Properties

Label 1183.4.a.b
Level $1183$
Weight $4$
Character orbit 1183.a
Self dual yes
Analytic conductor $69.799$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1183,4,Mod(1,1183)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1183, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1183.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1183 = 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1183.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(69.7992595368\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 7)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + q^{2} - 2 q^{3} - 7 q^{4} - 16 q^{5} - 2 q^{6} + 7 q^{7} - 15 q^{8} - 23 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + q^{2} - 2 q^{3} - 7 q^{4} - 16 q^{5} - 2 q^{6} + 7 q^{7} - 15 q^{8} - 23 q^{9} - 16 q^{10} + 8 q^{11} + 14 q^{12} + 7 q^{14} + 32 q^{15} + 41 q^{16} + 54 q^{17} - 23 q^{18} + 110 q^{19} + 112 q^{20} - 14 q^{21} + 8 q^{22} + 48 q^{23} + 30 q^{24} + 131 q^{25} + 100 q^{27} - 49 q^{28} - 110 q^{29} + 32 q^{30} - 12 q^{31} + 161 q^{32} - 16 q^{33} + 54 q^{34} - 112 q^{35} + 161 q^{36} + 246 q^{37} + 110 q^{38} + 240 q^{40} - 182 q^{41} - 14 q^{42} + 128 q^{43} - 56 q^{44} + 368 q^{45} + 48 q^{46} - 324 q^{47} - 82 q^{48} + 49 q^{49} + 131 q^{50} - 108 q^{51} - 162 q^{53} + 100 q^{54} - 128 q^{55} - 105 q^{56} - 220 q^{57} - 110 q^{58} - 810 q^{59} - 224 q^{60} - 488 q^{61} - 12 q^{62} - 161 q^{63} - 167 q^{64} - 16 q^{66} - 244 q^{67} - 378 q^{68} - 96 q^{69} - 112 q^{70} + 768 q^{71} + 345 q^{72} + 702 q^{73} + 246 q^{74} - 262 q^{75} - 770 q^{76} + 56 q^{77} + 440 q^{79} - 656 q^{80} + 421 q^{81} - 182 q^{82} + 1302 q^{83} + 98 q^{84} - 864 q^{85} + 128 q^{86} + 220 q^{87} - 120 q^{88} - 730 q^{89} + 368 q^{90} - 336 q^{92} + 24 q^{93} - 324 q^{94} - 1760 q^{95} - 322 q^{96} - 294 q^{97} + 49 q^{98} - 184 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
1.00000 −2.00000 −7.00000 −16.0000 −2.00000 7.00000 −15.0000 −23.0000 −16.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(7\) \( -1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1183.4.a.b 1
13.b even 2 1 7.4.a.a 1
39.d odd 2 1 63.4.a.b 1
52.b odd 2 1 112.4.a.f 1
65.d even 2 1 175.4.a.b 1
65.h odd 4 2 175.4.b.b 2
91.b odd 2 1 49.4.a.b 1
91.r even 6 2 49.4.c.c 2
91.s odd 6 2 49.4.c.b 2
104.e even 2 1 448.4.a.i 1
104.h odd 2 1 448.4.a.e 1
143.d odd 2 1 847.4.a.b 1
156.h even 2 1 1008.4.a.c 1
195.e odd 2 1 1575.4.a.e 1
221.b even 2 1 2023.4.a.a 1
273.g even 2 1 441.4.a.i 1
273.w odd 6 2 441.4.e.h 2
273.ba even 6 2 441.4.e.e 2
364.h even 2 1 784.4.a.g 1
455.h odd 2 1 1225.4.a.j 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
7.4.a.a 1 13.b even 2 1
49.4.a.b 1 91.b odd 2 1
49.4.c.b 2 91.s odd 6 2
49.4.c.c 2 91.r even 6 2
63.4.a.b 1 39.d odd 2 1
112.4.a.f 1 52.b odd 2 1
175.4.a.b 1 65.d even 2 1
175.4.b.b 2 65.h odd 4 2
441.4.a.i 1 273.g even 2 1
441.4.e.e 2 273.ba even 6 2
441.4.e.h 2 273.w odd 6 2
448.4.a.e 1 104.h odd 2 1
448.4.a.i 1 104.e even 2 1
784.4.a.g 1 364.h even 2 1
847.4.a.b 1 143.d odd 2 1
1008.4.a.c 1 156.h even 2 1
1183.4.a.b 1 1.a even 1 1 trivial
1225.4.a.j 1 455.h odd 2 1
1575.4.a.e 1 195.e odd 2 1
2023.4.a.a 1 221.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2} - 1 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1183))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 1 \) Copy content Toggle raw display
$3$ \( T + 2 \) Copy content Toggle raw display
$5$ \( T + 16 \) Copy content Toggle raw display
$7$ \( T - 7 \) Copy content Toggle raw display
$11$ \( T - 8 \) Copy content Toggle raw display
$13$ \( T \) Copy content Toggle raw display
$17$ \( T - 54 \) Copy content Toggle raw display
$19$ \( T - 110 \) Copy content Toggle raw display
$23$ \( T - 48 \) Copy content Toggle raw display
$29$ \( T + 110 \) Copy content Toggle raw display
$31$ \( T + 12 \) Copy content Toggle raw display
$37$ \( T - 246 \) Copy content Toggle raw display
$41$ \( T + 182 \) Copy content Toggle raw display
$43$ \( T - 128 \) Copy content Toggle raw display
$47$ \( T + 324 \) Copy content Toggle raw display
$53$ \( T + 162 \) Copy content Toggle raw display
$59$ \( T + 810 \) Copy content Toggle raw display
$61$ \( T + 488 \) Copy content Toggle raw display
$67$ \( T + 244 \) Copy content Toggle raw display
$71$ \( T - 768 \) Copy content Toggle raw display
$73$ \( T - 702 \) Copy content Toggle raw display
$79$ \( T - 440 \) Copy content Toggle raw display
$83$ \( T - 1302 \) Copy content Toggle raw display
$89$ \( T + 730 \) Copy content Toggle raw display
$97$ \( T + 294 \) Copy content Toggle raw display
show more
show less