Properties

Label 119.2.a
Level $119$
Weight $2$
Character orbit 119.a
Rep. character $\chi_{119}(1,\cdot)$
Character field $\Q$
Dimension $9$
Newform subspaces $2$
Sturm bound $24$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 119 = 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 119.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(24\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(119))\).

Total New Old
Modular forms 14 9 5
Cusp forms 11 9 2
Eisenstein series 3 0 3

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(7\)\(17\)FrickeDim
\(+\)\(-\)\(-\)\(5\)
\(-\)\(+\)\(-\)\(4\)
Plus space\(+\)\(0\)
Minus space\(-\)\(9\)

Trace form

\( 9 q + q^{2} + 13 q^{4} + 2 q^{5} - q^{7} - 3 q^{8} + 17 q^{9} + 2 q^{10} - 16 q^{12} + 10 q^{13} - 3 q^{14} - 8 q^{15} + 9 q^{16} + q^{17} - 19 q^{18} + 16 q^{19} - 22 q^{20} + 4 q^{21} - 16 q^{22} - 16 q^{23}+ \cdots - 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(119))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 7 17
119.2.a.a 119.a 1.a $4$ $0.950$ 4.4.9301.1 None 119.2.a.a \(-1\) \(2\) \(2\) \(4\) $-$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(1+\beta _{3})q^{3}+(1+\beta _{1}+\beta _{2}+\cdots)q^{4}+\cdots\)
119.2.a.b 119.a 1.a $5$ $0.950$ 5.5.453749.1 None 119.2.a.b \(2\) \(-2\) \(0\) \(-5\) $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{4}q^{2}+(-\beta _{1}+\beta _{3})q^{3}+(2-\beta _{3}+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(119))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(119)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(17))\)\(^{\oplus 2}\)