Properties

Label 119.2.a.b.1.1
Level $119$
Weight $2$
Character 119.1
Self dual yes
Analytic conductor $0.950$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [119,2,Mod(1,119)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(119, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("119.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 119 = 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 119.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(0.950219784053\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.453749.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 5x^{3} + 10x^{2} + x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(1.78972\) of defining polynomial
Character \(\chi\) \(=\) 119.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.32942 q^{2} -3.21594 q^{3} +3.42621 q^{4} -3.16902 q^{5} +7.49128 q^{6} -1.00000 q^{7} -3.32226 q^{8} +7.34225 q^{9} +7.38200 q^{10} +0.406219 q^{11} -11.0185 q^{12} +3.07940 q^{13} +2.32942 q^{14} +10.1914 q^{15} +0.886514 q^{16} +1.00000 q^{17} -17.1032 q^{18} -1.57945 q^{19} -10.8578 q^{20} +3.21594 q^{21} -0.946255 q^{22} +0.852428 q^{23} +10.6842 q^{24} +5.04271 q^{25} -7.17323 q^{26} -13.9644 q^{27} -3.42621 q^{28} -1.49995 q^{29} -23.7400 q^{30} -0.316596 q^{31} +4.57945 q^{32} -1.30637 q^{33} -2.32942 q^{34} +3.16902 q^{35} +25.1561 q^{36} +10.6445 q^{37} +3.67920 q^{38} -9.90316 q^{39} +10.5283 q^{40} +11.8748 q^{41} -7.49128 q^{42} -4.70156 q^{43} +1.39179 q^{44} -23.2678 q^{45} -1.98567 q^{46} +9.09072 q^{47} -2.85097 q^{48} +1.00000 q^{49} -11.7466 q^{50} -3.21594 q^{51} +10.5507 q^{52} -4.34225 q^{53} +32.5290 q^{54} -1.28732 q^{55} +3.32226 q^{56} +5.07940 q^{57} +3.49403 q^{58} +7.15889 q^{59} +34.9178 q^{60} -3.87478 q^{61} +0.737485 q^{62} -7.34225 q^{63} -12.4405 q^{64} -9.75869 q^{65} +3.04310 q^{66} +5.48982 q^{67} +3.42621 q^{68} -2.74135 q^{69} -7.38200 q^{70} -8.73834 q^{71} -24.3928 q^{72} +6.25535 q^{73} -24.7956 q^{74} -16.2170 q^{75} -5.41152 q^{76} -0.406219 q^{77} +23.0686 q^{78} +3.77303 q^{79} -2.80938 q^{80} +22.8819 q^{81} -27.6614 q^{82} -5.35247 q^{83} +11.0185 q^{84} -3.16902 q^{85} +10.9519 q^{86} +4.82376 q^{87} -1.34956 q^{88} +14.1845 q^{89} +54.2005 q^{90} -3.07940 q^{91} +2.92060 q^{92} +1.01815 q^{93} -21.1761 q^{94} +5.00530 q^{95} -14.7272 q^{96} -0.623061 q^{97} -2.32942 q^{98} +2.98256 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 2 q^{2} - 2 q^{3} + 10 q^{4} - q^{6} - 5 q^{7} + 6 q^{8} + 11 q^{9} + 4 q^{10} - 2 q^{11} - 22 q^{12} + 2 q^{13} - 2 q^{14} + 8 q^{15} + 4 q^{16} + 5 q^{17} - 18 q^{18} + 6 q^{19} - 19 q^{20} + 2 q^{21}+ \cdots - 62 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.32942 −1.64715 −0.823576 0.567207i \(-0.808024\pi\)
−0.823576 + 0.567207i \(0.808024\pi\)
\(3\) −3.21594 −1.85672 −0.928361 0.371680i \(-0.878782\pi\)
−0.928361 + 0.371680i \(0.878782\pi\)
\(4\) 3.42621 1.71311
\(5\) −3.16902 −1.41723 −0.708615 0.705595i \(-0.750680\pi\)
−0.708615 + 0.705595i \(0.750680\pi\)
\(6\) 7.49128 3.05830
\(7\) −1.00000 −0.377964
\(8\) −3.32226 −1.17459
\(9\) 7.34225 2.44742
\(10\) 7.38200 2.33439
\(11\) 0.406219 0.122480 0.0612398 0.998123i \(-0.480495\pi\)
0.0612398 + 0.998123i \(0.480495\pi\)
\(12\) −11.0185 −3.18076
\(13\) 3.07940 0.854072 0.427036 0.904235i \(-0.359558\pi\)
0.427036 + 0.904235i \(0.359558\pi\)
\(14\) 2.32942 0.622565
\(15\) 10.1914 2.63140
\(16\) 0.886514 0.221628
\(17\) 1.00000 0.242536
\(18\) −17.1032 −4.03127
\(19\) −1.57945 −0.362350 −0.181175 0.983451i \(-0.557990\pi\)
−0.181175 + 0.983451i \(0.557990\pi\)
\(20\) −10.8578 −2.42787
\(21\) 3.21594 0.701775
\(22\) −0.946255 −0.201742
\(23\) 0.852428 0.177743 0.0888717 0.996043i \(-0.471674\pi\)
0.0888717 + 0.996043i \(0.471674\pi\)
\(24\) 10.6842 2.18090
\(25\) 5.04271 1.00854
\(26\) −7.17323 −1.40679
\(27\) −13.9644 −2.68745
\(28\) −3.42621 −0.647494
\(29\) −1.49995 −0.278534 −0.139267 0.990255i \(-0.544475\pi\)
−0.139267 + 0.990255i \(0.544475\pi\)
\(30\) −23.7400 −4.33432
\(31\) −0.316596 −0.0568623 −0.0284311 0.999596i \(-0.509051\pi\)
−0.0284311 + 0.999596i \(0.509051\pi\)
\(32\) 4.57945 0.809539
\(33\) −1.30637 −0.227410
\(34\) −2.32942 −0.399493
\(35\) 3.16902 0.535663
\(36\) 25.1561 4.19269
\(37\) 10.6445 1.74995 0.874974 0.484171i \(-0.160879\pi\)
0.874974 + 0.484171i \(0.160879\pi\)
\(38\) 3.67920 0.596845
\(39\) −9.90316 −1.58577
\(40\) 10.5283 1.66467
\(41\) 11.8748 1.85453 0.927265 0.374406i \(-0.122153\pi\)
0.927265 + 0.374406i \(0.122153\pi\)
\(42\) −7.49128 −1.15593
\(43\) −4.70156 −0.716981 −0.358490 0.933533i \(-0.616708\pi\)
−0.358490 + 0.933533i \(0.616708\pi\)
\(44\) 1.39179 0.209820
\(45\) −23.2678 −3.46855
\(46\) −1.98567 −0.292770
\(47\) 9.09072 1.32602 0.663009 0.748611i \(-0.269279\pi\)
0.663009 + 0.748611i \(0.269279\pi\)
\(48\) −2.85097 −0.411502
\(49\) 1.00000 0.142857
\(50\) −11.7466 −1.66122
\(51\) −3.21594 −0.450321
\(52\) 10.5507 1.46312
\(53\) −4.34225 −0.596454 −0.298227 0.954495i \(-0.596395\pi\)
−0.298227 + 0.954495i \(0.596395\pi\)
\(54\) 32.5290 4.42664
\(55\) −1.28732 −0.173582
\(56\) 3.32226 0.443955
\(57\) 5.07940 0.672783
\(58\) 3.49403 0.458788
\(59\) 7.15889 0.932008 0.466004 0.884782i \(-0.345693\pi\)
0.466004 + 0.884782i \(0.345693\pi\)
\(60\) 34.9178 4.50787
\(61\) −3.87478 −0.496115 −0.248058 0.968745i \(-0.579792\pi\)
−0.248058 + 0.968745i \(0.579792\pi\)
\(62\) 0.737485 0.0936607
\(63\) −7.34225 −0.925037
\(64\) −12.4405 −1.55506
\(65\) −9.75869 −1.21042
\(66\) 3.04310 0.374579
\(67\) 5.48982 0.670689 0.335344 0.942096i \(-0.391147\pi\)
0.335344 + 0.942096i \(0.391147\pi\)
\(68\) 3.42621 0.415489
\(69\) −2.74135 −0.330020
\(70\) −7.38200 −0.882317
\(71\) −8.73834 −1.03705 −0.518525 0.855062i \(-0.673519\pi\)
−0.518525 + 0.855062i \(0.673519\pi\)
\(72\) −24.3928 −2.87472
\(73\) 6.25535 0.732133 0.366066 0.930589i \(-0.380704\pi\)
0.366066 + 0.930589i \(0.380704\pi\)
\(74\) −24.7956 −2.88243
\(75\) −16.2170 −1.87258
\(76\) −5.41152 −0.620744
\(77\) −0.406219 −0.0462929
\(78\) 23.0686 2.61201
\(79\) 3.77303 0.424499 0.212249 0.977216i \(-0.431921\pi\)
0.212249 + 0.977216i \(0.431921\pi\)
\(80\) −2.80938 −0.314098
\(81\) 22.8819 2.54243
\(82\) −27.6614 −3.05469
\(83\) −5.35247 −0.587510 −0.293755 0.955881i \(-0.594905\pi\)
−0.293755 + 0.955881i \(0.594905\pi\)
\(84\) 11.0185 1.20222
\(85\) −3.16902 −0.343729
\(86\) 10.9519 1.18098
\(87\) 4.82376 0.517161
\(88\) −1.34956 −0.143864
\(89\) 14.1845 1.50355 0.751775 0.659420i \(-0.229198\pi\)
0.751775 + 0.659420i \(0.229198\pi\)
\(90\) 54.2005 5.71323
\(91\) −3.07940 −0.322809
\(92\) 2.92060 0.304494
\(93\) 1.01815 0.105577
\(94\) −21.1761 −2.18415
\(95\) 5.00530 0.513533
\(96\) −14.7272 −1.50309
\(97\) −0.623061 −0.0632623 −0.0316311 0.999500i \(-0.510070\pi\)
−0.0316311 + 0.999500i \(0.510070\pi\)
\(98\) −2.32942 −0.235307
\(99\) 2.98256 0.299758
\(100\) 17.2774 1.72774
\(101\) −16.3494 −1.62682 −0.813411 0.581689i \(-0.802392\pi\)
−0.813411 + 0.581689i \(0.802392\pi\)
\(102\) 7.49128 0.741747
\(103\) −9.80642 −0.966255 −0.483128 0.875550i \(-0.660499\pi\)
−0.483128 + 0.875550i \(0.660499\pi\)
\(104\) −10.2306 −1.00319
\(105\) −10.1914 −0.994577
\(106\) 10.1149 0.982450
\(107\) 11.3034 1.09274 0.546368 0.837545i \(-0.316010\pi\)
0.546368 + 0.837545i \(0.316010\pi\)
\(108\) −47.8450 −4.60389
\(109\) 5.18756 0.496878 0.248439 0.968647i \(-0.420082\pi\)
0.248439 + 0.968647i \(0.420082\pi\)
\(110\) 2.99870 0.285915
\(111\) −34.2321 −3.24917
\(112\) −0.886514 −0.0837677
\(113\) 4.83809 0.455129 0.227565 0.973763i \(-0.426924\pi\)
0.227565 + 0.973763i \(0.426924\pi\)
\(114\) −11.8321 −1.10818
\(115\) −2.70136 −0.251903
\(116\) −5.13916 −0.477159
\(117\) 22.6097 2.09027
\(118\) −16.6761 −1.53516
\(119\) −1.00000 −0.0916698
\(120\) −33.8584 −3.09083
\(121\) −10.8350 −0.984999
\(122\) 9.02601 0.817177
\(123\) −38.1886 −3.44335
\(124\) −1.08472 −0.0974111
\(125\) −0.135346 −0.0121057
\(126\) 17.1032 1.52368
\(127\) 0.856632 0.0760138 0.0380069 0.999277i \(-0.487899\pi\)
0.0380069 + 0.999277i \(0.487899\pi\)
\(128\) 19.8203 1.75188
\(129\) 15.1199 1.33123
\(130\) 22.7321 1.99374
\(131\) 9.31769 0.814091 0.407045 0.913408i \(-0.366559\pi\)
0.407045 + 0.913408i \(0.366559\pi\)
\(132\) −4.47591 −0.389578
\(133\) 1.57945 0.136955
\(134\) −12.7881 −1.10473
\(135\) 44.2535 3.80874
\(136\) −3.32226 −0.284881
\(137\) −2.66224 −0.227450 −0.113725 0.993512i \(-0.536278\pi\)
−0.113725 + 0.993512i \(0.536278\pi\)
\(138\) 6.38577 0.543593
\(139\) 4.13735 0.350925 0.175463 0.984486i \(-0.443858\pi\)
0.175463 + 0.984486i \(0.443858\pi\)
\(140\) 10.8578 0.917648
\(141\) −29.2352 −2.46205
\(142\) 20.3553 1.70818
\(143\) 1.25091 0.104606
\(144\) 6.50901 0.542417
\(145\) 4.75339 0.394748
\(146\) −14.5714 −1.20593
\(147\) −3.21594 −0.265246
\(148\) 36.4704 2.99785
\(149\) 9.54806 0.782207 0.391104 0.920347i \(-0.372093\pi\)
0.391104 + 0.920347i \(0.372093\pi\)
\(150\) 37.7763 3.08443
\(151\) 12.9746 1.05586 0.527930 0.849288i \(-0.322968\pi\)
0.527930 + 0.849288i \(0.322968\pi\)
\(152\) 5.24733 0.425614
\(153\) 7.34225 0.593586
\(154\) 0.946255 0.0762514
\(155\) 1.00330 0.0805869
\(156\) −33.9303 −2.71660
\(157\) 9.42877 0.752498 0.376249 0.926519i \(-0.377214\pi\)
0.376249 + 0.926519i \(0.377214\pi\)
\(158\) −8.78898 −0.699214
\(159\) 13.9644 1.10745
\(160\) −14.5124 −1.14730
\(161\) −0.852428 −0.0671807
\(162\) −53.3016 −4.18777
\(163\) 11.4259 0.894942 0.447471 0.894298i \(-0.352325\pi\)
0.447471 + 0.894298i \(0.352325\pi\)
\(164\) 40.6855 3.17701
\(165\) 4.13993 0.322293
\(166\) 12.4682 0.967718
\(167\) 16.6190 1.28602 0.643010 0.765858i \(-0.277685\pi\)
0.643010 + 0.765858i \(0.277685\pi\)
\(168\) −10.6842 −0.824301
\(169\) −3.51729 −0.270561
\(170\) 7.38200 0.566173
\(171\) −11.5967 −0.886821
\(172\) −16.1085 −1.22826
\(173\) −14.3921 −1.09421 −0.547105 0.837064i \(-0.684270\pi\)
−0.547105 + 0.837064i \(0.684270\pi\)
\(174\) −11.2366 −0.851843
\(175\) −5.04271 −0.381193
\(176\) 0.360118 0.0271449
\(177\) −23.0225 −1.73048
\(178\) −33.0416 −2.47657
\(179\) 2.35510 0.176028 0.0880142 0.996119i \(-0.471948\pi\)
0.0880142 + 0.996119i \(0.471948\pi\)
\(180\) −79.7203 −5.94200
\(181\) 8.97124 0.666827 0.333413 0.942781i \(-0.391800\pi\)
0.333413 + 0.942781i \(0.391800\pi\)
\(182\) 7.17323 0.531715
\(183\) 12.4611 0.921148
\(184\) −2.83198 −0.208777
\(185\) −33.7327 −2.48008
\(186\) −2.37171 −0.173902
\(187\) 0.406219 0.0297056
\(188\) 31.1468 2.27161
\(189\) 13.9644 1.01576
\(190\) −11.6595 −0.845867
\(191\) 10.3023 0.745445 0.372723 0.927943i \(-0.378424\pi\)
0.372723 + 0.927943i \(0.378424\pi\)
\(192\) 40.0079 2.88732
\(193\) −8.39709 −0.604436 −0.302218 0.953239i \(-0.597727\pi\)
−0.302218 + 0.953239i \(0.597727\pi\)
\(194\) 1.45137 0.104203
\(195\) 31.3833 2.24741
\(196\) 3.42621 0.244730
\(197\) −14.7861 −1.05346 −0.526732 0.850032i \(-0.676583\pi\)
−0.526732 + 0.850032i \(0.676583\pi\)
\(198\) −6.94764 −0.493747
\(199\) 5.46016 0.387060 0.193530 0.981094i \(-0.438006\pi\)
0.193530 + 0.981094i \(0.438006\pi\)
\(200\) −16.7532 −1.18463
\(201\) −17.6549 −1.24528
\(202\) 38.0846 2.67962
\(203\) 1.49995 0.105276
\(204\) −11.0185 −0.771448
\(205\) −37.6315 −2.62830
\(206\) 22.8433 1.59157
\(207\) 6.25874 0.435012
\(208\) 2.72993 0.189287
\(209\) −0.641600 −0.0443804
\(210\) 23.7400 1.63822
\(211\) 14.2155 0.978639 0.489319 0.872105i \(-0.337245\pi\)
0.489319 + 0.872105i \(0.337245\pi\)
\(212\) −14.8775 −1.02179
\(213\) 28.1019 1.92551
\(214\) −26.3303 −1.79990
\(215\) 14.8993 1.01613
\(216\) 46.3933 3.15667
\(217\) 0.316596 0.0214919
\(218\) −12.0840 −0.818434
\(219\) −20.1168 −1.35937
\(220\) −4.41062 −0.297364
\(221\) 3.07940 0.207143
\(222\) 79.7410 5.35187
\(223\) −26.2555 −1.75820 −0.879101 0.476636i \(-0.841856\pi\)
−0.879101 + 0.476636i \(0.841856\pi\)
\(224\) −4.57945 −0.305977
\(225\) 37.0248 2.46832
\(226\) −11.2700 −0.749667
\(227\) −5.12903 −0.340426 −0.170213 0.985407i \(-0.554446\pi\)
−0.170213 + 0.985407i \(0.554446\pi\)
\(228\) 17.4031 1.15255
\(229\) −5.65894 −0.373953 −0.186977 0.982364i \(-0.559869\pi\)
−0.186977 + 0.982364i \(0.559869\pi\)
\(230\) 6.29262 0.414923
\(231\) 1.30637 0.0859531
\(232\) 4.98323 0.327165
\(233\) −27.4144 −1.79598 −0.897990 0.440017i \(-0.854973\pi\)
−0.897990 + 0.440017i \(0.854973\pi\)
\(234\) −52.6676 −3.44299
\(235\) −28.8087 −1.87927
\(236\) 24.5279 1.59663
\(237\) −12.1338 −0.788176
\(238\) 2.32942 0.150994
\(239\) −18.4064 −1.19061 −0.595306 0.803499i \(-0.702969\pi\)
−0.595306 + 0.803499i \(0.702969\pi\)
\(240\) 9.03480 0.583194
\(241\) −7.00401 −0.451168 −0.225584 0.974224i \(-0.572429\pi\)
−0.225584 + 0.974224i \(0.572429\pi\)
\(242\) 25.2393 1.62244
\(243\) −31.6935 −2.03314
\(244\) −13.2758 −0.849898
\(245\) −3.16902 −0.202461
\(246\) 88.9573 5.67171
\(247\) −4.86375 −0.309473
\(248\) 1.05181 0.0667901
\(249\) 17.2132 1.09084
\(250\) 0.315279 0.0199400
\(251\) 23.2556 1.46788 0.733941 0.679213i \(-0.237679\pi\)
0.733941 + 0.679213i \(0.237679\pi\)
\(252\) −25.1561 −1.58469
\(253\) 0.346272 0.0217699
\(254\) −1.99546 −0.125206
\(255\) 10.1914 0.638209
\(256\) −21.2889 −1.33055
\(257\) 17.1702 1.07105 0.535524 0.844520i \(-0.320114\pi\)
0.535524 + 0.844520i \(0.320114\pi\)
\(258\) −35.2207 −2.19274
\(259\) −10.6445 −0.661418
\(260\) −33.4354 −2.07357
\(261\) −11.0130 −0.681690
\(262\) −21.7049 −1.34093
\(263\) 18.1588 1.11972 0.559860 0.828587i \(-0.310855\pi\)
0.559860 + 0.828587i \(0.310855\pi\)
\(264\) 4.34011 0.267115
\(265\) 13.7607 0.845313
\(266\) −3.67920 −0.225586
\(267\) −45.6163 −2.79167
\(268\) 18.8093 1.14896
\(269\) −11.5172 −0.702216 −0.351108 0.936335i \(-0.614195\pi\)
−0.351108 + 0.936335i \(0.614195\pi\)
\(270\) −103.085 −6.27357
\(271\) 15.8750 0.964336 0.482168 0.876079i \(-0.339849\pi\)
0.482168 + 0.876079i \(0.339849\pi\)
\(272\) 0.886514 0.0537528
\(273\) 9.90316 0.599366
\(274\) 6.20148 0.374645
\(275\) 2.04844 0.123526
\(276\) −9.39246 −0.565360
\(277\) 27.2578 1.63776 0.818882 0.573962i \(-0.194594\pi\)
0.818882 + 0.573962i \(0.194594\pi\)
\(278\) −9.63764 −0.578027
\(279\) −2.32453 −0.139166
\(280\) −10.5283 −0.629187
\(281\) 23.6720 1.41215 0.706076 0.708136i \(-0.250464\pi\)
0.706076 + 0.708136i \(0.250464\pi\)
\(282\) 68.1011 4.05536
\(283\) 20.9808 1.24718 0.623591 0.781751i \(-0.285673\pi\)
0.623591 + 0.781751i \(0.285673\pi\)
\(284\) −29.9394 −1.77658
\(285\) −16.0967 −0.953489
\(286\) −2.91390 −0.172302
\(287\) −11.8748 −0.700946
\(288\) 33.6234 1.98128
\(289\) 1.00000 0.0588235
\(290\) −11.0727 −0.650209
\(291\) 2.00372 0.117460
\(292\) 21.4322 1.25422
\(293\) 7.74485 0.452459 0.226229 0.974074i \(-0.427360\pi\)
0.226229 + 0.974074i \(0.427360\pi\)
\(294\) 7.49128 0.436900
\(295\) −22.6867 −1.32087
\(296\) −35.3638 −2.05548
\(297\) −5.67260 −0.329158
\(298\) −22.2415 −1.28841
\(299\) 2.62497 0.151806
\(300\) −55.5630 −3.20793
\(301\) 4.70156 0.270993
\(302\) −30.2234 −1.73916
\(303\) 52.5785 3.02056
\(304\) −1.40020 −0.0803070
\(305\) 12.2793 0.703110
\(306\) −17.1032 −0.977726
\(307\) 16.4689 0.939927 0.469963 0.882686i \(-0.344267\pi\)
0.469963 + 0.882686i \(0.344267\pi\)
\(308\) −1.39179 −0.0793047
\(309\) 31.5368 1.79407
\(310\) −2.33711 −0.132739
\(311\) −24.5185 −1.39032 −0.695158 0.718857i \(-0.744666\pi\)
−0.695158 + 0.718857i \(0.744666\pi\)
\(312\) 32.9008 1.86264
\(313\) −32.3504 −1.82855 −0.914276 0.405093i \(-0.867239\pi\)
−0.914276 + 0.405093i \(0.867239\pi\)
\(314\) −21.9636 −1.23948
\(315\) 23.2678 1.31099
\(316\) 12.9272 0.727212
\(317\) −26.0626 −1.46382 −0.731912 0.681400i \(-0.761372\pi\)
−0.731912 + 0.681400i \(0.761372\pi\)
\(318\) −32.5290 −1.82414
\(319\) −0.609309 −0.0341148
\(320\) 39.4242 2.20388
\(321\) −36.3509 −2.02891
\(322\) 1.98567 0.110657
\(323\) −1.57945 −0.0878828
\(324\) 78.3983 4.35546
\(325\) 15.5285 0.861367
\(326\) −26.6157 −1.47410
\(327\) −16.6829 −0.922565
\(328\) −39.4511 −2.17832
\(329\) −9.09072 −0.501188
\(330\) −9.64364 −0.530865
\(331\) −12.1539 −0.668038 −0.334019 0.942566i \(-0.608405\pi\)
−0.334019 + 0.942566i \(0.608405\pi\)
\(332\) −18.3387 −1.00647
\(333\) 78.1547 4.28285
\(334\) −38.7128 −2.11827
\(335\) −17.3974 −0.950520
\(336\) 2.85097 0.155533
\(337\) 32.2753 1.75815 0.879073 0.476687i \(-0.158163\pi\)
0.879073 + 0.476687i \(0.158163\pi\)
\(338\) 8.19326 0.445655
\(339\) −15.5590 −0.845049
\(340\) −10.8578 −0.588844
\(341\) −0.128607 −0.00696446
\(342\) 27.0136 1.46073
\(343\) −1.00000 −0.0539949
\(344\) 15.6198 0.842162
\(345\) 8.68741 0.467715
\(346\) 33.5252 1.80233
\(347\) 16.3828 0.879473 0.439736 0.898127i \(-0.355072\pi\)
0.439736 + 0.898127i \(0.355072\pi\)
\(348\) 16.5272 0.885952
\(349\) 26.6822 1.42827 0.714133 0.700010i \(-0.246821\pi\)
0.714133 + 0.700010i \(0.246821\pi\)
\(350\) 11.7466 0.627882
\(351\) −43.0020 −2.29528
\(352\) 1.86026 0.0991520
\(353\) 11.6588 0.620533 0.310266 0.950650i \(-0.399582\pi\)
0.310266 + 0.950650i \(0.399582\pi\)
\(354\) 53.6293 2.85036
\(355\) 27.6920 1.46974
\(356\) 48.5990 2.57574
\(357\) 3.21594 0.170205
\(358\) −5.48603 −0.289945
\(359\) −32.9090 −1.73687 −0.868435 0.495803i \(-0.834874\pi\)
−0.868435 + 0.495803i \(0.834874\pi\)
\(360\) 77.3015 4.07415
\(361\) −16.5053 −0.868703
\(362\) −20.8978 −1.09836
\(363\) 34.8446 1.82887
\(364\) −10.5507 −0.553006
\(365\) −19.8233 −1.03760
\(366\) −29.0271 −1.51727
\(367\) −2.89834 −0.151292 −0.0756459 0.997135i \(-0.524102\pi\)
−0.0756459 + 0.997135i \(0.524102\pi\)
\(368\) 0.755689 0.0393930
\(369\) 87.1876 4.53881
\(370\) 78.5778 4.08506
\(371\) 4.34225 0.225438
\(372\) 3.48841 0.180865
\(373\) 9.95108 0.515247 0.257624 0.966245i \(-0.417061\pi\)
0.257624 + 0.966245i \(0.417061\pi\)
\(374\) −0.946255 −0.0489297
\(375\) 0.435265 0.0224770
\(376\) −30.2017 −1.55753
\(377\) −4.61896 −0.237889
\(378\) −32.5290 −1.67311
\(379\) 37.2004 1.91086 0.955428 0.295223i \(-0.0953940\pi\)
0.955428 + 0.295223i \(0.0953940\pi\)
\(380\) 17.1492 0.879737
\(381\) −2.75488 −0.141137
\(382\) −23.9983 −1.22786
\(383\) −7.73595 −0.395288 −0.197644 0.980274i \(-0.563329\pi\)
−0.197644 + 0.980274i \(0.563329\pi\)
\(384\) −63.7408 −3.25276
\(385\) 1.28732 0.0656077
\(386\) 19.5604 0.995598
\(387\) −34.5200 −1.75475
\(388\) −2.13474 −0.108375
\(389\) −3.90378 −0.197929 −0.0989647 0.995091i \(-0.531553\pi\)
−0.0989647 + 0.995091i \(0.531553\pi\)
\(390\) −73.1051 −3.70182
\(391\) 0.852428 0.0431091
\(392\) −3.32226 −0.167799
\(393\) −29.9651 −1.51154
\(394\) 34.4430 1.73521
\(395\) −11.9568 −0.601612
\(396\) 10.2189 0.513518
\(397\) −25.2992 −1.26973 −0.634864 0.772624i \(-0.718944\pi\)
−0.634864 + 0.772624i \(0.718944\pi\)
\(398\) −12.7190 −0.637547
\(399\) −5.07940 −0.254288
\(400\) 4.47043 0.223522
\(401\) −30.5733 −1.52676 −0.763380 0.645950i \(-0.776461\pi\)
−0.763380 + 0.645950i \(0.776461\pi\)
\(402\) 41.1258 2.05117
\(403\) −0.974925 −0.0485645
\(404\) −56.0164 −2.78692
\(405\) −72.5133 −3.60321
\(406\) −3.49403 −0.173406
\(407\) 4.32400 0.214333
\(408\) 10.6842 0.528945
\(409\) 28.9796 1.43295 0.716476 0.697612i \(-0.245754\pi\)
0.716476 + 0.697612i \(0.245754\pi\)
\(410\) 87.6596 4.32920
\(411\) 8.56159 0.422312
\(412\) −33.5989 −1.65530
\(413\) −7.15889 −0.352266
\(414\) −14.5793 −0.716531
\(415\) 16.9621 0.832637
\(416\) 14.1019 0.691405
\(417\) −13.3055 −0.651571
\(418\) 1.49456 0.0731013
\(419\) 0.703757 0.0343808 0.0171904 0.999852i \(-0.494528\pi\)
0.0171904 + 0.999852i \(0.494528\pi\)
\(420\) −34.9178 −1.70382
\(421\) −7.06526 −0.344340 −0.172170 0.985067i \(-0.555078\pi\)
−0.172170 + 0.985067i \(0.555078\pi\)
\(422\) −33.1140 −1.61197
\(423\) 66.7464 3.24532
\(424\) 14.4261 0.700592
\(425\) 5.04271 0.244607
\(426\) −65.4613 −3.17161
\(427\) 3.87478 0.187514
\(428\) 38.7277 1.87198
\(429\) −4.02285 −0.194225
\(430\) −34.7069 −1.67371
\(431\) 18.0528 0.869574 0.434787 0.900533i \(-0.356824\pi\)
0.434787 + 0.900533i \(0.356824\pi\)
\(432\) −12.3796 −0.595616
\(433\) 13.3572 0.641906 0.320953 0.947095i \(-0.395997\pi\)
0.320953 + 0.947095i \(0.395997\pi\)
\(434\) −0.737485 −0.0354004
\(435\) −15.2866 −0.732936
\(436\) 17.7737 0.851206
\(437\) −1.34636 −0.0644053
\(438\) 46.8606 2.23908
\(439\) 16.0510 0.766073 0.383037 0.923733i \(-0.374878\pi\)
0.383037 + 0.923733i \(0.374878\pi\)
\(440\) 4.27679 0.203888
\(441\) 7.34225 0.349631
\(442\) −7.17323 −0.341196
\(443\) 25.8638 1.22883 0.614414 0.788984i \(-0.289392\pi\)
0.614414 + 0.788984i \(0.289392\pi\)
\(444\) −117.286 −5.56617
\(445\) −44.9509 −2.13088
\(446\) 61.1603 2.89602
\(447\) −30.7060 −1.45234
\(448\) 12.4405 0.587758
\(449\) −29.9450 −1.41319 −0.706595 0.707618i \(-0.749770\pi\)
−0.706595 + 0.707618i \(0.749770\pi\)
\(450\) −86.2465 −4.06570
\(451\) 4.82376 0.227142
\(452\) 16.5763 0.779685
\(453\) −41.7256 −1.96044
\(454\) 11.9477 0.560733
\(455\) 9.75869 0.457495
\(456\) −16.8751 −0.790248
\(457\) 6.60873 0.309143 0.154572 0.987982i \(-0.450600\pi\)
0.154572 + 0.987982i \(0.450600\pi\)
\(458\) 13.1821 0.615957
\(459\) −13.9644 −0.651803
\(460\) −9.25545 −0.431537
\(461\) −18.6368 −0.868001 −0.434001 0.900913i \(-0.642898\pi\)
−0.434001 + 0.900913i \(0.642898\pi\)
\(462\) −3.04310 −0.141578
\(463\) −29.0418 −1.34969 −0.674843 0.737961i \(-0.735789\pi\)
−0.674843 + 0.737961i \(0.735789\pi\)
\(464\) −1.32973 −0.0617311
\(465\) −3.22655 −0.149628
\(466\) 63.8598 2.95825
\(467\) −25.3554 −1.17331 −0.586654 0.809838i \(-0.699555\pi\)
−0.586654 + 0.809838i \(0.699555\pi\)
\(468\) 77.4658 3.58086
\(469\) −5.48982 −0.253497
\(470\) 67.1077 3.09545
\(471\) −30.3223 −1.39718
\(472\) −23.7837 −1.09473
\(473\) −1.90986 −0.0878154
\(474\) 28.2648 1.29825
\(475\) −7.96469 −0.365445
\(476\) −3.42621 −0.157040
\(477\) −31.8819 −1.45977
\(478\) 42.8763 1.96112
\(479\) −2.15307 −0.0983762 −0.0491881 0.998790i \(-0.515663\pi\)
−0.0491881 + 0.998790i \(0.515663\pi\)
\(480\) 46.6709 2.13022
\(481\) 32.7787 1.49458
\(482\) 16.3153 0.743142
\(483\) 2.74135 0.124736
\(484\) −37.1230 −1.68741
\(485\) 1.97449 0.0896572
\(486\) 73.8277 3.34889
\(487\) −20.0304 −0.907663 −0.453832 0.891088i \(-0.649943\pi\)
−0.453832 + 0.891088i \(0.649943\pi\)
\(488\) 12.8730 0.582734
\(489\) −36.7448 −1.66166
\(490\) 7.38200 0.333485
\(491\) −2.07170 −0.0934947 −0.0467473 0.998907i \(-0.514886\pi\)
−0.0467473 + 0.998907i \(0.514886\pi\)
\(492\) −130.842 −5.89882
\(493\) −1.49995 −0.0675545
\(494\) 11.3297 0.509749
\(495\) −9.45180 −0.424827
\(496\) −0.280666 −0.0126023
\(497\) 8.73834 0.391968
\(498\) −40.0969 −1.79678
\(499\) −17.9861 −0.805166 −0.402583 0.915383i \(-0.631888\pi\)
−0.402583 + 0.915383i \(0.631888\pi\)
\(500\) −0.463725 −0.0207384
\(501\) −53.4458 −2.38778
\(502\) −54.1722 −2.41782
\(503\) −25.6283 −1.14271 −0.571354 0.820704i \(-0.693582\pi\)
−0.571354 + 0.820704i \(0.693582\pi\)
\(504\) 24.3928 1.08654
\(505\) 51.8115 2.30558
\(506\) −0.806614 −0.0358584
\(507\) 11.3114 0.502357
\(508\) 2.93501 0.130220
\(509\) −10.8374 −0.480358 −0.240179 0.970729i \(-0.577206\pi\)
−0.240179 + 0.970729i \(0.577206\pi\)
\(510\) −23.7400 −1.05123
\(511\) −6.25535 −0.276720
\(512\) 9.95019 0.439740
\(513\) 22.0560 0.973798
\(514\) −39.9967 −1.76418
\(515\) 31.0768 1.36941
\(516\) 51.8040 2.28055
\(517\) 3.69282 0.162410
\(518\) 24.7956 1.08946
\(519\) 46.2840 2.03164
\(520\) 32.4209 1.42175
\(521\) 7.52173 0.329533 0.164766 0.986333i \(-0.447313\pi\)
0.164766 + 0.986333i \(0.447313\pi\)
\(522\) 25.6540 1.12285
\(523\) 5.85252 0.255913 0.127956 0.991780i \(-0.459158\pi\)
0.127956 + 0.991780i \(0.459158\pi\)
\(524\) 31.9244 1.39462
\(525\) 16.2170 0.707769
\(526\) −42.2995 −1.84435
\(527\) −0.316596 −0.0137911
\(528\) −1.15812 −0.0504006
\(529\) −22.2734 −0.968407
\(530\) −32.0545 −1.39236
\(531\) 52.5624 2.28101
\(532\) 5.41152 0.234619
\(533\) 36.5672 1.58390
\(534\) 106.260 4.59831
\(535\) −35.8206 −1.54866
\(536\) −18.2386 −0.787788
\(537\) −7.57385 −0.326836
\(538\) 26.8284 1.15666
\(539\) 0.406219 0.0174971
\(540\) 151.622 6.52477
\(541\) 8.18397 0.351856 0.175928 0.984403i \(-0.443707\pi\)
0.175928 + 0.984403i \(0.443707\pi\)
\(542\) −36.9795 −1.58841
\(543\) −28.8509 −1.23811
\(544\) 4.57945 0.196342
\(545\) −16.4395 −0.704191
\(546\) −23.0686 −0.987247
\(547\) 43.3576 1.85384 0.926918 0.375264i \(-0.122448\pi\)
0.926918 + 0.375264i \(0.122448\pi\)
\(548\) −9.12140 −0.389647
\(549\) −28.4496 −1.21420
\(550\) −4.77169 −0.203466
\(551\) 2.36910 0.100927
\(552\) 9.10748 0.387640
\(553\) −3.77303 −0.160445
\(554\) −63.4950 −2.69765
\(555\) 108.482 4.60482
\(556\) 14.1754 0.601173
\(557\) −24.2328 −1.02677 −0.513387 0.858157i \(-0.671610\pi\)
−0.513387 + 0.858157i \(0.671610\pi\)
\(558\) 5.41480 0.229227
\(559\) −14.4780 −0.612353
\(560\) 2.80938 0.118718
\(561\) −1.30637 −0.0551551
\(562\) −55.1421 −2.32603
\(563\) −14.1397 −0.595919 −0.297960 0.954578i \(-0.596306\pi\)
−0.297960 + 0.954578i \(0.596306\pi\)
\(564\) −100.166 −4.21775
\(565\) −15.3320 −0.645023
\(566\) −48.8733 −2.05430
\(567\) −22.8819 −0.960949
\(568\) 29.0310 1.21811
\(569\) 29.2527 1.22634 0.613169 0.789952i \(-0.289894\pi\)
0.613169 + 0.789952i \(0.289894\pi\)
\(570\) 37.4961 1.57054
\(571\) −7.49928 −0.313835 −0.156918 0.987612i \(-0.550156\pi\)
−0.156918 + 0.987612i \(0.550156\pi\)
\(572\) 4.28588 0.179202
\(573\) −33.1314 −1.38409
\(574\) 27.6614 1.15456
\(575\) 4.29854 0.179262
\(576\) −91.3413 −3.80589
\(577\) −7.26408 −0.302408 −0.151204 0.988503i \(-0.548315\pi\)
−0.151204 + 0.988503i \(0.548315\pi\)
\(578\) −2.32942 −0.0968912
\(579\) 27.0045 1.12227
\(580\) 16.2861 0.676245
\(581\) 5.35247 0.222058
\(582\) −4.66752 −0.193475
\(583\) −1.76390 −0.0730534
\(584\) −20.7819 −0.859960
\(585\) −71.6508 −2.96239
\(586\) −18.0410 −0.745268
\(587\) −16.4734 −0.679930 −0.339965 0.940438i \(-0.610415\pi\)
−0.339965 + 0.940438i \(0.610415\pi\)
\(588\) −11.0185 −0.454395
\(589\) 0.500046 0.0206040
\(590\) 52.8469 2.17567
\(591\) 47.5511 1.95599
\(592\) 9.43650 0.387838
\(593\) 23.7078 0.973561 0.486781 0.873524i \(-0.338171\pi\)
0.486781 + 0.873524i \(0.338171\pi\)
\(594\) 13.2139 0.542173
\(595\) 3.16902 0.129917
\(596\) 32.7137 1.34000
\(597\) −17.5595 −0.718663
\(598\) −6.11466 −0.250047
\(599\) −39.4069 −1.61012 −0.805061 0.593192i \(-0.797867\pi\)
−0.805061 + 0.593192i \(0.797867\pi\)
\(600\) 53.8771 2.19953
\(601\) −14.0058 −0.571309 −0.285655 0.958333i \(-0.592211\pi\)
−0.285655 + 0.958333i \(0.592211\pi\)
\(602\) −10.9519 −0.446367
\(603\) 40.3077 1.64145
\(604\) 44.4539 1.80880
\(605\) 34.3363 1.39597
\(606\) −122.478 −4.97532
\(607\) −30.8936 −1.25393 −0.626966 0.779046i \(-0.715704\pi\)
−0.626966 + 0.779046i \(0.715704\pi\)
\(608\) −7.23299 −0.293337
\(609\) −4.82376 −0.195469
\(610\) −28.6036 −1.15813
\(611\) 27.9940 1.13251
\(612\) 25.1561 1.01688
\(613\) −1.71729 −0.0693605 −0.0346802 0.999398i \(-0.511041\pi\)
−0.0346802 + 0.999398i \(0.511041\pi\)
\(614\) −38.3629 −1.54820
\(615\) 121.020 4.88001
\(616\) 1.34956 0.0543754
\(617\) −7.40794 −0.298232 −0.149116 0.988820i \(-0.547643\pi\)
−0.149116 + 0.988820i \(0.547643\pi\)
\(618\) −73.4626 −2.95510
\(619\) 43.3915 1.74405 0.872025 0.489461i \(-0.162807\pi\)
0.872025 + 0.489461i \(0.162807\pi\)
\(620\) 3.43752 0.138054
\(621\) −11.9036 −0.477677
\(622\) 57.1139 2.29006
\(623\) −14.1845 −0.568288
\(624\) −8.77928 −0.351453
\(625\) −24.7846 −0.991385
\(626\) 75.3577 3.01190
\(627\) 2.06335 0.0824021
\(628\) 32.3050 1.28911
\(629\) 10.6445 0.424424
\(630\) −54.2005 −2.15940
\(631\) 42.5352 1.69330 0.846650 0.532151i \(-0.178616\pi\)
0.846650 + 0.532151i \(0.178616\pi\)
\(632\) −12.5350 −0.498614
\(633\) −45.7163 −1.81706
\(634\) 60.7109 2.41114
\(635\) −2.71469 −0.107729
\(636\) 47.8450 1.89718
\(637\) 3.07940 0.122010
\(638\) 1.41934 0.0561922
\(639\) −64.1591 −2.53809
\(640\) −62.8110 −2.48282
\(641\) 23.6927 0.935806 0.467903 0.883780i \(-0.345010\pi\)
0.467903 + 0.883780i \(0.345010\pi\)
\(642\) 84.6766 3.34192
\(643\) −33.2424 −1.31095 −0.655476 0.755216i \(-0.727532\pi\)
−0.655476 + 0.755216i \(0.727532\pi\)
\(644\) −2.92060 −0.115088
\(645\) −47.9153 −1.88666
\(646\) 3.67920 0.144756
\(647\) 3.51380 0.138142 0.0690709 0.997612i \(-0.477997\pi\)
0.0690709 + 0.997612i \(0.477997\pi\)
\(648\) −76.0195 −2.98633
\(649\) 2.90808 0.114152
\(650\) −36.1725 −1.41880
\(651\) −1.01815 −0.0399045
\(652\) 39.1474 1.53313
\(653\) 17.8863 0.699945 0.349972 0.936760i \(-0.386191\pi\)
0.349972 + 0.936760i \(0.386191\pi\)
\(654\) 38.8615 1.51960
\(655\) −29.5280 −1.15375
\(656\) 10.5272 0.411016
\(657\) 45.9283 1.79183
\(658\) 21.1761 0.825532
\(659\) −2.09435 −0.0815841 −0.0407921 0.999168i \(-0.512988\pi\)
−0.0407921 + 0.999168i \(0.512988\pi\)
\(660\) 14.1843 0.552122
\(661\) 20.6582 0.803510 0.401755 0.915747i \(-0.368400\pi\)
0.401755 + 0.915747i \(0.368400\pi\)
\(662\) 28.3115 1.10036
\(663\) −9.90316 −0.384607
\(664\) 17.7823 0.690087
\(665\) −5.00530 −0.194097
\(666\) −182.055 −7.05450
\(667\) −1.27860 −0.0495077
\(668\) 56.9404 2.20309
\(669\) 84.4362 3.26449
\(670\) 40.5259 1.56565
\(671\) −1.57401 −0.0607640
\(672\) 14.7272 0.568115
\(673\) −37.0558 −1.42840 −0.714199 0.699943i \(-0.753209\pi\)
−0.714199 + 0.699943i \(0.753209\pi\)
\(674\) −75.1828 −2.89593
\(675\) −70.4184 −2.71041
\(676\) −12.0510 −0.463500
\(677\) 11.7562 0.451826 0.225913 0.974147i \(-0.427463\pi\)
0.225913 + 0.974147i \(0.427463\pi\)
\(678\) 36.2435 1.39192
\(679\) 0.623061 0.0239109
\(680\) 10.5283 0.403742
\(681\) 16.4946 0.632076
\(682\) 0.299580 0.0114715
\(683\) 16.5559 0.633494 0.316747 0.948510i \(-0.397409\pi\)
0.316747 + 0.948510i \(0.397409\pi\)
\(684\) −39.7327 −1.51922
\(685\) 8.43669 0.322350
\(686\) 2.32942 0.0889378
\(687\) 18.1988 0.694327
\(688\) −4.16799 −0.158903
\(689\) −13.3715 −0.509415
\(690\) −20.2367 −0.770397
\(691\) −19.6125 −0.746096 −0.373048 0.927812i \(-0.621687\pi\)
−0.373048 + 0.927812i \(0.621687\pi\)
\(692\) −49.3103 −1.87450
\(693\) −2.98256 −0.113298
\(694\) −38.1624 −1.44862
\(695\) −13.1114 −0.497342
\(696\) −16.0258 −0.607455
\(697\) 11.8748 0.449790
\(698\) −62.1542 −2.35257
\(699\) 88.1631 3.33463
\(700\) −17.2774 −0.653024
\(701\) −18.5688 −0.701333 −0.350667 0.936500i \(-0.614045\pi\)
−0.350667 + 0.936500i \(0.614045\pi\)
\(702\) 100.170 3.78067
\(703\) −16.8124 −0.634093
\(704\) −5.05356 −0.190463
\(705\) 92.6470 3.48929
\(706\) −27.1582 −1.02211
\(707\) 16.3494 0.614881
\(708\) −78.8802 −2.96450
\(709\) 18.7436 0.703929 0.351964 0.936013i \(-0.385514\pi\)
0.351964 + 0.936013i \(0.385514\pi\)
\(710\) −64.5064 −2.42088
\(711\) 27.7025 1.03893
\(712\) −47.1244 −1.76606
\(713\) −0.269875 −0.0101069
\(714\) −7.49128 −0.280354
\(715\) −3.96416 −0.148251
\(716\) 8.06908 0.301556
\(717\) 59.1939 2.21064
\(718\) 76.6589 2.86089
\(719\) 16.7267 0.623802 0.311901 0.950115i \(-0.399034\pi\)
0.311901 + 0.950115i \(0.399034\pi\)
\(720\) −20.6272 −0.768730
\(721\) 9.80642 0.365210
\(722\) 38.4479 1.43088
\(723\) 22.5245 0.837693
\(724\) 30.7374 1.14235
\(725\) −7.56383 −0.280914
\(726\) −81.1679 −3.01242
\(727\) −4.78206 −0.177357 −0.0886784 0.996060i \(-0.528264\pi\)
−0.0886784 + 0.996060i \(0.528264\pi\)
\(728\) 10.2306 0.379170
\(729\) 33.2787 1.23254
\(730\) 46.1770 1.70909
\(731\) −4.70156 −0.173893
\(732\) 42.6943 1.57803
\(733\) 9.86848 0.364501 0.182250 0.983252i \(-0.441662\pi\)
0.182250 + 0.983252i \(0.441662\pi\)
\(734\) 6.75145 0.249201
\(735\) 10.1914 0.375915
\(736\) 3.90365 0.143890
\(737\) 2.23007 0.0821456
\(738\) −203.097 −7.47610
\(739\) −0.405842 −0.0149291 −0.00746456 0.999972i \(-0.502376\pi\)
−0.00746456 + 0.999972i \(0.502376\pi\)
\(740\) −115.575 −4.24864
\(741\) 15.6415 0.574605
\(742\) −10.1149 −0.371331
\(743\) 19.5639 0.717730 0.358865 0.933389i \(-0.383164\pi\)
0.358865 + 0.933389i \(0.383164\pi\)
\(744\) −3.38256 −0.124011
\(745\) −30.2580 −1.10857
\(746\) −23.1803 −0.848690
\(747\) −39.2992 −1.43788
\(748\) 1.39179 0.0508889
\(749\) −11.3034 −0.413016
\(750\) −1.01392 −0.0370230
\(751\) −13.1133 −0.478510 −0.239255 0.970957i \(-0.576903\pi\)
−0.239255 + 0.970957i \(0.576903\pi\)
\(752\) 8.05905 0.293883
\(753\) −74.7886 −2.72545
\(754\) 10.7595 0.391838
\(755\) −41.1169 −1.49640
\(756\) 47.8450 1.74011
\(757\) 32.8555 1.19415 0.597077 0.802184i \(-0.296329\pi\)
0.597077 + 0.802184i \(0.296329\pi\)
\(758\) −86.6555 −3.14747
\(759\) −1.11359 −0.0404207
\(760\) −16.6289 −0.603194
\(761\) 22.1867 0.804267 0.402134 0.915581i \(-0.368269\pi\)
0.402134 + 0.915581i \(0.368269\pi\)
\(762\) 6.41727 0.232473
\(763\) −5.18756 −0.187802
\(764\) 35.2977 1.27703
\(765\) −23.2678 −0.841248
\(766\) 18.0203 0.651100
\(767\) 22.0451 0.796002
\(768\) 68.4636 2.47047
\(769\) 21.8949 0.789551 0.394776 0.918778i \(-0.370822\pi\)
0.394776 + 0.918778i \(0.370822\pi\)
\(770\) −2.99870 −0.108066
\(771\) −55.2183 −1.98864
\(772\) −28.7702 −1.03546
\(773\) 35.2872 1.26919 0.634596 0.772844i \(-0.281167\pi\)
0.634596 + 0.772844i \(0.281167\pi\)
\(774\) 80.4117 2.89034
\(775\) −1.59650 −0.0573480
\(776\) 2.06997 0.0743075
\(777\) 34.2321 1.22807
\(778\) 9.09355 0.326020
\(779\) −18.7556 −0.671989
\(780\) 107.526 3.85005
\(781\) −3.54968 −0.127017
\(782\) −1.98567 −0.0710072
\(783\) 20.9460 0.748548
\(784\) 0.886514 0.0316612
\(785\) −29.8800 −1.06646
\(786\) 69.8014 2.48974
\(787\) −52.2039 −1.86087 −0.930434 0.366459i \(-0.880570\pi\)
−0.930434 + 0.366459i \(0.880570\pi\)
\(788\) −50.6602 −1.80470
\(789\) −58.3976 −2.07901
\(790\) 27.8525 0.990947
\(791\) −4.83809 −0.172023
\(792\) −9.90882 −0.352095
\(793\) −11.9320 −0.423718
\(794\) 58.9324 2.09143
\(795\) −44.2535 −1.56951
\(796\) 18.7077 0.663076
\(797\) −26.0121 −0.921397 −0.460698 0.887557i \(-0.652401\pi\)
−0.460698 + 0.887557i \(0.652401\pi\)
\(798\) 11.8321 0.418851
\(799\) 9.09072 0.321607
\(800\) 23.0928 0.816454
\(801\) 104.146 3.67981
\(802\) 71.2182 2.51480
\(803\) 2.54104 0.0896713
\(804\) −60.4896 −2.13330
\(805\) 2.70136 0.0952105
\(806\) 2.27101 0.0799930
\(807\) 37.0386 1.30382
\(808\) 54.3168 1.91086
\(809\) 8.26515 0.290587 0.145294 0.989389i \(-0.453587\pi\)
0.145294 + 0.989389i \(0.453587\pi\)
\(810\) 168.914 5.93504
\(811\) 4.12383 0.144807 0.0724036 0.997375i \(-0.476933\pi\)
0.0724036 + 0.997375i \(0.476933\pi\)
\(812\) 5.13916 0.180349
\(813\) −51.0529 −1.79050
\(814\) −10.0724 −0.353038
\(815\) −36.2088 −1.26834
\(816\) −2.85097 −0.0998040
\(817\) 7.42586 0.259798
\(818\) −67.5059 −2.36029
\(819\) −22.6097 −0.790048
\(820\) −128.933 −4.50255
\(821\) 25.8547 0.902336 0.451168 0.892439i \(-0.351008\pi\)
0.451168 + 0.892439i \(0.351008\pi\)
\(822\) −19.9436 −0.695612
\(823\) 15.1792 0.529112 0.264556 0.964370i \(-0.414775\pi\)
0.264556 + 0.964370i \(0.414775\pi\)
\(824\) 32.5794 1.13496
\(825\) −6.58766 −0.229353
\(826\) 16.6761 0.580236
\(827\) 27.4401 0.954185 0.477093 0.878853i \(-0.341691\pi\)
0.477093 + 0.878853i \(0.341691\pi\)
\(828\) 21.4438 0.745223
\(829\) −26.2319 −0.911071 −0.455536 0.890218i \(-0.650552\pi\)
−0.455536 + 0.890218i \(0.650552\pi\)
\(830\) −39.5119 −1.37148
\(831\) −87.6595 −3.04087
\(832\) −38.3093 −1.32814
\(833\) 1.00000 0.0346479
\(834\) 30.9940 1.07324
\(835\) −52.6662 −1.82259
\(836\) −2.19826 −0.0760284
\(837\) 4.42107 0.152815
\(838\) −1.63935 −0.0566303
\(839\) −2.25100 −0.0777132 −0.0388566 0.999245i \(-0.512372\pi\)
−0.0388566 + 0.999245i \(0.512372\pi\)
\(840\) 33.8584 1.16822
\(841\) −26.7501 −0.922419
\(842\) 16.4580 0.567179
\(843\) −76.1276 −2.62197
\(844\) 48.7055 1.67651
\(845\) 11.1464 0.383447
\(846\) −155.481 −5.34553
\(847\) 10.8350 0.372295
\(848\) −3.84946 −0.132191
\(849\) −67.4731 −2.31567
\(850\) −11.7466 −0.402905
\(851\) 9.07368 0.311042
\(852\) 96.2833 3.29861
\(853\) 8.78493 0.300790 0.150395 0.988626i \(-0.451945\pi\)
0.150395 + 0.988626i \(0.451945\pi\)
\(854\) −9.02601 −0.308864
\(855\) 36.7502 1.25683
\(856\) −37.5527 −1.28352
\(857\) −7.00660 −0.239341 −0.119670 0.992814i \(-0.538184\pi\)
−0.119670 + 0.992814i \(0.538184\pi\)
\(858\) 9.37091 0.319918
\(859\) 12.2783 0.418930 0.209465 0.977816i \(-0.432828\pi\)
0.209465 + 0.977816i \(0.432828\pi\)
\(860\) 51.0483 1.74073
\(861\) 38.1886 1.30146
\(862\) −42.0527 −1.43232
\(863\) 34.3165 1.16815 0.584074 0.811701i \(-0.301458\pi\)
0.584074 + 0.811701i \(0.301458\pi\)
\(864\) −63.9493 −2.17560
\(865\) 45.6088 1.55075
\(866\) −31.1146 −1.05732
\(867\) −3.21594 −0.109219
\(868\) 1.08472 0.0368180
\(869\) 1.53267 0.0519924
\(870\) 35.6090 1.20726
\(871\) 16.9054 0.572816
\(872\) −17.2344 −0.583631
\(873\) −4.57467 −0.154829
\(874\) 3.13625 0.106085
\(875\) 0.135346 0.00457554
\(876\) −68.9245 −2.32874
\(877\) 19.9415 0.673377 0.336689 0.941616i \(-0.390693\pi\)
0.336689 + 0.941616i \(0.390693\pi\)
\(878\) −37.3896 −1.26184
\(879\) −24.9069 −0.840090
\(880\) −1.14122 −0.0384706
\(881\) 50.0266 1.68544 0.842719 0.538354i \(-0.180954\pi\)
0.842719 + 0.538354i \(0.180954\pi\)
\(882\) −17.1032 −0.575895
\(883\) −5.26405 −0.177150 −0.0885748 0.996070i \(-0.528231\pi\)
−0.0885748 + 0.996070i \(0.528231\pi\)
\(884\) 10.5507 0.354858
\(885\) 72.9590 2.45249
\(886\) −60.2478 −2.02407
\(887\) −33.0440 −1.10951 −0.554754 0.832014i \(-0.687188\pi\)
−0.554754 + 0.832014i \(0.687188\pi\)
\(888\) 113.728 3.81645
\(889\) −0.856632 −0.0287305
\(890\) 104.710 3.50987
\(891\) 9.29505 0.311396
\(892\) −89.9571 −3.01199
\(893\) −14.3583 −0.480482
\(894\) 71.5272 2.39223
\(895\) −7.46337 −0.249473
\(896\) −19.8203 −0.662150
\(897\) −8.44173 −0.281861
\(898\) 69.7545 2.32774
\(899\) 0.474879 0.0158381
\(900\) 126.855 4.22850
\(901\) −4.34225 −0.144661
\(902\) −11.2366 −0.374137
\(903\) −15.1199 −0.503159
\(904\) −16.0734 −0.534593
\(905\) −28.4301 −0.945047
\(906\) 97.1966 3.22914
\(907\) 16.4750 0.547042 0.273521 0.961866i \(-0.411812\pi\)
0.273521 + 0.961866i \(0.411812\pi\)
\(908\) −17.5732 −0.583186
\(909\) −120.041 −3.98151
\(910\) −22.7321 −0.753563
\(911\) 42.6838 1.41418 0.707088 0.707125i \(-0.250008\pi\)
0.707088 + 0.707125i \(0.250008\pi\)
\(912\) 4.50296 0.149108
\(913\) −2.17427 −0.0719580
\(914\) −15.3945 −0.509206
\(915\) −39.4894 −1.30548
\(916\) −19.3887 −0.640622
\(917\) −9.31769 −0.307697
\(918\) 32.5290 1.07362
\(919\) 1.02519 0.0338178 0.0169089 0.999857i \(-0.494617\pi\)
0.0169089 + 0.999857i \(0.494617\pi\)
\(920\) 8.97462 0.295884
\(921\) −52.9628 −1.74518
\(922\) 43.4129 1.42973
\(923\) −26.9088 −0.885715
\(924\) 4.47591 0.147247
\(925\) 53.6772 1.76489
\(926\) 67.6507 2.22314
\(927\) −72.0012 −2.36483
\(928\) −6.86896 −0.225485
\(929\) 23.4712 0.770064 0.385032 0.922903i \(-0.374190\pi\)
0.385032 + 0.922903i \(0.374190\pi\)
\(930\) 7.51599 0.246459
\(931\) −1.57945 −0.0517643
\(932\) −93.9277 −3.07670
\(933\) 78.8499 2.58143
\(934\) 59.0634 1.93261
\(935\) −1.28732 −0.0420997
\(936\) −75.1153 −2.45522
\(937\) 38.7136 1.26472 0.632358 0.774676i \(-0.282087\pi\)
0.632358 + 0.774676i \(0.282087\pi\)
\(938\) 12.7881 0.417547
\(939\) 104.037 3.39511
\(940\) −98.7048 −3.21940
\(941\) −49.4182 −1.61099 −0.805494 0.592603i \(-0.798100\pi\)
−0.805494 + 0.592603i \(0.798100\pi\)
\(942\) 70.6335 2.30136
\(943\) 10.1224 0.329631
\(944\) 6.34646 0.206560
\(945\) −44.2535 −1.43957
\(946\) 4.44887 0.144645
\(947\) −8.47578 −0.275426 −0.137713 0.990472i \(-0.543975\pi\)
−0.137713 + 0.990472i \(0.543975\pi\)
\(948\) −41.5731 −1.35023
\(949\) 19.2627 0.625294
\(950\) 18.5531 0.601943
\(951\) 83.8158 2.71791
\(952\) 3.32226 0.107675
\(953\) 15.9693 0.517297 0.258649 0.965971i \(-0.416723\pi\)
0.258649 + 0.965971i \(0.416723\pi\)
\(954\) 74.2664 2.40447
\(955\) −32.6481 −1.05647
\(956\) −63.0643 −2.03965
\(957\) 1.95950 0.0633416
\(958\) 5.01541 0.162040
\(959\) 2.66224 0.0859682
\(960\) −126.786 −4.09200
\(961\) −30.8998 −0.996767
\(962\) −76.3555 −2.46180
\(963\) 82.9921 2.67438
\(964\) −23.9972 −0.772899
\(965\) 26.6106 0.856625
\(966\) −6.38577 −0.205459
\(967\) −57.1099 −1.83653 −0.918266 0.395965i \(-0.870410\pi\)
−0.918266 + 0.395965i \(0.870410\pi\)
\(968\) 35.9966 1.15697
\(969\) 5.07940 0.163174
\(970\) −4.59943 −0.147679
\(971\) −11.9809 −0.384487 −0.192243 0.981347i \(-0.561576\pi\)
−0.192243 + 0.981347i \(0.561576\pi\)
\(972\) −108.589 −3.48299
\(973\) −4.13735 −0.132637
\(974\) 46.6592 1.49506
\(975\) −49.9387 −1.59932
\(976\) −3.43505 −0.109953
\(977\) 41.2060 1.31830 0.659148 0.752013i \(-0.270917\pi\)
0.659148 + 0.752013i \(0.270917\pi\)
\(978\) 85.5943 2.73700
\(979\) 5.76199 0.184154
\(980\) −10.8578 −0.346838
\(981\) 38.0884 1.21607
\(982\) 4.82588 0.154000
\(983\) 45.1946 1.44148 0.720742 0.693204i \(-0.243801\pi\)
0.720742 + 0.693204i \(0.243801\pi\)
\(984\) 126.872 4.04454
\(985\) 46.8574 1.49300
\(986\) 3.49403 0.111273
\(987\) 29.2352 0.930566
\(988\) −16.6642 −0.530160
\(989\) −4.00774 −0.127439
\(990\) 22.0172 0.699754
\(991\) −6.05455 −0.192329 −0.0961646 0.995365i \(-0.530658\pi\)
−0.0961646 + 0.995365i \(0.530658\pi\)
\(992\) −1.44983 −0.0460322
\(993\) 39.0861 1.24036
\(994\) −20.3553 −0.645631
\(995\) −17.3034 −0.548553
\(996\) 58.9762 1.86873
\(997\) −1.70376 −0.0539587 −0.0269794 0.999636i \(-0.508589\pi\)
−0.0269794 + 0.999636i \(0.508589\pi\)
\(998\) 41.8971 1.32623
\(999\) −148.644 −4.70290
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 119.2.a.b.1.1 5
3.2 odd 2 1071.2.a.m.1.5 5
4.3 odd 2 1904.2.a.t.1.5 5
5.4 even 2 2975.2.a.m.1.5 5
7.2 even 3 833.2.e.i.18.5 10
7.3 odd 6 833.2.e.h.324.5 10
7.4 even 3 833.2.e.i.324.5 10
7.5 odd 6 833.2.e.h.18.5 10
7.6 odd 2 833.2.a.g.1.1 5
8.3 odd 2 7616.2.a.bq.1.1 5
8.5 even 2 7616.2.a.bt.1.5 5
17.16 even 2 2023.2.a.j.1.1 5
21.20 even 2 7497.2.a.br.1.5 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
119.2.a.b.1.1 5 1.1 even 1 trivial
833.2.a.g.1.1 5 7.6 odd 2
833.2.e.h.18.5 10 7.5 odd 6
833.2.e.h.324.5 10 7.3 odd 6
833.2.e.i.18.5 10 7.2 even 3
833.2.e.i.324.5 10 7.4 even 3
1071.2.a.m.1.5 5 3.2 odd 2
1904.2.a.t.1.5 5 4.3 odd 2
2023.2.a.j.1.1 5 17.16 even 2
2975.2.a.m.1.5 5 5.4 even 2
7497.2.a.br.1.5 5 21.20 even 2
7616.2.a.bq.1.1 5 8.3 odd 2
7616.2.a.bt.1.5 5 8.5 even 2