192 1.08271
\(251\) −16.1431 −1.01894 −0.509471 0.860488i \(-0.670159\pi\)
−0.509471 + 0.860488i \(0.670159\pi\)
\(252\) 0.0555169 0.00349724
\(253\) 32.6152 2.05050
\(254\) −0.0769809 −0.00483021
\(255\) 4.52218 0.283190
\(256\) −0.375017 −0.0234386
\(257\) −8.38484 −0.523032 −0.261516 0.965199i \(-0.584222\pi\)
−0.261516 + 0.965199i \(0.584222\pi\)
\(258\) −14.6466 −0.911858
\(259\) 1.67874 0.104312
\(260\) −0.163035 −0.0101110
\(261\) −31.9535 −1.97787
\(262\) −7.93749 −0.490380
\(263\) 23.8115 1.46828 0.734140 0.678998i \(-0.237586\pi\)
0.734140 + 0.678998i \(0.237586\pi\)
\(264\) −39.3047 −2.41904
\(265\) −0.976403 −0.0599800
\(266\) 4.35055 0.266750
\(267\) 36.0924 2.20882
\(268\) −0.134139 −0.00819383
\(269\) −1.11039 −0.0677019 −0.0338509 0.999427i \(-0.510777\pi\)
−0.0338509 + 0.999427i \(0.510777\pi\)
\(270\) −3.52088 −0.214274
\(271\) −8.45905 −0.513851 −0.256925 0.966431i \(-0.582709\pi\)
−0.256925 + 0.966431i \(0.582709\pi\)
\(272\) −3.96850 −0.240626
\(273\) −15.1177 −0.914964
\(274\) −27.0067 −1.63154
\(275\) 10.1617 0.612776
\(276\) 0.241260 0.0145221
\(277\) −23.4030 −1.40615 −0.703074 0.711116i \(-0.748190\pi\)
−0.703074 + 0.711116i \(0.748190\pi\)
\(278\) −30.4406 −1.82571
\(279\) −8.04564 −0.481680
\(280\) −5.01603 −0.299765
\(281\) −17.1406 −1.02252 −0.511261 0.859425i \(-0.670821\pi\)
−0.511261 + 0.859425i \(0.670821\pi\)
\(282\) 15.5139 0.923841
\(283\) 6.54967 0.389338 0.194669 0.980869i \(-0.437637\pi\)
0.194669 + 0.980869i \(0.437637\pi\)
\(284\) −0.0822774 −0.00488227
\(285\) 13.9663 0.827292
\(286\) 44.9883 2.66021
\(287\) −4.25753 −0.251314
\(288\) −0.314044 −0.0185052
\(289\) 1.00000 0.0588235
\(290\) 22.3826 1.31435
\(291\) −0.304915 −0.0178744
\(292\) 0.0224745 0.00131522
\(293\) −1.27837 −0.0746829 −0.0373415 0.999303i \(-0.511889\pi\)
−0.0373415 + 0.999303i \(0.511889\pi\)
\(294\) −3.60597 −0.210304
\(295\) −3.84552 −0.223895
\(296\) −4.76655 −0.277050
\(297\) −7.65092 −0.443951
\(298\) 6.22257 0.360464
\(299\) −35.6191 −2.05990
\(300\) 0.0751680 0.00433982
\(301\) −4.06177 −0.234117
\(302\) 18.3028 1.05321
\(303\) 24.9359 1.43253
\(304\) −12.2563 −0.702947
\(305\) 6.61144 0.378570
\(306\) −5.00461 −0.286095
\(307\) −17.0396 −0.972504 −0.486252 0.873819i \(-0.661636\pi\)
−0.486252 + 0.873819i \(0.661636\pi\)
\(308\) −0.0845043 −0.00481508
\(309\) −38.0098 −2.16230
\(310\) 5.63575 0.320089
\(311\) 21.4961 1.21893 0.609467 0.792811i \(-0.291383\pi\)
0.609467 + 0.792811i \(0.291383\pi\)
\(312\) 42.9247 2.43013
\(313\) −15.6171 −0.882731 −0.441366 0.897327i \(-0.645506\pi\)
−0.441366 + 0.897327i \(0.645506\pi\)
\(314\) 19.4898 1.09987
\(315\) −6.27620 −0.353624
\(316\) 0.0927757 0.00521904
\(317\) 1.63195 0.0916594 0.0458297 0.998949i \(-0.485407\pi\)
0.0458297 + 0.998949i \(0.485407\pi\)
\(318\) 1.99303 0.111763
\(319\) 48.6376 2.72318
\(320\) 14.2415 0.796123
\(321\) −7.32464 −0.408821
\(322\) −8.49609 −0.473469
\(323\) 3.08840 0.171843
\(324\) 0.109956 0.00610866
\(325\) −11.0977 −0.615587
\(326\) −23.3057 −1.29078
\(327\) 43.0445 2.38036
\(328\) 12.0887 0.667487
\(329\) 4.30229 0.237193
\(330\) 34.4487 1.89634
\(331\) −28.8456 −1.58550 −0.792748 0.609550i \(-0.791350\pi\)
−0.792748 + 0.609550i \(0.791350\pi\)
\(332\) −0.141037 −0.00774041
\(333\) −5.96405 −0.326828
\(334\) 9.41471 0.515150
\(335\) 15.1644 0.828520
\(336\) 10.1587 0.554201
\(337\) 3.80896 0.207487 0.103744 0.994604i \(-0.466918\pi\)
0.103744 + 0.994604i \(0.466918\pi\)
\(338\) −30.8189 −1.67633
\(339\) −32.0678 −1.74168
\(340\) −0.0276061 −0.00149715
\(341\) 12.2466 0.663189
\(342\) −15.4562 −0.835777
\(343\) −1.00000 −0.0539949
\(344\) 11.5329 0.621810
\(345\) −27.2744 −1.46841
\(346\) −26.2301 −1.41014
\(347\) 5.04437 0.270796 0.135398 0.990791i \(-0.456769\pi\)
0.135398 + 0.990791i \(0.456769\pi\)
\(348\) 0.359780 0.0192862
\(349\) −24.7187 −1.32316 −0.661581 0.749874i \(-0.730114\pi\)
−0.661581 + 0.749874i \(0.730114\pi\)
\(350\) −2.64708 −0.141493
\(351\) 8.35558 0.445988
\(352\) 0.478018 0.0254784
\(353\) 24.8057 1.32027 0.660136 0.751146i \(-0.270499\pi\)
0.660136 + 0.751146i \(0.270499\pi\)
\(354\) 7.84944 0.417193
\(355\) 9.30148 0.493671
\(356\) −0.220329 −0.0116774
\(357\) −2.55982 −0.135480
\(358\) 12.2560 0.647751
\(359\) 3.95420 0.208695 0.104347 0.994541i \(-0.466725\pi\)
0.104347 + 0.994541i \(0.466725\pi\)
\(360\) 17.8205 0.939220
\(361\) −9.46181 −0.497990
\(362\) −4.22055 −0.221827
\(363\) 46.6994 2.45108
\(364\) 0.0922873 0.00483717
\(365\) −2.54075 −0.132989
\(366\) −13.4952 −0.705407
\(367\) 14.1828 0.740338 0.370169 0.928964i \(-0.379300\pi\)
0.370169 + 0.928964i \(0.379300\pi\)
\(368\) 23.9350 1.24770
\(369\) 15.1257 0.787415
\(370\) 4.17765 0.217186
\(371\) 0.552702 0.0286949
\(372\) 0.0905897 0.00469686
\(373\) −6.55256 −0.339279 −0.169639 0.985506i \(-0.554260\pi\)
−0.169639 + 0.985506i \(0.554260\pi\)
\(374\) 7.61770 0.393902
\(375\) −31.1087 −1.60645
\(376\) −12.2158 −0.629982
\(377\) −53.1172 −2.73567
\(378\) 1.99303 0.102510
\(379\) 29.6732 1.52421 0.762106 0.647453i \(-0.224166\pi\)
0.762106 + 0.647453i \(0.224166\pi\)
\(380\) −0.0852585 −0.00437367
\(381\) 0.139888 0.00716670
\(382\) −2.49133 −0.127468
\(383\) 35.1010 1.79358 0.896788 0.442460i \(-0.145894\pi\)
0.896788 + 0.442460i \(0.145894\pi\)
\(384\) −28.6171 −1.46036
\(385\) 9.55324 0.486878
\(386\) 10.6221 0.540650
\(387\) 14.4303 0.733531
\(388\) 0.00186138 9.44973e−5 0
\(389\) −21.6738 −1.09891 −0.549453 0.835524i \(-0.685164\pi\)
−0.549453 + 0.835524i \(0.685164\pi\)
\(390\) −37.6214 −1.90503
\(391\) −6.03125 −0.305014
\(392\) 2.83937 0.143410
\(393\) 14.4239 0.727588
\(394\) 36.6489 1.84634
\(395\) −10.4883 −0.527724
\(396\) 0.300219 0.0150866
\(397\) −5.05272 −0.253589 −0.126794 0.991929i \(-0.540469\pi\)
−0.126794 + 0.991929i \(0.540469\pi\)
\(398\) 11.9830 0.600655
\(399\) −7.90575 −0.395783
\(400\) 7.45732 0.372866
\(401\) 12.5084 0.624639 0.312319 0.949977i \(-0.398894\pi\)
0.312319 + 0.949977i \(0.398894\pi\)
\(402\) −30.9535 −1.54382
\(403\) −13.3745 −0.666230
\(404\) −0.152223 −0.00757339
\(405\) −12.4305 −0.617678
\(406\) −12.6699 −0.628794
\(407\) 9.07810 0.449985
\(408\) 7.26829 0.359834
\(409\) 35.1679 1.73894 0.869471 0.493985i \(-0.164460\pi\)
0.869471 + 0.493985i \(0.164460\pi\)
\(410\) −10.5952 −0.523258
\(411\) 49.0761 2.42075
\(412\) 0.232034 0.0114315
\(413\) 2.17679 0.107113
\(414\) 30.1841 1.48347
\(415\) 15.9443 0.782673
\(416\) −0.522044 −0.0255953
\(417\) 55.3162 2.70884
\(418\) 23.5265 1.15072
\(419\) −7.43256 −0.363105 −0.181552 0.983381i \(-0.558112\pi\)
−0.181552 + 0.983381i \(0.558112\pi\)
\(420\) 0.0706667 0.00344818
\(421\) 17.3069 0.843488 0.421744 0.906715i \(-0.361418\pi\)
0.421744 + 0.906715i \(0.361418\pi\)
\(422\) 21.0441 1.02441
\(423\) −15.2848 −0.743171
\(424\) −1.56932 −0.0762131
\(425\) −1.87913 −0.0911510
\(426\) −18.9861 −0.919879
\(427\) −3.74247 −0.181111
\(428\) 0.0447139 0.00216133
\(429\) −81.7519 −3.94702
\(430\) −10.1080 −0.487451
\(431\) 3.64198 0.175428 0.0877139 0.996146i \(-0.472044\pi\)
0.0877139 + 0.996146i \(0.472044\pi\)
\(432\) −5.61472 −0.270138
\(433\) −7.23197 −0.347546 −0.173773 0.984786i \(-0.555596\pi\)
−0.173773 + 0.984786i \(0.555596\pi\)
\(434\) −3.19017 −0.153133
\(435\) −40.6732 −1.95013
\(436\) −0.262769 −0.0125843
\(437\) −18.6269 −0.891045
\(438\) 5.18615 0.247804
\(439\) −33.7913 −1.61277 −0.806386 0.591390i \(-0.798579\pi\)
−0.806386 + 0.591390i \(0.798579\pi\)
\(440\) −27.1252 −1.29314
\(441\) 3.55270 0.169176
\(442\) −8.31930 −0.395709
\(443\) −12.2276 −0.580950 −0.290475 0.956883i \(-0.593813\pi\)
−0.290475 + 0.956883i \(0.593813\pi\)
\(444\) 0.0671521 0.00318690
\(445\) 24.9083 1.18076
\(446\) 2.59930 0.123080
\(447\) −11.3076 −0.534829
\(448\) −8.06153 −0.380871
\(449\) −31.8397 −1.50261 −0.751305 0.659955i \(-0.770575\pi\)
−0.751305 + 0.659955i \(0.770575\pi\)
\(450\) 9.40430 0.443323
\(451\) −23.0234 −1.08413
\(452\) 0.195761 0.00920781
\(453\) −33.2596 −1.56267
\(454\) −6.41053 −0.300861
\(455\) −10.4331 −0.489111
\(456\) 22.4473 1.05119
\(457\) −4.37698 −0.204746 −0.102373 0.994746i \(-0.532644\pi\)
−0.102373 + 0.994746i \(0.532644\pi\)
\(458\) −15.7363 −0.735307
\(459\) 1.41482 0.0660381
\(460\) 0.166499 0.00776307
\(461\) 14.1763 0.660256 0.330128 0.943936i \(-0.392908\pi\)
0.330128 + 0.943936i \(0.392908\pi\)
\(462\) −19.5000 −0.907221
\(463\) 0.854854 0.0397284 0.0198642 0.999803i \(-0.493677\pi\)
0.0198642 + 0.999803i \(0.493677\pi\)
\(464\) 35.6933 1.65702
\(465\) −10.2412 −0.474924
\(466\) −8.91916 −0.413172
\(467\) 17.4052 0.805419 0.402709 0.915328i \(-0.368069\pi\)
0.402709 + 0.915328i \(0.368069\pi\)
\(468\) −0.327869 −0.0151558
\(469\) −8.58396 −0.396370
\(470\) 10.7066 0.493857
\(471\) −35.4164 −1.63190
\(472\) −6.18071 −0.284490
\(473\) −21.9648 −1.00994
\(474\) 21.4087 0.983332
\(475\) −5.80349 −0.266282
\(476\) 0.0156267 0.000716248 0
\(477\) −1.96359 −0.0899064
\(478\) −5.80978 −0.265733
\(479\) 7.22937 0.330318 0.165159 0.986267i \(-0.447186\pi\)
0.165159 + 0.986267i \(0.447186\pi\)
\(480\) −0.399742 −0.0182457
\(481\) −9.91421 −0.452049
\(482\) −38.0481 −1.73304
\(483\) 15.4390 0.702497
\(484\) −0.285080 −0.0129582
\(485\) −0.210429 −0.00955511
\(486\) 31.3522 1.42216
\(487\) −8.08148 −0.366207 −0.183103 0.983094i \(-0.558614\pi\)
−0.183103 + 0.983094i \(0.558614\pi\)
\(488\) 10.6262 0.481028
\(489\) 42.3506 1.91516
\(490\) −2.48857 −0.112422
\(491\) −20.5372 −0.926829 −0.463415 0.886142i \(-0.653376\pi\)
−0.463415 + 0.886142i \(0.653376\pi\)
\(492\) −0.170308 −0.00767807
\(493\) −8.99415 −0.405076
\(494\) −25.6933 −1.15600
\(495\) −33.9398 −1.52548
\(496\) 8.98728 0.403541
\(497\) −5.26519 −0.236176
\(498\) −32.5453 −1.45839
\(499\) 25.9293 1.16075 0.580376 0.814348i \(-0.302905\pi\)
0.580376 + 0.814348i \(0.302905\pi\)
\(500\) 0.189906 0.00849284
\(501\) −17.1082 −0.764340
\(502\) 22.7404 1.01495
\(503\) 29.5089 1.31574 0.657869 0.753133i \(-0.271458\pi\)
0.657869 + 0.753133i \(0.271458\pi\)
\(504\) −10.0874 −0.449330
\(505\) 17.2089 0.765785
\(506\) −45.9443 −2.04247
\(507\) 56.0036 2.48721
\(508\) −0.000853961 0 −3.78884e−5 0
\(509\) −10.5926 −0.469509 −0.234755 0.972055i \(-0.575429\pi\)
−0.234755 + 0.972055i \(0.575429\pi\)
\(510\) −6.37030 −0.282082
\(511\) 1.43821 0.0636229
\(512\) 22.8869 1.01147
\(513\) 4.36952 0.192919
\(514\) 11.8115 0.520984
\(515\) −26.2315 −1.15590
\(516\) −0.162477 −0.00715266
\(517\) 23.2655 1.02322
\(518\) −2.36480 −0.103903
\(519\) 47.6649 2.09226
\(520\) 29.6234 1.29907
\(521\) 7.62040 0.333856 0.166928 0.985969i \(-0.446615\pi\)
0.166928 + 0.985969i \(0.446615\pi\)
\(522\) 45.0122 1.97013
\(523\) −16.0195 −0.700486 −0.350243 0.936659i \(-0.613901\pi\)
−0.350243 + 0.936659i \(0.613901\pi\)
\(524\) −0.0880518 −0.00384656
\(525\) 4.81023 0.209936
\(526\) −33.5427 −1.46253
\(527\) −2.26465 −0.0986499
\(528\) 54.9350 2.39074
\(529\) 13.3760 0.581566
\(530\) 1.37544 0.0597452
\(531\) −7.73349 −0.335605
\(532\) 0.0482614 0.00209240
\(533\) 25.1439 1.08910
\(534\) −50.8425 −2.20017
\(535\) −5.05492 −0.218543
\(536\) 24.3730 1.05275
\(537\) −22.2714 −0.961083
\(538\) 1.56419 0.0674369
\(539\) −5.40770 −0.232926
\(540\) −0.0390576 −0.00168077
\(541\) −13.5513 −0.582615 −0.291307 0.956630i \(-0.594090\pi\)
−0.291307 + 0.956630i \(0.594090\pi\)
\(542\) 11.9161 0.511839
\(543\) 7.66951 0.329130
\(544\) −0.0883958 −0.00378994
\(545\) 29.7061 1.27247
\(546\) 21.2960 0.911383
\(547\) −10.6651 −0.456008 −0.228004 0.973660i \(-0.573220\pi\)
−0.228004 + 0.973660i \(0.573220\pi\)
\(548\) −0.299590 −0.0127978
\(549\) 13.2959 0.567454
\(550\) −14.3146 −0.610378
\(551\) −27.7775 −1.18336
\(552\) −43.8369 −1.86582
\(553\) 5.93700 0.252467
\(554\) 32.9673 1.40064
\(555\) −7.59156 −0.322244
\(556\) −0.337682 −0.0143209
\(557\) 14.0285 0.594406 0.297203 0.954814i \(-0.403946\pi\)
0.297203 + 0.954814i \(0.403946\pi\)
\(558\) 11.3337 0.479794
\(559\) 23.9878 1.01458
\(560\) 7.01075 0.296258
\(561\) −13.8428 −0.584442
\(562\) 24.1456 1.01852
\(563\) −15.5220 −0.654174 −0.327087 0.944994i \(-0.606067\pi\)
−0.327087 + 0.944994i \(0.606067\pi\)
\(564\) 0.172098 0.00724665
\(565\) −22.1308 −0.931050
\(566\) −9.22638 −0.387814
\(567\) 7.03641 0.295502
\(568\) 14.9498 0.627280
\(569\) 31.4968 1.32041 0.660207 0.751084i \(-0.270469\pi\)
0.660207 + 0.751084i \(0.270469\pi\)
\(570\) −19.6740 −0.824054
\(571\) −23.3199 −0.975908 −0.487954 0.872869i \(-0.662257\pi\)
−0.487954 + 0.872869i \(0.662257\pi\)
\(572\) 0.499062 0.0208668
\(573\) 4.52721 0.189127
\(574\) 5.99749 0.250330
\(575\) 11.3335 0.472639
\(576\) 28.6402 1.19334
\(577\) 28.7655 1.19752 0.598761 0.800927i \(-0.295660\pi\)
0.598761 + 0.800927i \(0.295660\pi\)
\(578\) −1.40868 −0.0585933
\(579\) −19.3023 −0.802175
\(580\) 0.248293 0.0103098
\(581\) −9.02540 −0.374437
\(582\) 0.429527 0.0178045
\(583\) 2.98884 0.123785
\(584\) −4.08362 −0.168981
\(585\) 37.0657 1.53248
\(586\) 1.80081 0.0743906
\(587\) −6.73037 −0.277792 −0.138896 0.990307i \(-0.544355\pi\)
−0.138896 + 0.990307i \(0.544355\pi\)
\(588\) −0.0400016 −0.00164964
\(589\) −6.99415 −0.288189
\(590\) 5.41710 0.223018
\(591\) −66.5977 −2.73946
\(592\) 6.66207 0.273810
\(593\) −18.4424 −0.757337 −0.378668 0.925532i \(-0.623618\pi\)
−0.378668 + 0.925532i \(0.623618\pi\)
\(594\) 10.7777 0.442214
\(595\) −1.76660 −0.0724235
\(596\) 0.0690280 0.00282750
\(597\) −21.7753 −0.891205
\(598\) 50.1758 2.05184
\(599\) 31.5457 1.28892 0.644462 0.764636i \(-0.277081\pi\)
0.644462 + 0.764636i \(0.277081\pi\)
\(600\) −13.6580 −0.557587
\(601\) 42.7597 1.74420 0.872102 0.489324i \(-0.162756\pi\)
0.872102 + 0.489324i \(0.162756\pi\)
\(602\) 5.72173 0.233200
\(603\) 30.4962 1.24190
\(604\) 0.203036 0.00826143
\(605\) 32.2284 1.31027
\(606\) −35.1266 −1.42692
\(607\) −8.13465 −0.330175 −0.165088 0.986279i \(-0.552791\pi\)
−0.165088 + 0.986279i \(0.552791\pi\)
\(608\) −0.273001 −0.0110717
\(609\) 23.0234 0.932957
\(610\) −9.31339 −0.377088
\(611\) −25.4083 −1.02791
\(612\) −0.0555169 −0.00224414
\(613\) −36.1718 −1.46096 −0.730482 0.682932i \(-0.760705\pi\)
−0.730482 + 0.682932i \(0.760705\pi\)
\(614\) 24.0034 0.968697
\(615\) 19.2533 0.776370
\(616\) 15.3544 0.618648
\(617\) −38.7539 −1.56017 −0.780086 0.625672i \(-0.784825\pi\)
−0.780086 + 0.625672i \(0.784825\pi\)
\(618\) 53.5436 2.15384
\(619\) 25.7713 1.03584 0.517918 0.855430i \(-0.326707\pi\)
0.517918 + 0.855430i \(0.326707\pi\)
\(620\) 0.0625182 0.00251079
\(621\) −8.53314 −0.342423
\(622\) −30.2811 −1.21416
\(623\) −14.0996 −0.564887
\(624\) −59.9946 −2.40171
\(625\) −12.0733 −0.482930
\(626\) 21.9995 0.879276
\(627\) −42.7519 −1.70735
\(628\) 0.216203 0.00862743
\(629\) −1.67874 −0.0669356
\(630\) 8.84115 0.352240
\(631\) −34.2365 −1.36293 −0.681467 0.731849i \(-0.738658\pi\)
−0.681467 + 0.731849i \(0.738658\pi\)
\(632\) −16.8573 −0.670549
\(633\) −38.2411 −1.51995
\(634\) −2.29889 −0.0913006
\(635\) 0.0965405 0.00383109
\(636\) 0.0221089 0.000876676 0
\(637\) 5.90575 0.233994
\(638\) −68.5147 −2.71252
\(639\) 18.7056 0.739984
\(640\) −19.7493 −0.780662
\(641\) −11.8185 −0.466802 −0.233401 0.972381i \(-0.574985\pi\)
−0.233401 + 0.972381i \(0.574985\pi\)
\(642\) 10.3181 0.407221
\(643\) −35.9141 −1.41631 −0.708156 0.706056i \(-0.750473\pi\)
−0.708156 + 0.706056i \(0.750473\pi\)
\(644\) −0.0942485 −0.00371391
\(645\) 18.3681 0.723242
\(646\) −4.35055 −0.171170
\(647\) −0.160585 −0.00631325 −0.00315663 0.999995i \(-0.501005\pi\)
−0.00315663 + 0.999995i \(0.501005\pi\)
\(648\) −19.9790 −0.784848
\(649\) 11.7714 0.462069
\(650\) 15.6330 0.613177
\(651\) 5.79712 0.227207
\(652\) −0.258533 −0.0101249
\(653\) −22.6671 −0.887032 −0.443516 0.896266i \(-0.646269\pi\)
−0.443516 + 0.896266i \(0.646269\pi\)
\(654\) −60.6358 −2.37105
\(655\) 9.95428 0.388946
\(656\) −16.8960 −0.659679
\(657\) −5.10955 −0.199342
\(658\) −6.06055 −0.236265
\(659\) 11.8789 0.462737 0.231369 0.972866i \(-0.425680\pi\)
0.231369 + 0.972866i \(0.425680\pi\)
\(660\) 0.382144 0.0148749
\(661\) 27.1431 1.05574 0.527872 0.849324i \(-0.322990\pi\)
0.527872 + 0.849324i \(0.322990\pi\)
\(662\) 40.6341 1.57929
\(663\) 15.1177 0.587122
\(664\) 25.6264 0.994499
\(665\) −5.45596 −0.211573
\(666\) 8.40143 0.325549
\(667\) 54.2460 2.10041
\(668\) 0.104439 0.00404086
\(669\) −4.72340 −0.182617
\(670\) −21.3618 −0.825277
\(671\) −20.2381 −0.781285
\(672\) 0.226278 0.00872885
\(673\) 20.7262 0.798935 0.399468 0.916747i \(-0.369195\pi\)
0.399468 + 0.916747i \(0.369195\pi\)
\(674\) −5.36560 −0.206675
\(675\) −2.65863 −0.102331
\(676\) −0.341879 −0.0131492
\(677\) −13.4864 −0.518325 −0.259162 0.965834i \(-0.583446\pi\)
−0.259162 + 0.965834i \(0.583446\pi\)
\(678\) 45.1732 1.73487
\(679\) 0.119116 0.00457123
\(680\) 5.01603 0.192356
\(681\) 11.6491 0.446394
\(682\) −17.2515 −0.660593
\(683\) 21.3520 0.817010 0.408505 0.912756i \(-0.366050\pi\)
0.408505 + 0.912756i \(0.366050\pi\)
\(684\) −0.171458 −0.00655587
\(685\) 33.8687 1.29406
\(686\) 1.40868 0.0537836
\(687\) 28.5956 1.09099
\(688\) −16.1191 −0.614537
\(689\) −3.26412 −0.124353
\(690\) 38.4209 1.46266
\(691\) 8.67019 0.329829 0.164915 0.986308i \(-0.447265\pi\)
0.164915 + 0.986308i \(0.447265\pi\)
\(692\) −0.290975 −0.0110612
\(693\) 19.2119 0.729801
\(694\) −7.10589 −0.269736
\(695\) 38.1751 1.44806
\(696\) −65.3720 −2.47792
\(697\) 4.25753 0.161265
\(698\) 34.8207 1.31798
\(699\) 16.2077 0.613033
\(700\) −0.0293645 −0.00110987
\(701\) 48.2784 1.82345 0.911725 0.410801i \(-0.134751\pi\)
0.911725 + 0.410801i \(0.134751\pi\)
\(702\) −11.7703 −0.444242
\(703\) −5.18461 −0.195541
\(704\) −43.5943 −1.64302
\(705\) −19.4558 −0.732747
\(706\) −34.9432 −1.31510
\(707\) −9.74124 −0.366357
\(708\) 0.0870751 0.00327248
\(709\) 20.1791 0.757841 0.378920 0.925429i \(-0.376295\pi\)
0.378920 + 0.925429i \(0.376295\pi\)
\(710\) −13.1028 −0.491739
\(711\) −21.0924 −0.791027
\(712\) 40.0338 1.50033
\(713\) 13.6587 0.511522
\(714\) 3.60597 0.134950
\(715\) −56.4190 −2.10995
\(716\) 0.135958 0.00508099
\(717\) 10.5574 0.394274
\(718\) −5.57020 −0.207878
\(719\) −19.4245 −0.724413 −0.362207 0.932098i \(-0.617977\pi\)
−0.362207 + 0.932098i \(0.617977\pi\)
\(720\) −24.9071 −0.928234
\(721\) 14.8486 0.552991
\(722\) 13.3286 0.496041
\(723\) 69.1403 2.57136
\(724\) −0.0468192 −0.00174002
\(725\) 16.9011 0.627692
\(726\) −65.7844 −2.44149
\(727\) −5.10313 −0.189265 −0.0946323 0.995512i \(-0.530168\pi\)
−0.0946323 + 0.995512i \(0.530168\pi\)
\(728\) −16.7686 −0.621486
\(729\) −35.8634 −1.32827
\(730\) 3.57910 0.132468
\(731\) 4.06177 0.150230
\(732\) −0.149705 −0.00553324
\(733\) 50.6264 1.86993 0.934965 0.354741i \(-0.115431\pi\)
0.934965 + 0.354741i \(0.115431\pi\)
\(734\) −19.9790 −0.737440
\(735\) 4.52218 0.166803
\(736\) 0.533138 0.0196517
\(737\) −46.4194 −1.70988
\(738\) −21.3073 −0.784332
\(739\) −41.2855 −1.51871 −0.759355 0.650676i \(-0.774486\pi\)
−0.759355 + 0.650676i \(0.774486\pi\)
\(740\) 0.0463434 0.00170362
\(741\) 46.6894 1.71518
\(742\) −0.778579 −0.0285825
\(743\) −0.115352 −0.00423186 −0.00211593 0.999998i \(-0.500674\pi\)
−0.00211593 + 0.999998i \(0.500674\pi\)
\(744\) −16.4602 −0.603458
\(745\) −7.80363 −0.285903
\(746\) 9.23045 0.337951
\(747\) 32.0646 1.17318
\(748\) 0.0845043 0.00308978
\(749\) 2.86138 0.104553
\(750\) 43.8221 1.60016
\(751\) −52.3422 −1.90999 −0.954997 0.296616i \(-0.904142\pi\)
−0.954997 + 0.296616i \(0.904142\pi\)
\(752\) 17.0737 0.622612
\(753\) −41.3235 −1.50591
\(754\) 74.8250 2.72497
\(755\) −22.9533 −0.835356
\(756\) 0.0221089 0.000804094 0
\(757\) −19.1277 −0.695207 −0.347604 0.937642i \(-0.613005\pi\)
−0.347604 + 0.937642i \(0.613005\pi\)
\(758\) −41.8000 −1.51825
\(759\) 83.4892 3.03046
\(760\) 15.4915 0.561935
\(761\) 2.04547 0.0741482 0.0370741 0.999313i \(-0.488196\pi\)
0.0370741 + 0.999313i \(0.488196\pi\)
\(762\) −0.197058 −0.00713865
\(763\) −16.8154 −0.608758
\(764\) −0.0276367 −0.000999862 0
\(765\) 6.27620 0.226917
\(766\) −49.4460 −1.78656
\(767\) −12.8556 −0.464188
\(768\) −0.959979 −0.0346402
\(769\) −45.2661 −1.63234 −0.816168 0.577814i \(-0.803906\pi\)
−0.816168 + 0.577814i \(0.803906\pi\)
\(770\) −13.4574 −0.484972
\(771\) −21.4637 −0.772997
\(772\) 0.117832 0.00424088
\(773\) −2.73655 −0.0984269 −0.0492135 0.998788i \(-0.515671\pi\)
−0.0492135 + 0.998788i \(0.515671\pi\)
\(774\) −20.3276 −0.730660
\(775\) 4.25557 0.152865
\(776\) −0.338213 −0.0121411
\(777\) 4.29727 0.154164
\(778\) 30.5314 1.09461
\(779\) 13.1489 0.471110
\(780\) −0.417340 −0.0149432
\(781\) −28.4725 −1.01883
\(782\) 8.49609 0.303820
\(783\) −12.7251 −0.454758
\(784\) −3.96850 −0.141732
\(785\) −24.4418 −0.872364
\(786\) −20.3186 −0.724740
\(787\) −22.9559 −0.818290 −0.409145 0.912469i \(-0.634173\pi\)
−0.409145 + 0.912469i \(0.634173\pi\)
\(788\) 0.406552 0.0144828
\(789\) 60.9533 2.16999
\(790\) 14.7747 0.525658
\(791\) 12.5273 0.445421
\(792\) −54.5498 −1.93834
\(793\) 22.1021 0.784868
\(794\) 7.11765 0.252596
\(795\) −2.49942 −0.0886453
\(796\) 0.132929 0.00471156
\(797\) −23.9778 −0.849337 −0.424669 0.905349i \(-0.639609\pi\)
−0.424669 + 0.905349i \(0.639609\pi\)
\(798\) 11.1367 0.394233
\(799\) −4.30229 −0.152204
\(800\) 0.166107 0.00587277
\(801\) 50.0915 1.76990
\(802\) −17.6203 −0.622194
\(803\) 7.77743 0.274459
\(804\) −0.343372 −0.0121098
\(805\) 10.6548 0.375533
\(806\) 18.8403 0.663623
\(807\) −2.84241 −0.100058
\(808\) 27.6590 0.973040
\(809\) 0.547871 0.0192621 0.00963106 0.999954i \(-0.496934\pi\)
0.00963106 + 0.999954i \(0.496934\pi\)
\(810\) 17.5106 0.615260
\(811\) 37.1882 1.30585 0.652927 0.757421i \(-0.273541\pi\)
0.652927 + 0.757421i \(0.273541\pi\)
\(812\) −0.140549 −0.00493229
\(813\) −21.6537 −0.759428
\(814\) −12.7881 −0.448223
\(815\) 29.2272 1.02379
\(816\) −10.1587 −0.355625
\(817\) 12.5444 0.438871
\(818\) −49.5403 −1.73213
\(819\) −20.9814 −0.733149
\(820\) −0.117534 −0.00410446
\(821\) −7.27943 −0.254054 −0.127027 0.991899i \(-0.540543\pi\)
−0.127027 + 0.991899i \(0.540543\pi\)
\(822\) −69.1325 −2.41127
\(823\) 14.6436 0.510444 0.255222 0.966883i \(-0.417852\pi\)
0.255222 + 0.966883i \(0.417852\pi\)
\(824\) −42.1607 −1.46874
\(825\) 26.0123 0.905631
\(826\) −3.06640 −0.106694
\(827\) −12.0435 −0.418795 −0.209397 0.977831i \(-0.567150\pi\)
−0.209397 + 0.977831i \(0.567150\pi\)
\(828\) 0.334837 0.0116364
\(829\) −26.2739 −0.912529 −0.456264 0.889844i \(-0.650813\pi\)
−0.456264 + 0.889844i \(0.650813\pi\)
\(830\) −22.4603 −0.779610
\(831\) −59.9075 −2.07817
\(832\) 47.6094 1.65056
\(833\) 1.00000 0.0346479
\(834\) −77.9227 −2.69824
\(835\) −11.8068 −0.408592
\(836\) 0.260983 0.00902628
\(837\) −3.20408 −0.110749
\(838\) 10.4701 0.361683
\(839\) 45.9248 1.58550 0.792750 0.609547i \(-0.208648\pi\)
0.792750 + 0.609547i \(0.208648\pi\)
\(840\) −12.8402 −0.443027
\(841\) 51.8947 1.78947
\(842\) −24.3799 −0.840186
\(843\) −43.8769 −1.51120
\(844\) 0.233446 0.00803554
\(845\) 38.6495 1.32958
\(846\) 21.5313 0.740262
\(847\) −18.2432 −0.626843
\(848\) 2.19340 0.0753216
\(849\) 16.7660 0.575408
\(850\) 2.64708 0.0907942
\(851\) 10.1249 0.347077
\(852\) −0.210616 −0.00721557
\(853\) −10.4825 −0.358915 −0.179457 0.983766i \(-0.557434\pi\)
−0.179457 + 0.983766i \(0.557434\pi\)
\(854\) 5.27193 0.180402
\(855\) 19.3834 0.662898
\(856\) −8.12452 −0.277690
\(857\) −41.9217 −1.43202 −0.716009 0.698091i \(-0.754033\pi\)
−0.716009 + 0.698091i \(0.754033\pi\)
\(858\) 115.162 3.93157
\(859\) 10.5131 0.358702 0.179351 0.983785i \(-0.442600\pi\)
0.179351 + 0.983785i \(0.442600\pi\)
\(860\) −0.112130 −0.00382359
\(861\) −10.8985 −0.371421
\(862\) −5.13037 −0.174741
\(863\) −18.8193 −0.640617 −0.320309 0.947313i \(-0.603787\pi\)
−0.320309 + 0.947313i \(0.603787\pi\)
\(864\) −0.125064 −0.00425477
\(865\) 32.8947 1.11845
\(866\) 10.1875 0.346186
\(867\) 2.55982 0.0869362
\(868\) −0.0353890 −0.00120118
\(869\) 32.1055 1.08911
\(870\) 57.2954 1.94250
\(871\) 50.6947 1.71772
\(872\) 47.7451 1.61685
\(873\) −0.423182 −0.0143225
\(874\) 26.2393 0.887558
\(875\) 12.1527 0.410835
\(876\) 0.0575308 0.00194379
\(877\) −52.4834 −1.77224 −0.886119 0.463457i \(-0.846609\pi\)
−0.886119 + 0.463457i \(0.846609\pi\)
\(878\) 47.6011 1.60646
\(879\) −3.27239 −0.110375
\(880\) 37.9120 1.27801
\(881\) −1.43758 −0.0484335 −0.0242167 0.999707i \(-0.507709\pi\)
−0.0242167 + 0.999707i \(0.507709\pi\)
\(882\) −5.00461 −0.168514
\(883\) −3.17781 −0.106942 −0.0534710 0.998569i \(-0.517028\pi\)
−0.0534710 + 0.998569i \(0.517028\pi\)
\(884\) −0.0922873 −0.00310396
\(885\) −9.84385 −0.330898
\(886\) 17.2247 0.578676
\(887\) −3.77435 −0.126730 −0.0633652 0.997990i \(-0.520183\pi\)
−0.0633652 + 0.997990i \(0.520183\pi\)
\(888\) −12.2015 −0.409457
\(889\) −0.0546476 −0.00183282
\(890\) −35.0877 −1.17614
\(891\) 38.0508 1.27475
\(892\) 0.0288344 0.000965449 0
\(893\) −13.2872 −0.444639
\(894\) 15.9287 0.532735
\(895\) −15.3701 −0.513765
\(896\) 11.1793 0.373474
\(897\) −91.1786 −3.04437
\(898\) 44.8519 1.49673
\(899\) 20.3686 0.679332
\(900\) 0.104323 0.00347744
\(901\) −0.552702 −0.0184132
\(902\) 32.4326 1.07989
\(903\) −10.3974 −0.346004
\(904\) −35.5698 −1.18303
\(905\) 5.29292 0.175943
\(906\) 46.8521 1.55656
\(907\) −48.6919 −1.61679 −0.808395 0.588641i \(-0.799663\pi\)
−0.808395 + 0.588641i \(0.799663\pi\)
\(908\) −0.0711130 −0.00235997
\(909\) 34.6077 1.14787
\(910\) 14.6969 0.487197
\(911\) 52.2254 1.73030 0.865152 0.501510i \(-0.167222\pi\)
0.865152 + 0.501510i \(0.167222\pi\)
\(912\) −31.3740 −1.03890
\(913\) −48.8066 −1.61526
\(914\) 6.16575 0.203945
\(915\) 16.9241 0.559495
\(916\) −0.174565 −0.00576778
\(917\) −5.63471 −0.186075
\(918\) −1.99303 −0.0657796
\(919\) 56.9695 1.87925 0.939625 0.342205i \(-0.111174\pi\)
0.939625 + 0.342205i \(0.111174\pi\)
\(920\) −30.2529 −0.997410
\(921\) −43.6185 −1.43728
\(922\) −19.9698 −0.657672
\(923\) 31.0949 1.02350
\(924\) −0.216316 −0.00711628
\(925\) 3.15456 0.103721
\(926\) −1.20421 −0.0395729
\(927\) −52.7527 −1.73263
\(928\) 0.795045 0.0260986
\(929\) −11.1387 −0.365450 −0.182725 0.983164i \(-0.558492\pi\)
−0.182725 + 0.983164i \(0.558492\pi\)
\(930\) 14.4265 0.473064
\(931\) 3.08840 0.101218
\(932\) −0.0989417 −0.00324094
\(933\) 55.0263 1.80148
\(934\) −24.5184 −0.802266
\(935\) −9.55324 −0.312424
\(936\) 59.5739 1.94723
\(937\) 18.6644 0.609740 0.304870 0.952394i \(-0.401387\pi\)
0.304870 + 0.952394i \(0.401387\pi\)
\(938\) 12.0920 0.394819
\(939\) −39.9771 −1.30460
\(940\) 0.118769 0.00387383
\(941\) −43.2984 −1.41149 −0.705743 0.708467i \(-0.749387\pi\)
−0.705743 + 0.708467i \(0.749387\pi\)
\(942\) 49.8903 1.62552
\(943\) −25.6782 −0.836199
\(944\) 8.63860 0.281163
\(945\) −2.49942 −0.0813061
\(946\) 30.9414 1.00599
\(947\) 18.7279 0.608576 0.304288 0.952580i \(-0.401582\pi\)
0.304288 + 0.952580i \(0.401582\pi\)
\(948\) 0.237489 0.00771330
\(949\) −8.49374 −0.275718
\(950\) 8.17524 0.265240
\(951\) 4.17750 0.135465
\(952\) −2.83937 −0.0920245
\(953\) −22.3380 −0.723598 −0.361799 0.932256i \(-0.617837\pi\)
−0.361799 + 0.932256i \(0.617837\pi\)
\(954\) 2.76606 0.0895545
\(955\) 3.12434 0.101101
\(956\) −0.0644488 −0.00208442
\(957\) 124.504 4.02464
\(958\) −10.1839 −0.329025
\(959\) −19.1717 −0.619086
\(960\) 36.4557 1.17660
\(961\) −25.8713 −0.834559
\(962\) 13.9659 0.450279
\(963\) −10.1656 −0.327583
\(964\) −0.422073 −0.0135941
\(965\) −13.3210 −0.428817
\(966\) −21.7485 −0.699747
\(967\) −40.0648 −1.28840 −0.644199 0.764858i \(-0.722809\pi\)
−0.644199 + 0.764858i \(0.722809\pi\)
\(968\) 51.7991 1.66489
\(969\) 7.90575 0.253969
\(970\) 0.296427 0.00951771
\(971\) −7.71048 −0.247441 −0.123721 0.992317i \(-0.539483\pi\)
−0.123721 + 0.992317i \(0.539483\pi\)
\(972\) 0.347794 0.0111555
\(973\) −21.6094 −0.692764
\(974\) 11.3842 0.364773
\(975\) −28.4080 −0.909785
\(976\) −14.8520 −0.475401
\(977\) 14.3134 0.457926 0.228963 0.973435i \(-0.426466\pi\)
0.228963 + 0.973435i \(0.426466\pi\)
\(978\) −59.6584 −1.90767
\(979\) −76.2461 −2.43684
\(980\) −0.0276061 −0.000881844 0
\(981\) 59.7401 1.90735
\(982\) 28.9303 0.923201
\(983\) −20.5625 −0.655843 −0.327922 0.944705i \(-0.606348\pi\)
−0.327922 + 0.944705i \(0.606348\pi\)
\(984\) 30.9450 0.986489
\(985\) −45.9608 −1.46443
\(986\) 12.6699 0.403490
\(987\) 11.0131 0.350551
\(988\) −0.285020 −0.00906768
\(989\) −24.4976 −0.778977
\(990\) 47.8102 1.51951
\(991\) 17.4906 0.555606 0.277803 0.960638i \(-0.410394\pi\)
0.277803 + 0.960638i \(0.410394\pi\)
\(992\) 0.200186 0.00635591
\(993\) −73.8396 −2.34323
\(994\) 7.41695 0.235251
\(995\) −15.0277 −0.476410
\(996\) −0.361030 −0.0114397
\(997\) −51.7506 −1.63896 −0.819479 0.573109i \(-0.805737\pi\)
−0.819479 + 0.573109i \(0.805737\pi\)
\(998\) −36.5260 −1.15621
\(999\) −2.37511 −0.0751452
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 119.2.a.b.1.2 5
3.2 odd 2 1071.2.a.m.1.4 5
4.3 odd 2 1904.2.a.t.1.1 5
5.4 even 2 2975.2.a.m.1.4 5
7.2 even 3 833.2.e.i.18.4 10
7.3 odd 6 833.2.e.h.324.4 10
7.4 even 3 833.2.e.i.324.4 10
7.5 odd 6 833.2.e.h.18.4 10
7.6 odd 2 833.2.a.g.1.2 5
8.3 odd 2 7616.2.a.bq.1.5 5
8.5 even 2 7616.2.a.bt.1.1 5
17.16 even 2 2023.2.a.j.1.2 5
21.20 even 2 7497.2.a.br.1.4 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
119.2.a.b.1.2 5 1.1 even 1 trivial
833.2.a.g.1.2 5 7.6 odd 2
833.2.e.h.18.4 10 7.5 odd 6
833.2.e.h.324.4 10 7.3 odd 6
833.2.e.i.18.4 10 7.2 even 3
833.2.e.i.324.4 10 7.4 even 3
1071.2.a.m.1.4 5 3.2 odd 2
1904.2.a.t.1.1 5 4.3 odd 2
2023.2.a.j.1.2 5 17.16 even 2
2975.2.a.m.1.4 5 5.4 even 2
7497.2.a.br.1.4 5 21.20 even 2
7616.2.a.bq.1.5 5 8.3 odd 2
7616.2.a.bt.1.1 5 8.5 even 2