Properties

Label 119.1.d.a
Level 119
Weight 1
Character orbit 119.d
Self dual yes
Analytic conductor 0.059
Analytic rank 0
Dimension 2
Projective image \(D_{5}\)
CM discriminant -119
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 119 = 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 119.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: yes
Analytic conductor: \(0.0593887365033\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{5}) \)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image \(D_{5}\)
Projective field Galois closure of 5.1.14161.1
Artin image $D_5$
Artin field Galois closure of 5.1.14161.1

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{5})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( -1 + \beta ) q^{2} + ( -1 + \beta ) q^{3} + ( 1 - \beta ) q^{4} -\beta q^{5} + ( 2 - \beta ) q^{6} + q^{7} - q^{8} + ( 1 - \beta ) q^{9} +O(q^{10})\) \( q + ( -1 + \beta ) q^{2} + ( -1 + \beta ) q^{3} + ( 1 - \beta ) q^{4} -\beta q^{5} + ( 2 - \beta ) q^{6} + q^{7} - q^{8} + ( 1 - \beta ) q^{9} - q^{10} + ( -2 + \beta ) q^{12} + ( -1 + \beta ) q^{14} - q^{15} + q^{17} + ( -2 + \beta ) q^{18} + q^{20} + ( -1 + \beta ) q^{21} + ( 1 - \beta ) q^{24} + \beta q^{25} - q^{27} + ( 1 - \beta ) q^{28} + ( 1 - \beta ) q^{30} -\beta q^{31} + q^{32} + ( -1 + \beta ) q^{34} -\beta q^{35} + ( 2 - \beta ) q^{36} + \beta q^{40} + ( -1 + \beta ) q^{41} + ( 2 - \beta ) q^{42} + ( -1 + \beta ) q^{43} + q^{45} + q^{49} + q^{50} + ( -1 + \beta ) q^{51} -\beta q^{53} + ( 1 - \beta ) q^{54} - q^{56} + ( -1 + \beta ) q^{60} + ( -1 + \beta ) q^{61} - q^{62} + ( 1 - \beta ) q^{63} + ( -1 + \beta ) q^{64} -\beta q^{67} + ( 1 - \beta ) q^{68} - q^{70} + ( -1 + \beta ) q^{72} + ( -1 + \beta ) q^{73} + q^{75} + ( 2 - \beta ) q^{82} + ( -2 + \beta ) q^{84} -\beta q^{85} + ( 2 - \beta ) q^{86} + ( -1 + \beta ) q^{90} - q^{93} + ( -1 + \beta ) q^{96} -\beta q^{97} + ( -1 + \beta ) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - q^{2} - q^{3} + q^{4} - q^{5} + 3q^{6} + 2q^{7} - 2q^{8} + q^{9} + O(q^{10}) \) \( 2q - q^{2} - q^{3} + q^{4} - q^{5} + 3q^{6} + 2q^{7} - 2q^{8} + q^{9} - 2q^{10} - 3q^{12} - q^{14} - 2q^{15} + 2q^{17} - 3q^{18} + 2q^{20} - q^{21} + q^{24} + q^{25} - 2q^{27} + q^{28} + q^{30} - q^{31} + 2q^{32} - q^{34} - q^{35} + 3q^{36} + q^{40} - q^{41} + 3q^{42} - q^{43} + 2q^{45} + 2q^{49} + 2q^{50} - q^{51} - q^{53} + q^{54} - 2q^{56} - q^{60} - q^{61} - 2q^{62} + q^{63} - q^{64} - q^{67} + q^{68} - 2q^{70} - q^{72} - q^{73} + 2q^{75} + 3q^{82} - 3q^{84} - q^{85} + 3q^{86} - q^{90} - 2q^{93} - q^{96} - q^{97} - q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/119\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(71\)
\(\chi(n)\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
118.1
−0.618034
1.61803
−1.61803 −1.61803 1.61803 0.618034 2.61803 1.00000 −1.00000 1.61803 −1.00000
118.2 0.618034 0.618034 −0.618034 −1.61803 0.381966 1.00000 −1.00000 −0.618034 −1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
119.d odd 2 1 CM by \(\Q(\sqrt{-119}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 119.1.d.a 2
3.b odd 2 1 1071.1.h.b 2
4.b odd 2 1 1904.1.n.b 2
5.b even 2 1 2975.1.h.d 2
5.c odd 4 2 2975.1.b.b 4
7.b odd 2 1 119.1.d.b yes 2
7.c even 3 2 833.1.h.b 4
7.d odd 6 2 833.1.h.a 4
17.b even 2 1 119.1.d.b yes 2
17.c even 4 2 2023.1.c.e 4
17.d even 8 4 2023.1.f.b 8
17.e odd 16 8 2023.1.l.b 16
21.c even 2 1 1071.1.h.a 2
28.d even 2 1 1904.1.n.a 2
35.c odd 2 1 2975.1.h.c 2
35.f even 4 2 2975.1.b.a 4
51.c odd 2 1 1071.1.h.a 2
68.d odd 2 1 1904.1.n.a 2
85.c even 2 1 2975.1.h.c 2
85.g odd 4 2 2975.1.b.a 4
119.d odd 2 1 CM 119.1.d.a 2
119.f odd 4 2 2023.1.c.e 4
119.h odd 6 2 833.1.h.b 4
119.j even 6 2 833.1.h.a 4
119.l odd 8 4 2023.1.f.b 8
119.p even 16 8 2023.1.l.b 16
357.c even 2 1 1071.1.h.b 2
476.e even 2 1 1904.1.n.b 2
595.b odd 2 1 2975.1.h.d 2
595.p even 4 2 2975.1.b.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
119.1.d.a 2 1.a even 1 1 trivial
119.1.d.a 2 119.d odd 2 1 CM
119.1.d.b yes 2 7.b odd 2 1
119.1.d.b yes 2 17.b even 2 1
833.1.h.a 4 7.d odd 6 2
833.1.h.a 4 119.j even 6 2
833.1.h.b 4 7.c even 3 2
833.1.h.b 4 119.h odd 6 2
1071.1.h.a 2 21.c even 2 1
1071.1.h.a 2 51.c odd 2 1
1071.1.h.b 2 3.b odd 2 1
1071.1.h.b 2 357.c even 2 1
1904.1.n.a 2 28.d even 2 1
1904.1.n.a 2 68.d odd 2 1
1904.1.n.b 2 4.b odd 2 1
1904.1.n.b 2 476.e even 2 1
2023.1.c.e 4 17.c even 4 2
2023.1.c.e 4 119.f odd 4 2
2023.1.f.b 8 17.d even 8 4
2023.1.f.b 8 119.l odd 8 4
2023.1.l.b 16 17.e odd 16 8
2023.1.l.b 16 119.p even 16 8
2975.1.b.a 4 35.f even 4 2
2975.1.b.a 4 85.g odd 4 2
2975.1.b.b 4 5.c odd 4 2
2975.1.b.b 4 595.p even 4 2
2975.1.h.c 2 35.c odd 2 1
2975.1.h.c 2 85.c even 2 1
2975.1.h.d 2 5.b even 2 1
2975.1.h.d 2 595.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} + T_{3} - 1 \) acting on \(S_{1}^{\mathrm{new}}(119, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 + T + T^{2} + T^{3} + T^{4} \)
$3$ \( 1 + T + T^{2} + T^{3} + T^{4} \)
$5$ \( 1 + T + T^{2} + T^{3} + T^{4} \)
$7$ \( ( 1 - T )^{2} \)
$11$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
$13$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
$17$ \( ( 1 - T )^{2} \)
$19$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
$23$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
$29$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
$31$ \( 1 + T + T^{2} + T^{3} + T^{4} \)
$37$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
$41$ \( 1 + T + T^{2} + T^{3} + T^{4} \)
$43$ \( 1 + T + T^{2} + T^{3} + T^{4} \)
$47$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
$53$ \( 1 + T + T^{2} + T^{3} + T^{4} \)
$59$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
$61$ \( 1 + T + T^{2} + T^{3} + T^{4} \)
$67$ \( 1 + T + T^{2} + T^{3} + T^{4} \)
$71$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
$73$ \( 1 + T + T^{2} + T^{3} + T^{4} \)
$79$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
$83$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
$89$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
$97$ \( 1 + T + T^{2} + T^{3} + T^{4} \)
show more
show less