Properties

Label 1184.2.y.a.529.13
Level $1184$
Weight $2$
Character 1184.529
Analytic conductor $9.454$
Analytic rank $0$
Dimension $72$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1184,2,Mod(529,1184)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1184, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1184.529"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1184 = 2^{5} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1184.y (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.45428759932\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(36\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 296)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 529.13
Character \(\chi\) \(=\) 1184.529
Dual form 1184.2.y.a.1137.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.727471 - 0.420006i) q^{3} +(0.249638 - 0.432386i) q^{5} +(-0.235288 + 0.407531i) q^{7} +(-1.14719 - 1.98699i) q^{9} -1.14772i q^{11} +(-3.10587 + 5.37952i) q^{13} +(-0.363209 + 0.209699i) q^{15} +(-0.363464 + 0.209846i) q^{17} +(-1.39615 + 2.41820i) q^{19} +(0.342330 - 0.197644i) q^{21} -7.74213i q^{23} +(2.37536 + 4.11425i) q^{25} +4.44734i q^{27} -5.48269 q^{29} +7.40664i q^{31} +(-0.482049 + 0.834933i) q^{33} +(0.117474 + 0.203470i) q^{35} +(-5.34584 + 2.90207i) q^{37} +(4.51886 - 2.60896i) q^{39} +(1.51018 - 2.61571i) q^{41} +1.44686 q^{43} -1.14553 q^{45} +0.412916 q^{47} +(3.38928 + 5.87040i) q^{49} +0.352546 q^{51} +(-6.89691 + 3.98194i) q^{53} +(-0.496258 - 0.286515i) q^{55} +(2.03131 - 1.17278i) q^{57} +(5.73102 + 9.92641i) q^{59} +(2.66975 - 4.62415i) q^{61} +1.07968 q^{63} +(1.55069 + 2.68587i) q^{65} +(-8.66568 - 5.00313i) q^{67} +(-3.25174 + 5.63217i) q^{69} +(-2.85626 + 4.94719i) q^{71} -5.09043 q^{73} -3.99066i q^{75} +(0.467731 + 0.270045i) q^{77} +(-5.88163 - 3.39576i) q^{79} +(-1.57366 + 2.72567i) q^{81} +(-11.4936 + 6.63581i) q^{83} +0.209542i q^{85} +(3.98850 + 2.30276i) q^{87} +(-10.0474 + 5.80087i) q^{89} +(-1.46155 - 2.53147i) q^{91} +(3.11083 - 5.38811i) q^{93} +(0.697063 + 1.20735i) q^{95} -8.36880i q^{97} +(-2.28051 + 1.31665i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q - 2 q^{7} + 30 q^{9} + 6 q^{15} - 12 q^{17} - 32 q^{25} + 4 q^{33} + 6 q^{39} - 32 q^{47} - 18 q^{49} - 24 q^{55} - 6 q^{57} - 8 q^{63} + 6 q^{65} - 18 q^{71} - 64 q^{73} - 54 q^{79} - 16 q^{81} + 108 q^{87}+ \cdots - 50 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1184\mathbb{Z}\right)^\times\).

\(n\) \(223\) \(705\) \(741\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.727471 0.420006i −0.420006 0.242490i 0.275074 0.961423i \(-0.411298\pi\)
−0.695080 + 0.718933i \(0.744631\pi\)
\(4\) 0 0
\(5\) 0.249638 0.432386i 0.111642 0.193369i −0.804791 0.593559i \(-0.797722\pi\)
0.916432 + 0.400190i \(0.131056\pi\)
\(6\) 0 0
\(7\) −0.235288 + 0.407531i −0.0889305 + 0.154032i −0.907059 0.421003i \(-0.861678\pi\)
0.818129 + 0.575035i \(0.195012\pi\)
\(8\) 0 0
\(9\) −1.14719 1.98699i −0.382397 0.662331i
\(10\) 0 0
\(11\) 1.14772i 0.346051i −0.984917 0.173025i \(-0.944646\pi\)
0.984917 0.173025i \(-0.0553542\pi\)
\(12\) 0 0
\(13\) −3.10587 + 5.37952i −0.861413 + 1.49201i 0.00915271 + 0.999958i \(0.497087\pi\)
−0.870565 + 0.492053i \(0.836247\pi\)
\(14\) 0 0
\(15\) −0.363209 + 0.209699i −0.0937801 + 0.0541440i
\(16\) 0 0
\(17\) −0.363464 + 0.209846i −0.0881530 + 0.0508952i −0.543428 0.839455i \(-0.682874\pi\)
0.455276 + 0.890351i \(0.349541\pi\)
\(18\) 0 0
\(19\) −1.39615 + 2.41820i −0.320298 + 0.554773i −0.980549 0.196272i \(-0.937116\pi\)
0.660251 + 0.751045i \(0.270450\pi\)
\(20\) 0 0
\(21\) 0.342330 0.197644i 0.0747026 0.0431296i
\(22\) 0 0
\(23\) 7.74213i 1.61435i −0.590315 0.807173i \(-0.700997\pi\)
0.590315 0.807173i \(-0.299003\pi\)
\(24\) 0 0
\(25\) 2.37536 + 4.11425i 0.475072 + 0.822849i
\(26\) 0 0
\(27\) 4.44734i 0.855891i
\(28\) 0 0
\(29\) −5.48269 −1.01811 −0.509055 0.860734i \(-0.670005\pi\)
−0.509055 + 0.860734i \(0.670005\pi\)
\(30\) 0 0
\(31\) 7.40664i 1.33027i 0.746722 + 0.665136i \(0.231626\pi\)
−0.746722 + 0.665136i \(0.768374\pi\)
\(32\) 0 0
\(33\) −0.482049 + 0.834933i −0.0839139 + 0.145343i
\(34\) 0 0
\(35\) 0.117474 + 0.203470i 0.0198567 + 0.0343928i
\(36\) 0 0
\(37\) −5.34584 + 2.90207i −0.878851 + 0.477097i
\(38\) 0 0
\(39\) 4.51886 2.60896i 0.723596 0.417769i
\(40\) 0 0
\(41\) 1.51018 2.61571i 0.235851 0.408505i −0.723669 0.690147i \(-0.757546\pi\)
0.959520 + 0.281642i \(0.0908791\pi\)
\(42\) 0 0
\(43\) 1.44686 0.220644 0.110322 0.993896i \(-0.464812\pi\)
0.110322 + 0.993896i \(0.464812\pi\)
\(44\) 0 0
\(45\) −1.14553 −0.170765
\(46\) 0 0
\(47\) 0.412916 0.0602300 0.0301150 0.999546i \(-0.490413\pi\)
0.0301150 + 0.999546i \(0.490413\pi\)
\(48\) 0 0
\(49\) 3.38928 + 5.87040i 0.484183 + 0.838629i
\(50\) 0 0
\(51\) 0.352546 0.0493663
\(52\) 0 0
\(53\) −6.89691 + 3.98194i −0.947364 + 0.546961i −0.892261 0.451520i \(-0.850882\pi\)
−0.0551030 + 0.998481i \(0.517549\pi\)
\(54\) 0 0
\(55\) −0.496258 0.286515i −0.0669154 0.0386336i
\(56\) 0 0
\(57\) 2.03131 1.17278i 0.269054 0.155338i
\(58\) 0 0
\(59\) 5.73102 + 9.92641i 0.746115 + 1.29231i 0.949672 + 0.313246i \(0.101416\pi\)
−0.203557 + 0.979063i \(0.565250\pi\)
\(60\) 0 0
\(61\) 2.66975 4.62415i 0.341827 0.592061i −0.642945 0.765912i \(-0.722288\pi\)
0.984772 + 0.173851i \(0.0556211\pi\)
\(62\) 0 0
\(63\) 1.07968 0.136027
\(64\) 0 0
\(65\) 1.55069 + 2.68587i 0.192339 + 0.333141i
\(66\) 0 0
\(67\) −8.66568 5.00313i −1.05868 0.611230i −0.133614 0.991033i \(-0.542658\pi\)
−0.925067 + 0.379803i \(0.875992\pi\)
\(68\) 0 0
\(69\) −3.25174 + 5.63217i −0.391463 + 0.678034i
\(70\) 0 0
\(71\) −2.85626 + 4.94719i −0.338976 + 0.587123i −0.984240 0.176836i \(-0.943414\pi\)
0.645265 + 0.763959i \(0.276747\pi\)
\(72\) 0 0
\(73\) −5.09043 −0.595790 −0.297895 0.954599i \(-0.596285\pi\)
−0.297895 + 0.954599i \(0.596285\pi\)
\(74\) 0 0
\(75\) 3.99066i 0.460802i
\(76\) 0 0
\(77\) 0.467731 + 0.270045i 0.0533029 + 0.0307744i
\(78\) 0 0
\(79\) −5.88163 3.39576i −0.661735 0.382053i 0.131203 0.991356i \(-0.458116\pi\)
−0.792938 + 0.609303i \(0.791449\pi\)
\(80\) 0 0
\(81\) −1.57366 + 2.72567i −0.174852 + 0.302852i
\(82\) 0 0
\(83\) −11.4936 + 6.63581i −1.26158 + 0.728375i −0.973381 0.229194i \(-0.926391\pi\)
−0.288202 + 0.957570i \(0.593058\pi\)
\(84\) 0 0
\(85\) 0.209542i 0.0227281i
\(86\) 0 0
\(87\) 3.98850 + 2.30276i 0.427612 + 0.246882i
\(88\) 0 0
\(89\) −10.0474 + 5.80087i −1.06502 + 0.614891i −0.926817 0.375512i \(-0.877467\pi\)
−0.138206 + 0.990404i \(0.544134\pi\)
\(90\) 0 0
\(91\) −1.46155 2.53147i −0.153212 0.265370i
\(92\) 0 0
\(93\) 3.11083 5.38811i 0.322578 0.558721i
\(94\) 0 0
\(95\) 0.697063 + 1.20735i 0.0715172 + 0.123871i
\(96\) 0 0
\(97\) 8.36880i 0.849723i −0.905258 0.424861i \(-0.860323\pi\)
0.905258 0.424861i \(-0.139677\pi\)
\(98\) 0 0
\(99\) −2.28051 + 1.31665i −0.229200 + 0.132329i
\(100\) 0 0
\(101\) 4.99152i 0.496675i 0.968674 + 0.248337i \(0.0798841\pi\)
−0.968674 + 0.248337i \(0.920116\pi\)
\(102\) 0 0
\(103\) 8.16774i 0.804791i 0.915466 + 0.402396i \(0.131822\pi\)
−0.915466 + 0.402396i \(0.868178\pi\)
\(104\) 0 0
\(105\) 0.197358i 0.0192602i
\(106\) 0 0
\(107\) 9.89318 + 5.71183i 0.956410 + 0.552183i 0.895066 0.445933i \(-0.147128\pi\)
0.0613436 + 0.998117i \(0.480461\pi\)
\(108\) 0 0
\(109\) 4.53724 + 7.85873i 0.434589 + 0.752729i 0.997262 0.0739498i \(-0.0235605\pi\)
−0.562673 + 0.826679i \(0.690227\pi\)
\(110\) 0 0
\(111\) 5.10783 + 0.134115i 0.484814 + 0.0127296i
\(112\) 0 0
\(113\) 6.36432 3.67444i 0.598705 0.345663i −0.169827 0.985474i \(-0.554321\pi\)
0.768532 + 0.639811i \(0.220987\pi\)
\(114\) 0 0
\(115\) −3.34759 1.93273i −0.312164 0.180228i
\(116\) 0 0
\(117\) 14.2521 1.31761
\(118\) 0 0
\(119\) 0.197497i 0.0181045i
\(120\) 0 0
\(121\) 9.68274 0.880249
\(122\) 0 0
\(123\) −2.19723 + 1.26857i −0.198117 + 0.114383i
\(124\) 0 0
\(125\) 4.86830 0.435434
\(126\) 0 0
\(127\) −3.31142 5.73554i −0.293841 0.508947i 0.680874 0.732401i \(-0.261600\pi\)
−0.974715 + 0.223454i \(0.928267\pi\)
\(128\) 0 0
\(129\) −1.05255 0.607689i −0.0926718 0.0535041i
\(130\) 0 0
\(131\) 0.266884 + 0.462257i 0.0233178 + 0.0403876i 0.877449 0.479670i \(-0.159244\pi\)
−0.854131 + 0.520058i \(0.825910\pi\)
\(132\) 0 0
\(133\) −0.656993 1.13795i −0.0569685 0.0986724i
\(134\) 0 0
\(135\) 1.92297 + 1.11023i 0.165503 + 0.0955530i
\(136\) 0 0
\(137\) −5.65304 −0.482972 −0.241486 0.970404i \(-0.577635\pi\)
−0.241486 + 0.970404i \(0.577635\pi\)
\(138\) 0 0
\(139\) −17.4673 + 10.0847i −1.48156 + 0.855376i −0.999781 0.0209193i \(-0.993341\pi\)
−0.481774 + 0.876296i \(0.660007\pi\)
\(140\) 0 0
\(141\) −0.300385 0.173427i −0.0252969 0.0146052i
\(142\) 0 0
\(143\) 6.17418 + 3.56467i 0.516311 + 0.298092i
\(144\) 0 0
\(145\) −1.36869 + 2.37064i −0.113663 + 0.196871i
\(146\) 0 0
\(147\) 5.69406i 0.469639i
\(148\) 0 0
\(149\) 22.0781i 1.80871i −0.426783 0.904354i \(-0.640353\pi\)
0.426783 0.904354i \(-0.359647\pi\)
\(150\) 0 0
\(151\) −4.93283 + 8.54392i −0.401428 + 0.695294i −0.993899 0.110298i \(-0.964819\pi\)
0.592470 + 0.805592i \(0.298153\pi\)
\(152\) 0 0
\(153\) 0.833925 + 0.481467i 0.0674189 + 0.0389243i
\(154\) 0 0
\(155\) 3.20252 + 1.84898i 0.257233 + 0.148514i
\(156\) 0 0
\(157\) −1.42690 + 0.823821i −0.113879 + 0.0657481i −0.555858 0.831278i \(-0.687610\pi\)
0.441979 + 0.897026i \(0.354277\pi\)
\(158\) 0 0
\(159\) 6.68974 0.530531
\(160\) 0 0
\(161\) 3.15515 + 1.82163i 0.248661 + 0.143564i
\(162\) 0 0
\(163\) −10.1821 17.6358i −0.797520 1.38134i −0.921227 0.389026i \(-0.872812\pi\)
0.123707 0.992319i \(-0.460522\pi\)
\(164\) 0 0
\(165\) 0.240675 + 0.416862i 0.0187366 + 0.0324527i
\(166\) 0 0
\(167\) −5.22741 3.01805i −0.404509 0.233544i 0.283919 0.958848i \(-0.408365\pi\)
−0.688428 + 0.725305i \(0.741699\pi\)
\(168\) 0 0
\(169\) −12.7928 22.1578i −0.984064 1.70445i
\(170\) 0 0
\(171\) 6.40659 0.489924
\(172\) 0 0
\(173\) 2.78685 1.60899i 0.211880 0.122329i −0.390305 0.920686i \(-0.627630\pi\)
0.602185 + 0.798357i \(0.294297\pi\)
\(174\) 0 0
\(175\) −2.23558 −0.168994
\(176\) 0 0
\(177\) 9.62824i 0.723703i
\(178\) 0 0
\(179\) 9.92175 0.741586 0.370793 0.928715i \(-0.379086\pi\)
0.370793 + 0.928715i \(0.379086\pi\)
\(180\) 0 0
\(181\) 11.4409 + 6.60542i 0.850397 + 0.490977i 0.860785 0.508969i \(-0.169973\pi\)
−0.0103880 + 0.999946i \(0.503307\pi\)
\(182\) 0 0
\(183\) −3.88433 + 2.24262i −0.287138 + 0.165779i
\(184\) 0 0
\(185\) −0.0797136 + 3.03593i −0.00586066 + 0.223206i
\(186\) 0 0
\(187\) 0.240845 + 0.417155i 0.0176123 + 0.0305054i
\(188\) 0 0
\(189\) −1.81243 1.04640i −0.131835 0.0761148i
\(190\) 0 0
\(191\) 12.1287i 0.877599i −0.898585 0.438800i \(-0.855404\pi\)
0.898585 0.438800i \(-0.144596\pi\)
\(192\) 0 0
\(193\) 10.8801i 0.783167i −0.920143 0.391584i \(-0.871927\pi\)
0.920143 0.391584i \(-0.128073\pi\)
\(194\) 0 0
\(195\) 2.60519i 0.186561i
\(196\) 0 0
\(197\) 14.2206 8.21024i 1.01317 0.584956i 0.101054 0.994881i \(-0.467779\pi\)
0.912119 + 0.409925i \(0.134445\pi\)
\(198\) 0 0
\(199\) 0.188747i 0.0133799i 0.999978 + 0.00668996i \(0.00212950\pi\)
−0.999978 + 0.00668996i \(0.997871\pi\)
\(200\) 0 0
\(201\) 4.20269 + 7.27927i 0.296435 + 0.513440i
\(202\) 0 0
\(203\) 1.29001 2.23436i 0.0905409 0.156822i
\(204\) 0 0
\(205\) −0.753997 1.30596i −0.0526615 0.0912123i
\(206\) 0 0
\(207\) −15.3836 + 8.88170i −1.06923 + 0.617321i
\(208\) 0 0
\(209\) 2.77541 + 1.60239i 0.191979 + 0.110839i
\(210\) 0 0
\(211\) 8.56666i 0.589753i −0.955535 0.294877i \(-0.904721\pi\)
0.955535 0.294877i \(-0.0952786\pi\)
\(212\) 0 0
\(213\) 4.15569 2.39929i 0.284743 0.164397i
\(214\) 0 0
\(215\) 0.361191 0.625602i 0.0246330 0.0426657i
\(216\) 0 0
\(217\) −3.01843 1.74269i −0.204904 0.118302i
\(218\) 0 0
\(219\) 3.70314 + 2.13801i 0.250235 + 0.144473i
\(220\) 0 0
\(221\) 2.60702i 0.175367i
\(222\) 0 0
\(223\) 0.300028 0.0200913 0.0100457 0.999950i \(-0.496802\pi\)
0.0100457 + 0.999950i \(0.496802\pi\)
\(224\) 0 0
\(225\) 5.44999 9.43965i 0.363332 0.629310i
\(226\) 0 0
\(227\) 7.13138 12.3519i 0.473327 0.819826i −0.526207 0.850356i \(-0.676386\pi\)
0.999534 + 0.0305307i \(0.00971974\pi\)
\(228\) 0 0
\(229\) −17.1515 9.90243i −1.13340 0.654371i −0.188615 0.982051i \(-0.560400\pi\)
−0.944789 + 0.327680i \(0.893733\pi\)
\(230\) 0 0
\(231\) −0.226840 0.392899i −0.0149250 0.0258509i
\(232\) 0 0
\(233\) −12.5136 −0.819792 −0.409896 0.912132i \(-0.634435\pi\)
−0.409896 + 0.912132i \(0.634435\pi\)
\(234\) 0 0
\(235\) 0.103080 0.178539i 0.00672417 0.0116466i
\(236\) 0 0
\(237\) 2.85248 + 4.94063i 0.185288 + 0.320929i
\(238\) 0 0
\(239\) 16.6694 9.62406i 1.07825 0.622529i 0.147827 0.989013i \(-0.452772\pi\)
0.930424 + 0.366484i \(0.119439\pi\)
\(240\) 0 0
\(241\) 23.8525 + 13.7713i 1.53648 + 0.887085i 0.999041 + 0.0437793i \(0.0139398\pi\)
0.537435 + 0.843305i \(0.319393\pi\)
\(242\) 0 0
\(243\) 13.8441 7.99290i 0.888101 0.512745i
\(244\) 0 0
\(245\) 3.38437 0.216220
\(246\) 0 0
\(247\) −8.67250 15.0212i −0.551818 0.955777i
\(248\) 0 0
\(249\) 11.1483 0.706496
\(250\) 0 0
\(251\) 11.6728 0.736782 0.368391 0.929671i \(-0.379909\pi\)
0.368391 + 0.929671i \(0.379909\pi\)
\(252\) 0 0
\(253\) −8.88579 −0.558645
\(254\) 0 0
\(255\) 0.0880089 0.152436i 0.00551133 0.00954591i
\(256\) 0 0
\(257\) −14.2286 + 8.21487i −0.887554 + 0.512430i −0.873142 0.487467i \(-0.837921\pi\)
−0.0144125 + 0.999896i \(0.504588\pi\)
\(258\) 0 0
\(259\) 0.0751314 2.86141i 0.00466844 0.177800i
\(260\) 0 0
\(261\) 6.28969 + 10.8941i 0.389322 + 0.674325i
\(262\) 0 0
\(263\) −4.66110 + 8.07326i −0.287416 + 0.497818i −0.973192 0.229994i \(-0.926129\pi\)
0.685776 + 0.727812i \(0.259463\pi\)
\(264\) 0 0
\(265\) 3.97617i 0.244254i
\(266\) 0 0
\(267\) 9.74560 0.596421
\(268\) 0 0
\(269\) 19.2317i 1.17258i −0.810103 0.586288i \(-0.800589\pi\)
0.810103 0.586288i \(-0.199411\pi\)
\(270\) 0 0
\(271\) −7.72293 13.3765i −0.469135 0.812565i 0.530243 0.847846i \(-0.322101\pi\)
−0.999377 + 0.0352809i \(0.988767\pi\)
\(272\) 0 0
\(273\) 2.45543i 0.148609i
\(274\) 0 0
\(275\) 4.72200 2.72625i 0.284747 0.164399i
\(276\) 0 0
\(277\) −0.229440 + 0.397402i −0.0137857 + 0.0238776i −0.872836 0.488014i \(-0.837722\pi\)
0.859050 + 0.511891i \(0.171055\pi\)
\(278\) 0 0
\(279\) 14.7169 8.49683i 0.881080 0.508692i
\(280\) 0 0
\(281\) −8.44006 + 4.87287i −0.503492 + 0.290691i −0.730154 0.683282i \(-0.760552\pi\)
0.226663 + 0.973973i \(0.427219\pi\)
\(282\) 0 0
\(283\) 5.24831 9.09033i 0.311979 0.540364i −0.666811 0.745227i \(-0.732341\pi\)
0.978791 + 0.204862i \(0.0656747\pi\)
\(284\) 0 0
\(285\) 1.17108i 0.0693689i
\(286\) 0 0
\(287\) 0.710654 + 1.23089i 0.0419486 + 0.0726571i
\(288\) 0 0
\(289\) −8.41193 + 14.5699i −0.494819 + 0.857052i
\(290\) 0 0
\(291\) −3.51494 + 6.08806i −0.206050 + 0.356888i
\(292\) 0 0
\(293\) −8.07314 4.66103i −0.471638 0.272300i 0.245287 0.969450i \(-0.421118\pi\)
−0.716925 + 0.697150i \(0.754451\pi\)
\(294\) 0 0
\(295\) 5.72272 0.333190
\(296\) 0 0
\(297\) 5.10430 0.296181
\(298\) 0 0
\(299\) 41.6489 + 24.0460i 2.40862 + 1.39062i
\(300\) 0 0
\(301\) −0.340429 + 0.589640i −0.0196220 + 0.0339863i
\(302\) 0 0
\(303\) 2.09647 3.63119i 0.120439 0.208606i
\(304\) 0 0
\(305\) −1.33294 2.30873i −0.0763241 0.132197i
\(306\) 0 0
\(307\) 20.0139i 1.14225i −0.820862 0.571126i \(-0.806507\pi\)
0.820862 0.571126i \(-0.193493\pi\)
\(308\) 0 0
\(309\) 3.43050 5.94179i 0.195154 0.338017i
\(310\) 0 0
\(311\) 25.0811 14.4806i 1.42222 0.821120i 0.425732 0.904849i \(-0.360016\pi\)
0.996489 + 0.0837295i \(0.0266832\pi\)
\(312\) 0 0
\(313\) 2.49143 1.43843i 0.140824 0.0813046i −0.427933 0.903811i \(-0.640758\pi\)
0.568757 + 0.822506i \(0.307425\pi\)
\(314\) 0 0
\(315\) 0.269529 0.466838i 0.0151863 0.0263034i
\(316\) 0 0
\(317\) −7.46736 + 4.31129i −0.419409 + 0.242146i −0.694824 0.719179i \(-0.744518\pi\)
0.275415 + 0.961325i \(0.411185\pi\)
\(318\) 0 0
\(319\) 6.29259i 0.352317i
\(320\) 0 0
\(321\) −4.79800 8.31038i −0.267798 0.463840i
\(322\) 0 0
\(323\) 1.17190i 0.0652065i
\(324\) 0 0
\(325\) −29.5102 −1.63693
\(326\) 0 0
\(327\) 7.62266i 0.421534i
\(328\) 0 0
\(329\) −0.0971542 + 0.168276i −0.00535628 + 0.00927735i
\(330\) 0 0
\(331\) 4.15111 + 7.18994i 0.228166 + 0.395195i 0.957265 0.289214i \(-0.0933939\pi\)
−0.729099 + 0.684408i \(0.760061\pi\)
\(332\) 0 0
\(333\) 11.8991 + 7.29292i 0.652066 + 0.399650i
\(334\) 0 0
\(335\) −4.32657 + 2.49795i −0.236386 + 0.136477i
\(336\) 0 0
\(337\) −10.8934 + 18.8680i −0.593402 + 1.02780i 0.400368 + 0.916354i \(0.368882\pi\)
−0.993770 + 0.111448i \(0.964451\pi\)
\(338\) 0 0
\(339\) −6.17315 −0.335279
\(340\) 0 0
\(341\) 8.50074 0.460341
\(342\) 0 0
\(343\) −6.48386 −0.350095
\(344\) 0 0
\(345\) 1.62351 + 2.81201i 0.0874071 + 0.151394i
\(346\) 0 0
\(347\) 1.00199 0.0537898 0.0268949 0.999638i \(-0.491438\pi\)
0.0268949 + 0.999638i \(0.491438\pi\)
\(348\) 0 0
\(349\) 16.2509 9.38245i 0.869890 0.502231i 0.00257815 0.999997i \(-0.499179\pi\)
0.867312 + 0.497766i \(0.165846\pi\)
\(350\) 0 0
\(351\) −23.9246 13.8128i −1.27700 0.737275i
\(352\) 0 0
\(353\) −21.8311 + 12.6042i −1.16195 + 0.670855i −0.951772 0.306808i \(-0.900739\pi\)
−0.210183 + 0.977662i \(0.567406\pi\)
\(354\) 0 0
\(355\) 1.42606 + 2.47001i 0.0756875 + 0.131095i
\(356\) 0 0
\(357\) −0.0829498 + 0.143673i −0.00439017 + 0.00760400i
\(358\) 0 0
\(359\) −33.6660 −1.77682 −0.888412 0.459047i \(-0.848191\pi\)
−0.888412 + 0.459047i \(0.848191\pi\)
\(360\) 0 0
\(361\) 5.60155 + 9.70216i 0.294818 + 0.510640i
\(362\) 0 0
\(363\) −7.04391 4.06680i −0.369710 0.213452i
\(364\) 0 0
\(365\) −1.27077 + 2.20103i −0.0665149 + 0.115207i
\(366\) 0 0
\(367\) −13.2260 + 22.9081i −0.690392 + 1.19579i 0.281318 + 0.959615i \(0.409229\pi\)
−0.971710 + 0.236179i \(0.924105\pi\)
\(368\) 0 0
\(369\) −6.92986 −0.360754
\(370\) 0 0
\(371\) 3.74760i 0.194566i
\(372\) 0 0
\(373\) −11.5090 6.64475i −0.595916 0.344052i 0.171517 0.985181i \(-0.445133\pi\)
−0.767433 + 0.641129i \(0.778466\pi\)
\(374\) 0 0
\(375\) −3.54155 2.04471i −0.182885 0.105589i
\(376\) 0 0
\(377\) 17.0285 29.4942i 0.877013 1.51903i
\(378\) 0 0
\(379\) 21.9072 12.6481i 1.12530 0.649691i 0.182550 0.983197i \(-0.441565\pi\)
0.942748 + 0.333506i \(0.108232\pi\)
\(380\) 0 0
\(381\) 5.56325i 0.285014i
\(382\) 0 0
\(383\) 20.1182 + 11.6152i 1.02799 + 0.593510i 0.916408 0.400245i \(-0.131075\pi\)
0.111582 + 0.993755i \(0.464408\pi\)
\(384\) 0 0
\(385\) 0.233527 0.134827i 0.0119016 0.00687141i
\(386\) 0 0
\(387\) −1.65982 2.87490i −0.0843736 0.146139i
\(388\) 0 0
\(389\) −6.88172 + 11.9195i −0.348917 + 0.604342i −0.986057 0.166406i \(-0.946784\pi\)
0.637140 + 0.770748i \(0.280117\pi\)
\(390\) 0 0
\(391\) 1.62466 + 2.81399i 0.0821624 + 0.142309i
\(392\) 0 0
\(393\) 0.448372i 0.0226174i
\(394\) 0 0
\(395\) −2.93656 + 1.69542i −0.147754 + 0.0853059i
\(396\) 0 0
\(397\) 7.87786i 0.395378i −0.980265 0.197689i \(-0.936656\pi\)
0.980265 0.197689i \(-0.0633437\pi\)
\(398\) 0 0
\(399\) 1.10376i 0.0552573i
\(400\) 0 0
\(401\) 28.1711i 1.40680i −0.710795 0.703399i \(-0.751665\pi\)
0.710795 0.703399i \(-0.248335\pi\)
\(402\) 0 0
\(403\) −39.8442 23.0040i −1.98478 1.14591i
\(404\) 0 0
\(405\) 0.785693 + 1.36086i 0.0390414 + 0.0676217i
\(406\) 0 0
\(407\) 3.33076 + 6.13553i 0.165100 + 0.304127i
\(408\) 0 0
\(409\) −30.1621 + 17.4141i −1.49142 + 0.861070i −0.999952 0.00982636i \(-0.996872\pi\)
−0.491466 + 0.870897i \(0.663539\pi\)
\(410\) 0 0
\(411\) 4.11242 + 2.37431i 0.202851 + 0.117116i
\(412\) 0 0
\(413\) −5.39376 −0.265409
\(414\) 0 0
\(415\) 6.62621i 0.325268i
\(416\) 0 0
\(417\) 16.9426 0.829682
\(418\) 0 0
\(419\) −6.67879 + 3.85600i −0.326280 + 0.188378i −0.654188 0.756332i \(-0.726990\pi\)
0.327908 + 0.944710i \(0.393656\pi\)
\(420\) 0 0
\(421\) 12.1517 0.592237 0.296118 0.955151i \(-0.404308\pi\)
0.296118 + 0.955151i \(0.404308\pi\)
\(422\) 0 0
\(423\) −0.473694 0.820461i −0.0230318 0.0398922i
\(424\) 0 0
\(425\) −1.72672 0.996921i −0.0837581 0.0483578i
\(426\) 0 0
\(427\) 1.25632 + 2.17601i 0.0607976 + 0.105305i
\(428\) 0 0
\(429\) −2.99436 5.18638i −0.144569 0.250401i
\(430\) 0 0
\(431\) −0.881212 0.508768i −0.0424465 0.0245065i 0.478627 0.878019i \(-0.341135\pi\)
−0.521073 + 0.853512i \(0.674468\pi\)
\(432\) 0 0
\(433\) 20.6777 0.993707 0.496854 0.867834i \(-0.334489\pi\)
0.496854 + 0.867834i \(0.334489\pi\)
\(434\) 0 0
\(435\) 1.99136 1.14971i 0.0954784 0.0551245i
\(436\) 0 0
\(437\) 18.7220 + 10.8092i 0.895595 + 0.517072i
\(438\) 0 0
\(439\) 27.5320 + 15.8956i 1.31403 + 0.758655i 0.982761 0.184881i \(-0.0591900\pi\)
0.331269 + 0.943536i \(0.392523\pi\)
\(440\) 0 0
\(441\) 7.77630 13.4689i 0.370300 0.641378i
\(442\) 0 0
\(443\) 22.1773i 1.05368i 0.849965 + 0.526839i \(0.176623\pi\)
−0.849965 + 0.526839i \(0.823377\pi\)
\(444\) 0 0
\(445\) 5.79248i 0.274590i
\(446\) 0 0
\(447\) −9.27292 + 16.0612i −0.438594 + 0.759668i
\(448\) 0 0
\(449\) 23.2259 + 13.4095i 1.09610 + 0.632833i 0.935194 0.354136i \(-0.115225\pi\)
0.160906 + 0.986970i \(0.448558\pi\)
\(450\) 0 0
\(451\) −3.00210 1.73326i −0.141363 0.0816162i
\(452\) 0 0
\(453\) 7.17698 4.14363i 0.337204 0.194685i
\(454\) 0 0
\(455\) −1.45943 −0.0684191
\(456\) 0 0
\(457\) 21.9187 + 12.6548i 1.02532 + 0.591966i 0.915639 0.402001i \(-0.131685\pi\)
0.109676 + 0.993967i \(0.465019\pi\)
\(458\) 0 0
\(459\) −0.933257 1.61645i −0.0435607 0.0754493i
\(460\) 0 0
\(461\) 0.344353 + 0.596437i 0.0160381 + 0.0277788i 0.873933 0.486046i \(-0.161561\pi\)
−0.857895 + 0.513825i \(0.828228\pi\)
\(462\) 0 0
\(463\) 16.9919 + 9.81026i 0.789679 + 0.455922i 0.839850 0.542819i \(-0.182643\pi\)
−0.0501704 + 0.998741i \(0.515976\pi\)
\(464\) 0 0
\(465\) −1.55316 2.69016i −0.0720262 0.124753i
\(466\) 0 0
\(467\) −21.6680 −1.00268 −0.501338 0.865252i \(-0.667159\pi\)
−0.501338 + 0.865252i \(0.667159\pi\)
\(468\) 0 0
\(469\) 4.07786 2.35435i 0.188298 0.108714i
\(470\) 0 0
\(471\) 1.38404 0.0637731
\(472\) 0 0
\(473\) 1.66059i 0.0763540i
\(474\) 0 0
\(475\) −13.2654 −0.608659
\(476\) 0 0
\(477\) 15.8242 + 9.13608i 0.724538 + 0.418312i
\(478\) 0 0
\(479\) 9.04166 5.22020i 0.413124 0.238517i −0.279007 0.960289i \(-0.590005\pi\)
0.692131 + 0.721772i \(0.256672\pi\)
\(480\) 0 0
\(481\) 0.991756 37.7715i 0.0452202 1.72223i
\(482\) 0 0
\(483\) −1.53019 2.65036i −0.0696260 0.120596i
\(484\) 0 0
\(485\) −3.61855 2.08917i −0.164310 0.0948643i
\(486\) 0 0
\(487\) 6.64519i 0.301122i −0.988601 0.150561i \(-0.951892\pi\)
0.988601 0.150561i \(-0.0481080\pi\)
\(488\) 0 0
\(489\) 17.1061i 0.773563i
\(490\) 0 0
\(491\) 10.5764i 0.477304i 0.971105 + 0.238652i \(0.0767056\pi\)
−0.971105 + 0.238652i \(0.923294\pi\)
\(492\) 0 0
\(493\) 1.99276 1.15052i 0.0897494 0.0518168i
\(494\) 0 0
\(495\) 1.31475i 0.0590935i
\(496\) 0 0
\(497\) −1.34409 2.32803i −0.0602905 0.104426i
\(498\) 0 0
\(499\) −15.5770 + 26.9801i −0.697322 + 1.20780i 0.272070 + 0.962278i \(0.412292\pi\)
−0.969392 + 0.245519i \(0.921041\pi\)
\(500\) 0 0
\(501\) 2.53519 + 4.39108i 0.113264 + 0.196179i
\(502\) 0 0
\(503\) −29.1988 + 16.8580i −1.30191 + 0.751659i −0.980732 0.195359i \(-0.937413\pi\)
−0.321180 + 0.947018i \(0.604079\pi\)
\(504\) 0 0
\(505\) 2.15826 + 1.24607i 0.0960414 + 0.0554495i
\(506\) 0 0
\(507\) 21.4922i 0.954504i
\(508\) 0 0
\(509\) −6.62597 + 3.82551i −0.293691 + 0.169563i −0.639605 0.768704i \(-0.720902\pi\)
0.345914 + 0.938266i \(0.387569\pi\)
\(510\) 0 0
\(511\) 1.19772 2.07451i 0.0529839 0.0917707i
\(512\) 0 0
\(513\) −10.7545 6.20914i −0.474825 0.274140i
\(514\) 0 0
\(515\) 3.53162 + 2.03898i 0.155622 + 0.0898481i
\(516\) 0 0
\(517\) 0.473912i 0.0208426i
\(518\) 0 0
\(519\) −2.70314 −0.118655
\(520\) 0 0
\(521\) 6.90920 11.9671i 0.302697 0.524287i −0.674049 0.738687i \(-0.735446\pi\)
0.976746 + 0.214400i \(0.0687795\pi\)
\(522\) 0 0
\(523\) −21.1550 + 36.6416i −0.925045 + 1.60223i −0.133557 + 0.991041i \(0.542640\pi\)
−0.791488 + 0.611185i \(0.790693\pi\)
\(524\) 0 0
\(525\) 1.62632 + 0.938954i 0.0709783 + 0.0409793i
\(526\) 0 0
\(527\) −1.55425 2.69205i −0.0677044 0.117267i
\(528\) 0 0
\(529\) −36.9405 −1.60611
\(530\) 0 0
\(531\) 13.1491 22.7750i 0.570624 0.988350i
\(532\) 0 0
\(533\) 9.38084 + 16.2481i 0.406329 + 0.703783i
\(534\) 0 0
\(535\) 4.93943 2.85178i 0.213550 0.123293i
\(536\) 0 0
\(537\) −7.21779 4.16719i −0.311470 0.179828i
\(538\) 0 0
\(539\) 6.73758 3.88994i 0.290208 0.167552i
\(540\) 0 0
\(541\) −34.1336 −1.46752 −0.733758 0.679411i \(-0.762236\pi\)
−0.733758 + 0.679411i \(0.762236\pi\)
\(542\) 0 0
\(543\) −5.54862 9.61050i −0.238114 0.412426i
\(544\) 0 0
\(545\) 4.53067 0.194073
\(546\) 0 0
\(547\) −27.0461 −1.15641 −0.578204 0.815892i \(-0.696246\pi\)
−0.578204 + 0.815892i \(0.696246\pi\)
\(548\) 0 0
\(549\) −12.2509 −0.522854
\(550\) 0 0
\(551\) 7.65464 13.2582i 0.326099 0.564819i
\(552\) 0 0
\(553\) 2.76775 1.59796i 0.117697 0.0679523i
\(554\) 0 0
\(555\) 1.33310 2.17507i 0.0565868 0.0923267i
\(556\) 0 0
\(557\) 15.0179 + 26.0119i 0.636331 + 1.10216i 0.986231 + 0.165371i \(0.0528820\pi\)
−0.349901 + 0.936787i \(0.613785\pi\)
\(558\) 0 0
\(559\) −4.49376 + 7.78341i −0.190066 + 0.329203i
\(560\) 0 0
\(561\) 0.404624i 0.0170832i
\(562\) 0 0
\(563\) −40.5799 −1.71024 −0.855119 0.518432i \(-0.826516\pi\)
−0.855119 + 0.518432i \(0.826516\pi\)
\(564\) 0 0
\(565\) 3.66912i 0.154361i
\(566\) 0 0
\(567\) −0.740528 1.28263i −0.0310993 0.0538655i
\(568\) 0 0
\(569\) 16.5430i 0.693518i 0.937954 + 0.346759i \(0.112718\pi\)
−0.937954 + 0.346759i \(0.887282\pi\)
\(570\) 0 0
\(571\) −1.47508 + 0.851636i −0.0617300 + 0.0356399i −0.530547 0.847655i \(-0.678014\pi\)
0.468817 + 0.883295i \(0.344680\pi\)
\(572\) 0 0
\(573\) −5.09411 + 8.82325i −0.212809 + 0.368597i
\(574\) 0 0
\(575\) 31.8530 18.3904i 1.32836 0.766931i
\(576\) 0 0
\(577\) 0.231740 0.133795i 0.00964747 0.00556997i −0.495169 0.868797i \(-0.664894\pi\)
0.504816 + 0.863227i \(0.331560\pi\)
\(578\) 0 0
\(579\) −4.56971 + 7.91496i −0.189910 + 0.328935i
\(580\) 0 0
\(581\) 6.24531i 0.259099i
\(582\) 0 0
\(583\) 4.57015 + 7.91573i 0.189276 + 0.327836i
\(584\) 0 0
\(585\) 3.55786 6.16240i 0.147100 0.254784i
\(586\) 0 0
\(587\) 21.4047 37.0741i 0.883468 1.53021i 0.0360094 0.999351i \(-0.488535\pi\)
0.847459 0.530861i \(-0.178131\pi\)
\(588\) 0 0
\(589\) −17.9107 10.3408i −0.737998 0.426084i
\(590\) 0 0
\(591\) −13.7934 −0.567384
\(592\) 0 0
\(593\) −16.0993 −0.661121 −0.330560 0.943785i \(-0.607238\pi\)
−0.330560 + 0.943785i \(0.607238\pi\)
\(594\) 0 0
\(595\) −0.0853949 0.0493028i −0.00350085 0.00202122i
\(596\) 0 0
\(597\) 0.0792748 0.137308i 0.00324450 0.00561964i
\(598\) 0 0
\(599\) 4.37997 7.58634i 0.178961 0.309969i −0.762564 0.646913i \(-0.776060\pi\)
0.941525 + 0.336943i \(0.109393\pi\)
\(600\) 0 0
\(601\) −22.3879 38.7770i −0.913223 1.58175i −0.809483 0.587144i \(-0.800252\pi\)
−0.103740 0.994604i \(-0.533081\pi\)
\(602\) 0 0
\(603\) 22.9582i 0.934930i
\(604\) 0 0
\(605\) 2.41718 4.18668i 0.0982723 0.170213i
\(606\) 0 0
\(607\) 13.6542 7.88328i 0.554208 0.319972i −0.196609 0.980482i \(-0.562993\pi\)
0.750818 + 0.660510i \(0.229660\pi\)
\(608\) 0 0
\(609\) −1.87689 + 1.08362i −0.0760554 + 0.0439106i
\(610\) 0 0
\(611\) −1.28246 + 2.22129i −0.0518829 + 0.0898638i
\(612\) 0 0
\(613\) −27.4452 + 15.8455i −1.10850 + 0.639993i −0.938441 0.345441i \(-0.887729\pi\)
−0.170060 + 0.985434i \(0.554396\pi\)
\(614\) 0 0
\(615\) 1.26673i 0.0510796i
\(616\) 0 0
\(617\) 21.4334 + 37.1238i 0.862878 + 1.49455i 0.869139 + 0.494568i \(0.164674\pi\)
−0.00626123 + 0.999980i \(0.501993\pi\)
\(618\) 0 0
\(619\) 26.9176i 1.08191i 0.841052 + 0.540954i \(0.181937\pi\)
−0.841052 + 0.540954i \(0.818063\pi\)
\(620\) 0 0
\(621\) 34.4319 1.38170
\(622\) 0 0
\(623\) 5.45950i 0.218730i
\(624\) 0 0
\(625\) −10.6615 + 18.4663i −0.426460 + 0.738650i
\(626\) 0 0
\(627\) −1.34602 2.33138i −0.0537549 0.0931063i
\(628\) 0 0
\(629\) 1.33403 2.17660i 0.0531914 0.0867867i
\(630\) 0 0
\(631\) 4.29512 2.47979i 0.170986 0.0987189i −0.412065 0.911155i \(-0.635192\pi\)
0.583051 + 0.812436i \(0.301859\pi\)
\(632\) 0 0
\(633\) −3.59805 + 6.23200i −0.143009 + 0.247700i
\(634\) 0 0
\(635\) −3.30662 −0.131219
\(636\) 0 0
\(637\) −42.1066 −1.66832
\(638\) 0 0
\(639\) 13.1067 0.518493
\(640\) 0 0
\(641\) 19.5007 + 33.7763i 0.770233 + 1.33408i 0.937435 + 0.348160i \(0.113194\pi\)
−0.167202 + 0.985923i \(0.553473\pi\)
\(642\) 0 0
\(643\) −15.4140 −0.607869 −0.303935 0.952693i \(-0.598300\pi\)
−0.303935 + 0.952693i \(0.598300\pi\)
\(644\) 0 0
\(645\) −0.525512 + 0.303405i −0.0206920 + 0.0119466i
\(646\) 0 0
\(647\) 15.7881 + 9.11524i 0.620693 + 0.358357i 0.777139 0.629329i \(-0.216670\pi\)
−0.156446 + 0.987687i \(0.550004\pi\)
\(648\) 0 0
\(649\) 11.3927 6.57760i 0.447204 0.258193i
\(650\) 0 0
\(651\) 1.46388 + 2.53552i 0.0573740 + 0.0993747i
\(652\) 0 0
\(653\) 4.36624 7.56254i 0.170864 0.295945i −0.767858 0.640620i \(-0.778677\pi\)
0.938722 + 0.344675i \(0.112011\pi\)
\(654\) 0 0
\(655\) 0.266498 0.0104129
\(656\) 0 0
\(657\) 5.83969 + 10.1146i 0.227828 + 0.394610i
\(658\) 0 0
\(659\) 20.8602 + 12.0437i 0.812599 + 0.469154i 0.847858 0.530224i \(-0.177892\pi\)
−0.0352586 + 0.999378i \(0.511225\pi\)
\(660\) 0 0
\(661\) 14.7957 25.6269i 0.575486 0.996771i −0.420502 0.907291i \(-0.638146\pi\)
0.995989 0.0894800i \(-0.0285205\pi\)
\(662\) 0 0
\(663\) −1.09496 + 1.89653i −0.0425248 + 0.0736551i
\(664\) 0 0
\(665\) −0.656042 −0.0254402
\(666\) 0 0
\(667\) 42.4477i 1.64358i
\(668\) 0 0
\(669\) −0.218262 0.126013i −0.00843848 0.00487196i
\(670\) 0 0
\(671\) −5.30722 3.06413i −0.204883 0.118289i
\(672\) 0 0
\(673\) 0.475568 0.823709i 0.0183318 0.0317516i −0.856714 0.515792i \(-0.827498\pi\)
0.875046 + 0.484040i \(0.160831\pi\)
\(674\) 0 0
\(675\) −18.2975 + 10.5640i −0.704269 + 0.406610i
\(676\) 0 0
\(677\) 38.9665i 1.49760i 0.662794 + 0.748802i \(0.269370\pi\)
−0.662794 + 0.748802i \(0.730630\pi\)
\(678\) 0 0
\(679\) 3.41054 + 1.96908i 0.130885 + 0.0755662i
\(680\) 0 0
\(681\) −10.3757 + 5.99044i −0.397600 + 0.229554i
\(682\) 0 0
\(683\) −23.8499 41.3092i −0.912589 1.58065i −0.810393 0.585887i \(-0.800746\pi\)
−0.102196 0.994764i \(-0.532587\pi\)
\(684\) 0 0
\(685\) −1.41121 + 2.44429i −0.0539197 + 0.0933917i
\(686\) 0 0
\(687\) 8.31815 + 14.4075i 0.317357 + 0.549679i
\(688\) 0 0
\(689\) 49.4695i 1.88464i
\(690\) 0 0
\(691\) −2.28449 + 1.31895i −0.0869061 + 0.0501753i −0.542823 0.839847i \(-0.682645\pi\)
0.455917 + 0.890022i \(0.349311\pi\)
\(692\) 0 0
\(693\) 1.23917i 0.0470722i
\(694\) 0 0
\(695\) 10.0701i 0.381982i
\(696\) 0 0
\(697\) 1.26762i 0.0480146i
\(698\) 0 0
\(699\) 9.10327 + 5.25577i 0.344317 + 0.198792i
\(700\) 0 0
\(701\) −6.38945 11.0668i −0.241326 0.417989i 0.719766 0.694217i \(-0.244249\pi\)
−0.961092 + 0.276228i \(0.910916\pi\)
\(702\) 0 0
\(703\) 0.445813 16.9790i 0.0168142 0.640376i
\(704\) 0 0
\(705\) −0.149975 + 0.0865880i −0.00564838 + 0.00326109i
\(706\) 0 0
\(707\) −2.03420 1.17444i −0.0765038 0.0441695i
\(708\) 0 0
\(709\) −30.4902 −1.14508 −0.572542 0.819875i \(-0.694043\pi\)
−0.572542 + 0.819875i \(0.694043\pi\)
\(710\) 0 0
\(711\) 15.5823i 0.584383i
\(712\) 0 0
\(713\) 57.3431 2.14752
\(714\) 0 0
\(715\) 3.08262 1.77975i 0.115284 0.0665590i
\(716\) 0 0
\(717\) −16.1686 −0.603829
\(718\) 0 0
\(719\) −18.5708 32.1655i −0.692572 1.19957i −0.970992 0.239111i \(-0.923144\pi\)
0.278420 0.960459i \(-0.410189\pi\)
\(720\) 0 0
\(721\) −3.32860 1.92177i −0.123964 0.0715705i
\(722\) 0 0
\(723\) −11.5680 20.0364i −0.430219 0.745161i
\(724\) 0 0
\(725\) −13.0234 22.5571i −0.483676 0.837751i
\(726\) 0 0
\(727\) 4.90169 + 2.82999i 0.181794 + 0.104959i 0.588135 0.808763i \(-0.299862\pi\)
−0.406341 + 0.913721i \(0.633196\pi\)
\(728\) 0 0
\(729\) −3.98627 −0.147640
\(730\) 0 0
\(731\) −0.525882 + 0.303618i −0.0194504 + 0.0112297i
\(732\) 0 0
\(733\) 5.84844 + 3.37660i 0.216017 + 0.124718i 0.604105 0.796905i \(-0.293531\pi\)
−0.388088 + 0.921622i \(0.626864\pi\)
\(734\) 0 0
\(735\) −2.46203 1.42146i −0.0908134 0.0524312i
\(736\) 0 0
\(737\) −5.74220 + 9.94577i −0.211517 + 0.366357i
\(738\) 0 0
\(739\) 32.3100i 1.18854i −0.804265 0.594271i \(-0.797441\pi\)
0.804265 0.594271i \(-0.202559\pi\)
\(740\) 0 0
\(741\) 14.5700i 0.535242i
\(742\) 0 0
\(743\) −24.3834 + 42.2333i −0.894540 + 1.54939i −0.0601677 + 0.998188i \(0.519164\pi\)
−0.834373 + 0.551201i \(0.814170\pi\)
\(744\) 0 0
\(745\) −9.54626 5.51153i −0.349748 0.201927i
\(746\) 0 0
\(747\) 26.3706 + 15.2251i 0.964851 + 0.557057i
\(748\) 0 0
\(749\) −4.65549 + 2.68785i −0.170108 + 0.0982119i
\(750\) 0 0
\(751\) 40.5687 1.48037 0.740186 0.672402i \(-0.234737\pi\)
0.740186 + 0.672402i \(0.234737\pi\)
\(752\) 0 0
\(753\) −8.49164 4.90265i −0.309452 0.178662i
\(754\) 0 0
\(755\) 2.46285 + 4.26577i 0.0896321 + 0.155247i
\(756\) 0 0
\(757\) 11.7022 + 20.2688i 0.425324 + 0.736682i 0.996451 0.0841796i \(-0.0268270\pi\)
−0.571127 + 0.820862i \(0.693494\pi\)
\(758\) 0 0
\(759\) 6.46416 + 3.73208i 0.234634 + 0.135466i
\(760\) 0 0
\(761\) −14.1234 24.4625i −0.511974 0.886764i −0.999904 0.0138815i \(-0.995581\pi\)
0.487930 0.872883i \(-0.337752\pi\)
\(762\) 0 0
\(763\) −4.27023 −0.154593
\(764\) 0 0
\(765\) 0.416359 0.240385i 0.0150535 0.00869114i
\(766\) 0 0
\(767\) −71.1991 −2.57085
\(768\) 0 0
\(769\) 8.06031i 0.290662i 0.989383 + 0.145331i \(0.0464247\pi\)
−0.989383 + 0.145331i \(0.953575\pi\)
\(770\) 0 0
\(771\) 13.8012 0.497037
\(772\) 0 0
\(773\) −24.6510 14.2323i −0.886635 0.511899i −0.0137947 0.999905i \(-0.504391\pi\)
−0.872840 + 0.488006i \(0.837724\pi\)
\(774\) 0 0
\(775\) −30.4727 + 17.5934i −1.09461 + 0.631975i
\(776\) 0 0
\(777\) −1.25647 + 2.05004i −0.0450755 + 0.0735448i
\(778\) 0 0
\(779\) 4.21687 + 7.30383i 0.151085 + 0.261687i
\(780\) 0 0
\(781\) 5.67799 + 3.27819i 0.203174 + 0.117303i
\(782\) 0 0
\(783\) 24.3834i 0.871391i
\(784\) 0 0
\(785\) 0.822628i 0.0293609i
\(786\) 0 0
\(787\) 22.8308i 0.813829i 0.913466 + 0.406915i \(0.133395\pi\)
−0.913466 + 0.406915i \(0.866605\pi\)
\(788\) 0 0
\(789\) 6.78163 3.91537i 0.241432 0.139391i
\(790\) 0 0
\(791\) 3.45821i 0.122960i
\(792\) 0 0
\(793\) 16.5838 + 28.7240i 0.588908 + 1.02002i
\(794\) 0 0
\(795\) 1.67001 2.89255i 0.0592293 0.102588i
\(796\) 0 0
\(797\) 25.8463 + 44.7671i 0.915523 + 1.58573i 0.806134 + 0.591733i \(0.201556\pi\)
0.109388 + 0.993999i \(0.465111\pi\)
\(798\) 0 0
\(799\) −0.150080 + 0.0866489i −0.00530946 + 0.00306542i
\(800\) 0 0
\(801\) 23.0526 + 13.3094i 0.814523 + 0.470265i
\(802\) 0 0
\(803\) 5.84239i 0.206173i
\(804\) 0 0
\(805\) 1.57529 0.909496i 0.0555218 0.0320555i
\(806\) 0 0
\(807\) −8.07741 + 13.9905i −0.284338 + 0.492488i
\(808\) 0 0
\(809\) −5.03875 2.90912i −0.177153 0.102279i 0.408801 0.912623i \(-0.365947\pi\)
−0.585954 + 0.810344i \(0.699280\pi\)
\(810\) 0 0
\(811\) −21.5536 12.4440i −0.756850 0.436967i 0.0713139 0.997454i \(-0.477281\pi\)
−0.828163 + 0.560487i \(0.810614\pi\)
\(812\) 0 0
\(813\) 12.9747i 0.455042i
\(814\) 0 0
\(815\) −10.1673 −0.356145
\(816\) 0 0
\(817\) −2.02003 + 3.49879i −0.0706719 + 0.122407i
\(818\) 0 0
\(819\) −3.35334 + 5.80816i −0.117175 + 0.202954i
\(820\) 0 0
\(821\) 48.4345 + 27.9637i 1.69038 + 0.975939i 0.954209 + 0.299140i \(0.0966996\pi\)
0.736167 + 0.676800i \(0.236634\pi\)
\(822\) 0 0
\(823\) −24.7431 42.8563i −0.862489 1.49388i −0.869519 0.493900i \(-0.835571\pi\)
0.00702958 0.999975i \(-0.497762\pi\)
\(824\) 0 0
\(825\) −4.58016 −0.159461
\(826\) 0 0
\(827\) −0.104098 + 0.180303i −0.00361985 + 0.00626976i −0.867830 0.496862i \(-0.834486\pi\)
0.864210 + 0.503132i \(0.167819\pi\)
\(828\) 0 0
\(829\) 1.32569 + 2.29616i 0.0460431 + 0.0797490i 0.888128 0.459595i \(-0.152006\pi\)
−0.842085 + 0.539344i \(0.818672\pi\)
\(830\) 0 0
\(831\) 0.333822 0.192732i 0.0115802 0.00668581i
\(832\) 0 0
\(833\) −2.46376 1.42245i −0.0853643 0.0492851i
\(834\) 0 0
\(835\) −2.60992 + 1.50684i −0.0903201 + 0.0521463i
\(836\) 0 0
\(837\) −32.9398 −1.13857
\(838\) 0 0
\(839\) −3.80615 6.59245i −0.131403 0.227597i 0.792815 0.609463i \(-0.208615\pi\)
−0.924218 + 0.381866i \(0.875282\pi\)
\(840\) 0 0
\(841\) 1.05986 0.0365470
\(842\) 0 0
\(843\) 8.18653 0.281959
\(844\) 0 0
\(845\) −12.7743 −0.439450
\(846\) 0 0
\(847\) −2.27823 + 3.94601i −0.0782809 + 0.135587i
\(848\) 0 0
\(849\) −7.63598 + 4.40864i −0.262066 + 0.151304i
\(850\) 0 0
\(851\) 22.4682 + 41.3882i 0.770199 + 1.41877i
\(852\) 0 0
\(853\) −0.326333 0.565225i −0.0111734 0.0193529i 0.860385 0.509645i \(-0.170223\pi\)
−0.871558 + 0.490292i \(0.836890\pi\)
\(854\) 0 0
\(855\) 1.59933 2.77012i 0.0546959 0.0947360i
\(856\) 0 0
\(857\) 25.0754i 0.856560i −0.903646 0.428280i \(-0.859120\pi\)
0.903646 0.428280i \(-0.140880\pi\)
\(858\) 0 0
\(859\) 45.7376 1.56055 0.780273 0.625439i \(-0.215080\pi\)
0.780273 + 0.625439i \(0.215080\pi\)
\(860\) 0 0
\(861\) 1.19392i 0.0406885i
\(862\) 0 0
\(863\) 27.9001 + 48.3245i 0.949732 + 1.64498i 0.745988 + 0.665960i \(0.231978\pi\)
0.203744 + 0.979024i \(0.434689\pi\)
\(864\) 0 0
\(865\) 1.60666i 0.0546281i
\(866\) 0 0
\(867\) 12.2389 7.06611i 0.415654 0.239978i
\(868\) 0 0
\(869\) −3.89738 + 6.75046i −0.132210 + 0.228994i
\(870\) 0 0
\(871\) 53.8289 31.0781i 1.82392 1.05304i
\(872\) 0 0
\(873\) −16.6287 + 9.60061i −0.562797 + 0.324931i
\(874\) 0 0
\(875\) −1.14545 + 1.98398i −0.0387234 + 0.0670708i
\(876\) 0 0
\(877\) 55.1352i 1.86178i −0.365295 0.930892i \(-0.619032\pi\)
0.365295 0.930892i \(-0.380968\pi\)
\(878\) 0 0
\(879\) 3.91532 + 6.78153i 0.132060 + 0.228735i
\(880\) 0 0
\(881\) −9.75254 + 16.8919i −0.328571 + 0.569102i −0.982229 0.187688i \(-0.939900\pi\)
0.653657 + 0.756791i \(0.273234\pi\)
\(882\) 0 0
\(883\) 23.1064 40.0215i 0.777592 1.34683i −0.155733 0.987799i \(-0.549774\pi\)
0.933326 0.359031i \(-0.116893\pi\)
\(884\) 0 0
\(885\) −4.16311 2.40357i −0.139942 0.0807953i
\(886\) 0 0
\(887\) 34.7080 1.16538 0.582690 0.812695i \(-0.302000\pi\)
0.582690 + 0.812695i \(0.302000\pi\)
\(888\) 0 0
\(889\) 3.11654 0.104526
\(890\) 0 0
\(891\) 3.12830 + 1.80613i 0.104802 + 0.0605075i
\(892\) 0 0
\(893\) −0.576492 + 0.998513i −0.0192916 + 0.0334140i
\(894\) 0 0
\(895\) 2.47685 4.29002i 0.0827918 0.143400i
\(896\) 0 0
\(897\) −20.1989 34.9856i −0.674423 1.16813i
\(898\) 0 0
\(899\) 40.6083i 1.35436i
\(900\) 0 0
\(901\) 1.67119 2.89458i 0.0556753 0.0964325i
\(902\) 0 0
\(903\) 0.495304 0.285964i 0.0164827 0.00951628i
\(904\) 0 0
\(905\) 5.71218 3.29793i 0.189879 0.109627i
\(906\) 0 0
\(907\) −2.24528 + 3.88894i −0.0745534 + 0.129130i −0.900892 0.434043i \(-0.857086\pi\)
0.826339 + 0.563174i \(0.190420\pi\)
\(908\) 0 0
\(909\) 9.91811 5.72622i 0.328963 0.189927i
\(910\) 0 0
\(911\) 24.3620i 0.807150i 0.914947 + 0.403575i \(0.132233\pi\)
−0.914947 + 0.403575i \(0.867767\pi\)
\(912\) 0 0
\(913\) 7.61606 + 13.1914i 0.252055 + 0.436571i
\(914\) 0 0
\(915\) 2.23937i 0.0740314i
\(916\) 0 0
\(917\) −0.251179 −0.00829465
\(918\) 0 0
\(919\) 3.85794i 0.127262i 0.997974 + 0.0636308i \(0.0202680\pi\)
−0.997974 + 0.0636308i \(0.979732\pi\)
\(920\) 0 0
\(921\) −8.40594 + 14.5595i −0.276985 + 0.479752i
\(922\) 0 0
\(923\) −17.7423 30.7306i −0.583996 1.01151i
\(924\) 0 0
\(925\) −24.6381 15.1007i −0.810096 0.496507i
\(926\) 0 0
\(927\) 16.2292 9.36996i 0.533038 0.307750i
\(928\) 0 0
\(929\) −4.55848 + 7.89552i −0.149559 + 0.259044i −0.931064 0.364855i \(-0.881119\pi\)
0.781506 + 0.623898i \(0.214452\pi\)
\(930\) 0 0
\(931\) −18.9277 −0.620331
\(932\) 0 0
\(933\) −24.3277 −0.796454
\(934\) 0 0
\(935\) 0.240496 0.00786505
\(936\) 0 0
\(937\) 15.6460 + 27.0996i 0.511132 + 0.885307i 0.999917 + 0.0129024i \(0.00410709\pi\)
−0.488785 + 0.872405i \(0.662560\pi\)
\(938\) 0 0
\(939\) −2.41659 −0.0788623
\(940\) 0 0
\(941\) 19.8092 11.4369i 0.645763 0.372831i −0.141068 0.990000i \(-0.545054\pi\)
0.786831 + 0.617169i \(0.211720\pi\)
\(942\) 0 0
\(943\) −20.2512 11.6920i −0.659469 0.380744i
\(944\) 0 0
\(945\) −0.904901 + 0.522445i −0.0294364 + 0.0169951i
\(946\) 0 0
\(947\) 1.61262 + 2.79314i 0.0524030 + 0.0907647i 0.891037 0.453931i \(-0.149979\pi\)
−0.838634 + 0.544695i \(0.816645\pi\)
\(948\) 0 0
\(949\) 15.8102 27.3841i 0.513221 0.888925i
\(950\) 0 0
\(951\) 7.24306 0.234872
\(952\) 0 0
\(953\) 18.6742 + 32.3447i 0.604917 + 1.04775i 0.992065 + 0.125729i \(0.0401269\pi\)
−0.387148 + 0.922018i \(0.626540\pi\)
\(954\) 0 0
\(955\) −5.24426 3.02778i −0.169700 0.0979765i
\(956\) 0 0
\(957\) 2.64292 4.57768i 0.0854336 0.147975i
\(958\) 0 0
\(959\) 1.33009 2.30379i 0.0429509 0.0743932i
\(960\) 0 0
\(961\) −23.8583 −0.769622
\(962\) 0 0
\(963\) 26.2102i 0.844613i
\(964\) 0 0
\(965\) −4.70440 2.71609i −0.151440 0.0874340i
\(966\) 0 0
\(967\) −24.7361 14.2814i −0.795460 0.459259i 0.0464213 0.998922i \(-0.485218\pi\)
−0.841881 + 0.539663i \(0.818552\pi\)
\(968\) 0 0
\(969\) −0.492206 + 0.852526i −0.0158119 + 0.0273871i
\(970\) 0 0
\(971\) 33.1378 19.1321i 1.06344 0.613979i 0.137060 0.990563i \(-0.456235\pi\)
0.926382 + 0.376584i \(0.122901\pi\)
\(972\) 0 0
\(973\) 9.49126i 0.304276i
\(974\) 0 0
\(975\) 21.4678 + 12.3945i 0.687521 + 0.396941i
\(976\) 0 0
\(977\) 9.69869 5.59954i 0.310288 0.179145i −0.336767 0.941588i \(-0.609333\pi\)
0.647056 + 0.762443i \(0.276000\pi\)
\(978\) 0 0
\(979\) 6.65778 + 11.5316i 0.212784 + 0.368552i
\(980\) 0 0
\(981\) 10.4102 18.0309i 0.332371 0.575683i
\(982\) 0 0
\(983\) −9.97280 17.2734i −0.318083 0.550936i 0.662005 0.749499i \(-0.269706\pi\)
−0.980088 + 0.198564i \(0.936372\pi\)
\(984\) 0 0
\(985\) 8.19836i 0.261221i
\(986\) 0 0
\(987\) 0.141354 0.0816106i 0.00449934 0.00259769i
\(988\) 0 0
\(989\) 11.2018i 0.356196i
\(990\) 0 0
\(991\) 36.3527i 1.15478i 0.816467 + 0.577391i \(0.195929\pi\)
−0.816467 + 0.577391i \(0.804071\pi\)
\(992\) 0 0
\(993\) 6.97396i 0.221312i
\(994\) 0 0
\(995\) 0.0816115 + 0.0471184i 0.00258726 + 0.00149375i
\(996\) 0 0
\(997\) 9.16192 + 15.8689i 0.290161 + 0.502574i 0.973848 0.227202i \(-0.0729578\pi\)
−0.683687 + 0.729776i \(0.739624\pi\)
\(998\) 0 0
\(999\) −12.9065 23.7748i −0.408343 0.752200i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1184.2.y.a.529.13 72
4.3 odd 2 296.2.q.a.85.34 yes 72
8.3 odd 2 296.2.q.a.85.28 72
8.5 even 2 inner 1184.2.y.a.529.24 72
37.27 even 6 inner 1184.2.y.a.1137.24 72
148.27 odd 6 296.2.q.a.101.28 yes 72
296.27 odd 6 296.2.q.a.101.34 yes 72
296.101 even 6 inner 1184.2.y.a.1137.13 72
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
296.2.q.a.85.28 72 8.3 odd 2
296.2.q.a.85.34 yes 72 4.3 odd 2
296.2.q.a.101.28 yes 72 148.27 odd 6
296.2.q.a.101.34 yes 72 296.27 odd 6
1184.2.y.a.529.13 72 1.1 even 1 trivial
1184.2.y.a.529.24 72 8.5 even 2 inner
1184.2.y.a.1137.13 72 296.101 even 6 inner
1184.2.y.a.1137.24 72 37.27 even 6 inner