Properties

Label 1183.2.e.j.170.11
Level $1183$
Weight $2$
Character 1183.170
Analytic conductor $9.446$
Analytic rank $0$
Dimension $24$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1183 = 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1183.e (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(9.44630255912\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{3})\)
Twist minimal: no (minimal twist has level 91)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 170.11
Character \(\chi\) \(=\) 1183.170
Dual form 1183.2.e.j.508.11

$q$-expansion

\(f(q)\) \(=\) \(q+(1.15163 - 1.99469i) q^{2} +(0.736680 + 1.27597i) q^{3} +(-1.65252 - 2.86225i) q^{4} +(0.423646 - 0.733776i) q^{5} +3.39354 q^{6} +(1.00088 + 2.44913i) q^{7} -3.00585 q^{8} +(0.414604 - 0.718115i) q^{9} +O(q^{10})\) \(q+(1.15163 - 1.99469i) q^{2} +(0.736680 + 1.27597i) q^{3} +(-1.65252 - 2.86225i) q^{4} +(0.423646 - 0.733776i) q^{5} +3.39354 q^{6} +(1.00088 + 2.44913i) q^{7} -3.00585 q^{8} +(0.414604 - 0.718115i) q^{9} +(-0.975769 - 1.69008i) q^{10} +(-0.751701 - 1.30198i) q^{11} +(2.43476 - 4.21712i) q^{12} +(6.03790 + 0.824057i) q^{14} +1.24837 q^{15} +(-0.156597 + 0.271234i) q^{16} +(-1.03570 - 1.79389i) q^{17} +(-0.954943 - 1.65401i) q^{18} +(-0.0237136 + 0.0410731i) q^{19} -2.80033 q^{20} +(-2.38768 + 3.08132i) q^{21} -3.46274 q^{22} +(3.90935 - 6.77119i) q^{23} +(-2.21435 - 3.83536i) q^{24} +(2.14105 + 3.70840i) q^{25} +5.64180 q^{27} +(5.35604 - 6.91200i) q^{28} +1.35971 q^{29} +(1.43766 - 2.49010i) q^{30} +(3.93052 + 6.80787i) q^{31} +(-2.64516 - 4.58156i) q^{32} +(1.10753 - 1.91829i) q^{33} -4.77099 q^{34} +(2.22113 + 0.303142i) q^{35} -2.74056 q^{36} +(3.35110 - 5.80427i) q^{37} +(0.0546187 + 0.0946024i) q^{38} +(-1.27341 + 2.20562i) q^{40} -10.0184 q^{41} +(3.39653 + 8.31123i) q^{42} +9.26566 q^{43} +(-2.48440 + 4.30311i) q^{44} +(-0.351290 - 0.608453i) q^{45} +(-9.00428 - 15.5959i) q^{46} +(0.180007 - 0.311781i) q^{47} -0.461448 q^{48} +(-4.99648 + 4.90257i) q^{49} +9.86281 q^{50} +(1.52596 - 2.64304i) q^{51} +(-1.35591 - 2.34850i) q^{53} +(6.49729 - 11.2536i) q^{54} -1.27382 q^{55} +(-3.00849 - 7.36171i) q^{56} -0.0698773 q^{57} +(1.56588 - 2.71219i) q^{58} +(0.820598 + 1.42132i) q^{59} +(-2.06295 - 3.57313i) q^{60} +(-2.26097 + 3.91612i) q^{61} +18.1061 q^{62} +(2.17373 + 0.296672i) q^{63} -12.8114 q^{64} +(-2.55093 - 4.41834i) q^{66} +(-1.02133 - 1.76900i) q^{67} +(-3.42303 + 5.92886i) q^{68} +11.5198 q^{69} +(3.16260 - 4.08136i) q^{70} -14.2139 q^{71} +(-1.24624 + 2.15854i) q^{72} +(3.38075 + 5.85563i) q^{73} +(-7.71847 - 13.3688i) q^{74} +(-3.15454 + 5.46382i) q^{75} +0.156749 q^{76} +(2.43637 - 3.14414i) q^{77} +(-5.82952 + 10.0970i) q^{79} +(0.132683 + 0.229814i) q^{80} +(2.91240 + 5.04442i) q^{81} +(-11.5376 + 19.9837i) q^{82} -11.5362 q^{83} +(12.7652 + 1.74220i) q^{84} -1.75508 q^{85} +(10.6706 - 18.4821i) q^{86} +(1.00167 + 1.73494i) q^{87} +(2.25950 + 3.91357i) q^{88} +(-8.75561 + 15.1652i) q^{89} -1.61823 q^{90} -25.8411 q^{92} +(-5.79108 + 10.0304i) q^{93} +(-0.414604 - 0.718115i) q^{94} +(0.0200923 + 0.0348009i) q^{95} +(3.89728 - 6.75029i) q^{96} -0.426229 q^{97} +(4.02499 + 15.6124i) q^{98} -1.24663 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24q - 6q^{3} - 8q^{4} - 2q^{9} + O(q^{10}) \) \( 24q - 6q^{3} - 8q^{4} - 2q^{9} - 24q^{10} + 2q^{12} + 8q^{14} - 16q^{16} - 34q^{17} + 60q^{22} - 6q^{23} + 10q^{25} + 24q^{27} + 4q^{29} - 22q^{30} - 24q^{35} - 52q^{36} - 38q^{38} - 2q^{40} + 32q^{42} + 44q^{43} - 76q^{48} + 12q^{49} - 8q^{51} - 16q^{53} + 60q^{55} + 54q^{56} + 10q^{61} + 164q^{62} - 4q^{64} - 68q^{66} - 22q^{68} + 28q^{69} - 66q^{74} - 2q^{75} + 38q^{77} - 70q^{79} + 28q^{81} - 10q^{82} + 20q^{87} + 28q^{88} - 132q^{92} + 2q^{94} - 4q^{95} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1183\mathbb{Z}\right)^\times\).

\(n\) \(339\) \(1016\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.15163 1.99469i 0.814328 1.41046i −0.0954820 0.995431i \(-0.530439\pi\)
0.909810 0.415026i \(-0.136227\pi\)
\(3\) 0.736680 + 1.27597i 0.425323 + 0.736680i 0.996451 0.0841807i \(-0.0268273\pi\)
−0.571128 + 0.820861i \(0.693494\pi\)
\(4\) −1.65252 2.86225i −0.826259 1.43112i
\(5\) 0.423646 0.733776i 0.189460 0.328155i −0.755610 0.655022i \(-0.772660\pi\)
0.945070 + 0.326867i \(0.105993\pi\)
\(6\) 3.39354 1.38541
\(7\) 1.00088 + 2.44913i 0.378297 + 0.925684i
\(8\) −3.00585 −1.06273
\(9\) 0.414604 0.718115i 0.138201 0.239372i
\(10\) −0.975769 1.69008i −0.308565 0.534451i
\(11\) −0.751701 1.30198i −0.226646 0.392563i 0.730166 0.683270i \(-0.239443\pi\)
−0.956812 + 0.290707i \(0.906110\pi\)
\(12\) 2.43476 4.21712i 0.702853 1.21738i
\(13\) 0 0
\(14\) 6.03790 + 0.824057i 1.61370 + 0.220238i
\(15\) 1.24837 0.322327
\(16\) −0.156597 + 0.271234i −0.0391492 + 0.0678085i
\(17\) −1.03570 1.79389i −0.251194 0.435081i 0.712661 0.701509i \(-0.247490\pi\)
−0.963855 + 0.266428i \(0.914157\pi\)
\(18\) −0.954943 1.65401i −0.225082 0.389854i
\(19\) −0.0237136 + 0.0410731i −0.00544027 + 0.00942282i −0.868733 0.495281i \(-0.835065\pi\)
0.863292 + 0.504704i \(0.168398\pi\)
\(20\) −2.80033 −0.626173
\(21\) −2.38768 + 3.08132i −0.521035 + 0.672399i
\(22\) −3.46274 −0.738258
\(23\) 3.90935 6.77119i 0.815156 1.41189i −0.0940598 0.995567i \(-0.529984\pi\)
0.909216 0.416325i \(-0.136682\pi\)
\(24\) −2.21435 3.83536i −0.452002 0.782891i
\(25\) 2.14105 + 3.70840i 0.428210 + 0.741681i
\(26\) 0 0
\(27\) 5.64180 1.08577
\(28\) 5.35604 6.91200i 1.01220 1.30624i
\(29\) 1.35971 0.252491 0.126246 0.991999i \(-0.459707\pi\)
0.126246 + 0.991999i \(0.459707\pi\)
\(30\) 1.43766 2.49010i 0.262480 0.454628i
\(31\) 3.93052 + 6.80787i 0.705943 + 1.22273i 0.966350 + 0.257230i \(0.0828099\pi\)
−0.260407 + 0.965499i \(0.583857\pi\)
\(32\) −2.64516 4.58156i −0.467603 0.809912i
\(33\) 1.10753 1.91829i 0.192796 0.333932i
\(34\) −4.77099 −0.818218
\(35\) 2.22113 + 0.303142i 0.375440 + 0.0512403i
\(36\) −2.74056 −0.456760
\(37\) 3.35110 5.80427i 0.550917 0.954216i −0.447292 0.894388i \(-0.647612\pi\)
0.998209 0.0598278i \(-0.0190551\pi\)
\(38\) 0.0546187 + 0.0946024i 0.00886032 + 0.0153465i
\(39\) 0 0
\(40\) −1.27341 + 2.20562i −0.201345 + 0.348739i
\(41\) −10.0184 −1.56462 −0.782309 0.622891i \(-0.785958\pi\)
−0.782309 + 0.622891i \(0.785958\pi\)
\(42\) 3.39653 + 8.31123i 0.524096 + 1.28245i
\(43\) 9.26566 1.41300 0.706500 0.707713i \(-0.250273\pi\)
0.706500 + 0.707713i \(0.250273\pi\)
\(44\) −2.48440 + 4.30311i −0.374537 + 0.648718i
\(45\) −0.351290 0.608453i −0.0523673 0.0907028i
\(46\) −9.00428 15.5959i −1.32761 2.29948i
\(47\) 0.180007 0.311781i 0.0262567 0.0454779i −0.852598 0.522567i \(-0.824975\pi\)
0.878855 + 0.477089i \(0.158308\pi\)
\(48\) −0.461448 −0.0666042
\(49\) −4.99648 + 4.90257i −0.713782 + 0.700367i
\(50\) 9.86281 1.39481
\(51\) 1.52596 2.64304i 0.213677 0.370100i
\(52\) 0 0
\(53\) −1.35591 2.34850i −0.186248 0.322591i 0.757748 0.652547i \(-0.226299\pi\)
−0.943996 + 0.329956i \(0.892966\pi\)
\(54\) 6.49729 11.2536i 0.884169 1.53143i
\(55\) −1.27382 −0.171762
\(56\) −3.00849 7.36171i −0.402027 0.983750i
\(57\) −0.0698773 −0.00925548
\(58\) 1.56588 2.71219i 0.205611 0.356128i
\(59\) 0.820598 + 1.42132i 0.106833 + 0.185040i 0.914486 0.404619i \(-0.132596\pi\)
−0.807653 + 0.589658i \(0.799262\pi\)
\(60\) −2.06295 3.57313i −0.266325 0.461289i
\(61\) −2.26097 + 3.91612i −0.289488 + 0.501407i −0.973688 0.227887i \(-0.926818\pi\)
0.684200 + 0.729295i \(0.260152\pi\)
\(62\) 18.1061 2.29948
\(63\) 2.17373 + 0.296672i 0.273864 + 0.0373771i
\(64\) −12.8114 −1.60143
\(65\) 0 0
\(66\) −2.55093 4.41834i −0.313998 0.543860i
\(67\) −1.02133 1.76900i −0.124775 0.216117i 0.796870 0.604151i \(-0.206488\pi\)
−0.921645 + 0.388034i \(0.873154\pi\)
\(68\) −3.42303 + 5.92886i −0.415103 + 0.718980i
\(69\) 11.5198 1.38682
\(70\) 3.16260 4.08136i 0.378003 0.487815i
\(71\) −14.2139 −1.68688 −0.843442 0.537220i \(-0.819474\pi\)
−0.843442 + 0.537220i \(0.819474\pi\)
\(72\) −1.24624 + 2.15854i −0.146870 + 0.254387i
\(73\) 3.38075 + 5.85563i 0.395687 + 0.685349i 0.993189 0.116518i \(-0.0371733\pi\)
−0.597502 + 0.801867i \(0.703840\pi\)
\(74\) −7.71847 13.3688i −0.897253 1.55409i
\(75\) −3.15454 + 5.46382i −0.364255 + 0.630907i
\(76\) 0.156749 0.0179803
\(77\) 2.43637 3.14414i 0.277650 0.358308i
\(78\) 0 0
\(79\) −5.82952 + 10.0970i −0.655873 + 1.13600i 0.325801 + 0.945438i \(0.394366\pi\)
−0.981674 + 0.190567i \(0.938967\pi\)
\(80\) 0.132683 + 0.229814i 0.0148344 + 0.0256940i
\(81\) 2.91240 + 5.04442i 0.323600 + 0.560491i
\(82\) −11.5376 + 19.9837i −1.27411 + 2.20683i
\(83\) −11.5362 −1.26627 −0.633133 0.774043i \(-0.718232\pi\)
−0.633133 + 0.774043i \(0.718232\pi\)
\(84\) 12.7652 + 1.74220i 1.39280 + 0.190090i
\(85\) −1.75508 −0.190365
\(86\) 10.6706 18.4821i 1.15065 1.99298i
\(87\) 1.00167 + 1.73494i 0.107390 + 0.186006i
\(88\) 2.25950 + 3.91357i 0.240863 + 0.417188i
\(89\) −8.75561 + 15.1652i −0.928093 + 1.60750i −0.141582 + 0.989927i \(0.545219\pi\)
−0.786510 + 0.617577i \(0.788114\pi\)
\(90\) −1.61823 −0.170576
\(91\) 0 0
\(92\) −25.8411 −2.69412
\(93\) −5.79108 + 10.0304i −0.600507 + 1.04011i
\(94\) −0.414604 0.718115i −0.0427631 0.0740679i
\(95\) 0.0200923 + 0.0348009i 0.00206143 + 0.00357050i
\(96\) 3.89728 6.75029i 0.397764 0.688948i
\(97\) −0.426229 −0.0432770 −0.0216385 0.999766i \(-0.506888\pi\)
−0.0216385 + 0.999766i \(0.506888\pi\)
\(98\) 4.02499 + 15.6124i 0.406585 + 1.57709i
\(99\) −1.24663 −0.125291
\(100\) 7.07624 12.2564i 0.707624 1.22564i
\(101\) −4.83499 8.37444i −0.481099 0.833288i 0.518666 0.854977i \(-0.326429\pi\)
−0.999765 + 0.0216891i \(0.993096\pi\)
\(102\) −3.51469 6.08763i −0.348007 0.602765i
\(103\) 4.98912 8.64140i 0.491592 0.851463i −0.508361 0.861144i \(-0.669748\pi\)
0.999953 + 0.00968129i \(0.00308170\pi\)
\(104\) 0 0
\(105\) 1.24947 + 3.05741i 0.121935 + 0.298373i
\(106\) −6.24603 −0.606668
\(107\) −4.93111 + 8.54094i −0.476709 + 0.825684i −0.999644 0.0266888i \(-0.991504\pi\)
0.522935 + 0.852373i \(0.324837\pi\)
\(108\) −9.32319 16.1482i −0.897124 1.55386i
\(109\) 5.80275 + 10.0507i 0.555803 + 0.962679i 0.997841 + 0.0656822i \(0.0209224\pi\)
−0.442038 + 0.896996i \(0.645744\pi\)
\(110\) −1.46697 + 2.54087i −0.139870 + 0.242263i
\(111\) 9.87475 0.937269
\(112\) −0.821022 0.112054i −0.0775793 0.0105881i
\(113\) −3.47758 −0.327143 −0.163572 0.986531i \(-0.552301\pi\)
−0.163572 + 0.986531i \(0.552301\pi\)
\(114\) −0.0804731 + 0.139383i −0.00753699 + 0.0130545i
\(115\) −3.31236 5.73718i −0.308879 0.534994i
\(116\) −2.24694 3.89182i −0.208623 0.361346i
\(117\) 0 0
\(118\) 3.78011 0.347987
\(119\) 3.35685 4.33203i 0.307722 0.397117i
\(120\) −3.75240 −0.342546
\(121\) 4.36989 7.56887i 0.397263 0.688079i
\(122\) 5.20762 + 9.01986i 0.471476 + 0.816620i
\(123\) −7.38039 12.7832i −0.665467 1.15262i
\(124\) 12.9905 22.5003i 1.16658 2.02058i
\(125\) 7.86464 0.703435
\(126\) 3.09510 3.99425i 0.275734 0.355836i
\(127\) −15.6998 −1.39313 −0.696567 0.717491i \(-0.745290\pi\)
−0.696567 + 0.717491i \(0.745290\pi\)
\(128\) −9.46373 + 16.3917i −0.836483 + 1.44883i
\(129\) 6.82583 + 11.8227i 0.600981 + 1.04093i
\(130\) 0 0
\(131\) 1.27259 2.20418i 0.111186 0.192580i −0.805063 0.593190i \(-0.797868\pi\)
0.916249 + 0.400610i \(0.131202\pi\)
\(132\) −7.32083 −0.637197
\(133\) −0.124328 0.0169684i −0.0107806 0.00147134i
\(134\) −4.70479 −0.406432
\(135\) 2.39013 4.13982i 0.205709 0.356299i
\(136\) 3.11316 + 5.39215i 0.266951 + 0.462373i
\(137\) −0.932362 1.61490i −0.0796571 0.137970i 0.823445 0.567396i \(-0.192049\pi\)
−0.903102 + 0.429426i \(0.858716\pi\)
\(138\) 13.2665 22.9783i 1.12932 1.95605i
\(139\) 15.6092 1.32396 0.661979 0.749522i \(-0.269717\pi\)
0.661979 + 0.749522i \(0.269717\pi\)
\(140\) −2.80280 6.85837i −0.236879 0.579638i
\(141\) 0.530430 0.0446703
\(142\) −16.3692 + 28.3524i −1.37368 + 2.37928i
\(143\) 0 0
\(144\) 0.129851 + 0.224909i 0.0108209 + 0.0187424i
\(145\) 0.576035 0.997721i 0.0478371 0.0828562i
\(146\) 15.5735 1.28887
\(147\) −9.93633 2.76372i −0.819535 0.227947i
\(148\) −22.1510 −1.82080
\(149\) −3.18181 + 5.51106i −0.260664 + 0.451484i −0.966419 0.256973i \(-0.917275\pi\)
0.705754 + 0.708457i \(0.250608\pi\)
\(150\) 7.26574 + 12.5846i 0.593245 + 1.02753i
\(151\) 0.332047 + 0.575122i 0.0270216 + 0.0468028i 0.879220 0.476416i \(-0.158064\pi\)
−0.852198 + 0.523219i \(0.824731\pi\)
\(152\) 0.0712794 0.123460i 0.00578152 0.0100139i
\(153\) −1.71762 −0.138861
\(154\) −3.46578 8.48069i −0.279281 0.683393i
\(155\) 6.66060 0.534992
\(156\) 0 0
\(157\) 8.28798 + 14.3552i 0.661453 + 1.14567i 0.980234 + 0.197842i \(0.0633933\pi\)
−0.318781 + 0.947828i \(0.603273\pi\)
\(158\) 13.4269 + 23.2562i 1.06819 + 1.85016i
\(159\) 1.99774 3.46019i 0.158431 0.274411i
\(160\) −4.48245 −0.354369
\(161\) 20.4963 + 2.79735i 1.61534 + 0.220462i
\(162\) 13.4160 1.05406
\(163\) 4.52563 7.83863i 0.354475 0.613969i −0.632553 0.774517i \(-0.717993\pi\)
0.987028 + 0.160548i \(0.0513263\pi\)
\(164\) 16.5557 + 28.6752i 1.29278 + 2.23916i
\(165\) −0.938398 1.62535i −0.0730542 0.126534i
\(166\) −13.2855 + 23.0112i −1.03116 + 1.78601i
\(167\) 2.65761 0.205652 0.102826 0.994699i \(-0.467212\pi\)
0.102826 + 0.994699i \(0.467212\pi\)
\(168\) 7.17701 9.26197i 0.553718 0.714576i
\(169\) 0 0
\(170\) −2.02121 + 3.50084i −0.155020 + 0.268502i
\(171\) 0.0196635 + 0.0340582i 0.00150370 + 0.00260449i
\(172\) −15.3117 26.5206i −1.16750 2.02218i
\(173\) −9.79352 + 16.9629i −0.744588 + 1.28966i 0.205799 + 0.978594i \(0.434021\pi\)
−0.950387 + 0.311070i \(0.899313\pi\)
\(174\) 4.61423 0.349804
\(175\) −6.93943 + 8.95538i −0.524572 + 0.676963i
\(176\) 0.470856 0.0354921
\(177\) −1.20904 + 2.09411i −0.0908768 + 0.157403i
\(178\) 20.1665 + 34.9294i 1.51154 + 2.61807i
\(179\) 1.44666 + 2.50569i 0.108129 + 0.187284i 0.915012 0.403426i \(-0.132181\pi\)
−0.806884 + 0.590711i \(0.798848\pi\)
\(180\) −1.16103 + 2.01096i −0.0865379 + 0.149888i
\(181\) 1.36804 0.101686 0.0508429 0.998707i \(-0.483809\pi\)
0.0508429 + 0.998707i \(0.483809\pi\)
\(182\) 0 0
\(183\) −6.66245 −0.492503
\(184\) −11.7509 + 20.3532i −0.866289 + 1.50046i
\(185\) −2.83936 4.91791i −0.208754 0.361572i
\(186\) 13.3384 + 23.1028i 0.978019 + 1.69398i
\(187\) −1.55707 + 2.69693i −0.113865 + 0.197219i
\(188\) −1.18986 −0.0867794
\(189\) 5.64677 + 13.8175i 0.410742 + 1.00508i
\(190\) 0.0925559 0.00671471
\(191\) 0.756625 1.31051i 0.0547475 0.0948254i −0.837353 0.546663i \(-0.815898\pi\)
0.892100 + 0.451837i \(0.149231\pi\)
\(192\) −9.43792 16.3470i −0.681123 1.17974i
\(193\) 3.47697 + 6.02229i 0.250278 + 0.433494i 0.963602 0.267340i \(-0.0861447\pi\)
−0.713324 + 0.700834i \(0.752811\pi\)
\(194\) −0.490860 + 0.850194i −0.0352417 + 0.0610404i
\(195\) 0 0
\(196\) 22.2891 + 6.19955i 1.59208 + 0.442825i
\(197\) −15.4772 −1.10271 −0.551353 0.834272i \(-0.685888\pi\)
−0.551353 + 0.834272i \(0.685888\pi\)
\(198\) −1.43566 + 2.48664i −0.102028 + 0.176718i
\(199\) −3.30764 5.72901i −0.234473 0.406118i 0.724647 0.689121i \(-0.242003\pi\)
−0.959119 + 0.283002i \(0.908670\pi\)
\(200\) −6.43566 11.1469i −0.455070 0.788205i
\(201\) 1.50479 2.60637i 0.106140 0.183839i
\(202\) −22.2725 −1.56709
\(203\) 1.36090 + 3.33010i 0.0955168 + 0.233727i
\(204\) −10.0867 −0.706211
\(205\) −4.24427 + 7.35129i −0.296433 + 0.513436i
\(206\) −11.4913 19.9035i −0.800634 1.38674i
\(207\) −3.24166 5.61473i −0.225311 0.390250i
\(208\) 0 0
\(209\) 0.0713021 0.00493207
\(210\) 7.53751 + 1.02872i 0.520137 + 0.0709887i
\(211\) −8.09428 −0.557234 −0.278617 0.960402i \(-0.589876\pi\)
−0.278617 + 0.960402i \(0.589876\pi\)
\(212\) −4.48132 + 7.76187i −0.307778 + 0.533088i
\(213\) −10.4711 18.1365i −0.717470 1.24269i
\(214\) 11.3577 + 19.6721i 0.776394 + 1.34475i
\(215\) 3.92536 6.79892i 0.267707 0.463683i
\(216\) −16.9584 −1.15387
\(217\) −12.7394 + 16.4402i −0.864805 + 1.11604i
\(218\) 26.7306 1.81042
\(219\) −4.98106 + 8.62745i −0.336589 + 0.582989i
\(220\) 2.10501 + 3.64599i 0.141920 + 0.245812i
\(221\) 0 0
\(222\) 11.3721 19.6970i 0.763244 1.32198i
\(223\) 16.0581 1.07533 0.537664 0.843159i \(-0.319307\pi\)
0.537664 + 0.843159i \(0.319307\pi\)
\(224\) 8.57334 11.0639i 0.572830 0.739240i
\(225\) 3.55075 0.236716
\(226\) −4.00490 + 6.93668i −0.266402 + 0.461421i
\(227\) 0.647903 + 1.12220i 0.0430029 + 0.0744831i 0.886726 0.462296i \(-0.152974\pi\)
−0.843723 + 0.536779i \(0.819641\pi\)
\(228\) 0.115474 + 0.200006i 0.00764742 + 0.0132457i
\(229\) −10.4088 + 18.0285i −0.687831 + 1.19136i 0.284707 + 0.958614i \(0.408104\pi\)
−0.972538 + 0.232743i \(0.925230\pi\)
\(230\) −15.2585 −1.00612
\(231\) 5.80665 + 0.792496i 0.382050 + 0.0521424i
\(232\) −4.08707 −0.268330
\(233\) 6.65213 11.5218i 0.435796 0.754820i −0.561565 0.827433i \(-0.689800\pi\)
0.997360 + 0.0726127i \(0.0231337\pi\)
\(234\) 0 0
\(235\) −0.152518 0.264169i −0.00994920 0.0172325i
\(236\) 2.71211 4.69751i 0.176543 0.305782i
\(237\) −17.1780 −1.11583
\(238\) −4.77519 11.6848i −0.309530 0.757411i
\(239\) −13.3652 −0.864525 −0.432263 0.901748i \(-0.642285\pi\)
−0.432263 + 0.901748i \(0.642285\pi\)
\(240\) −0.195490 + 0.338599i −0.0126188 + 0.0218565i
\(241\) −0.417076 0.722398i −0.0268663 0.0465337i 0.852280 0.523086i \(-0.175219\pi\)
−0.879146 + 0.476553i \(0.841886\pi\)
\(242\) −10.0650 17.4331i −0.647004 1.12064i
\(243\) 4.17170 7.22559i 0.267614 0.463522i
\(244\) 14.9452 0.956767
\(245\) 1.48065 + 5.74325i 0.0945955 + 0.366923i
\(246\) −33.9980 −2.16763
\(247\) 0 0
\(248\) −11.8146 20.4634i −0.750225 1.29943i
\(249\) −8.49852 14.7199i −0.538572 0.932834i
\(250\) 9.05718 15.6875i 0.572827 0.992165i
\(251\) 27.2721 1.72140 0.860699 0.509114i \(-0.170027\pi\)
0.860699 + 0.509114i \(0.170027\pi\)
\(252\) −2.74297 6.71199i −0.172791 0.422816i
\(253\) −11.7547 −0.739009
\(254\) −18.0804 + 31.3163i −1.13447 + 1.96496i
\(255\) −1.29293 2.23943i −0.0809667 0.140238i
\(256\) 8.98607 + 15.5643i 0.561630 + 0.972771i
\(257\) −3.27594 + 5.67409i −0.204348 + 0.353940i −0.949925 0.312479i \(-0.898841\pi\)
0.745577 + 0.666419i \(0.232174\pi\)
\(258\) 31.4434 1.95758
\(259\) 17.5695 + 2.39789i 1.09171 + 0.148998i
\(260\) 0 0
\(261\) 0.563740 0.976426i 0.0348946 0.0604393i
\(262\) −2.93110 5.07682i −0.181084 0.313647i
\(263\) 11.2945 + 19.5627i 0.696450 + 1.20629i 0.969689 + 0.244341i \(0.0785717\pi\)
−0.273239 + 0.961946i \(0.588095\pi\)
\(264\) −3.32906 + 5.76610i −0.204889 + 0.354879i
\(265\) −2.29770 −0.141146
\(266\) −0.177027 + 0.228454i −0.0108542 + 0.0140074i
\(267\) −25.8003 −1.57896
\(268\) −3.37553 + 5.84660i −0.206194 + 0.357138i
\(269\) −8.00065 13.8575i −0.487808 0.844909i 0.512093 0.858930i \(-0.328870\pi\)
−0.999902 + 0.0140210i \(0.995537\pi\)
\(270\) −5.50510 9.53511i −0.335030 0.580288i
\(271\) 4.37967 7.58582i 0.266046 0.460806i −0.701791 0.712383i \(-0.747616\pi\)
0.967837 + 0.251577i \(0.0809493\pi\)
\(272\) 0.648750 0.0393363
\(273\) 0 0
\(274\) −4.29496 −0.259468
\(275\) 3.21886 5.57522i 0.194104 0.336199i
\(276\) −19.0366 32.9724i −1.14587 1.98471i
\(277\) 9.95914 + 17.2497i 0.598387 + 1.03644i 0.993059 + 0.117614i \(0.0375246\pi\)
−0.394673 + 0.918822i \(0.629142\pi\)
\(278\) 17.9761 31.1355i 1.07814 1.86739i
\(279\) 6.51844 0.390249
\(280\) −6.67638 0.911198i −0.398990 0.0544545i
\(281\) −14.0234 −0.836566 −0.418283 0.908317i \(-0.637368\pi\)
−0.418283 + 0.908317i \(0.637368\pi\)
\(282\) 0.610861 1.05804i 0.0363762 0.0630055i
\(283\) −0.506295 0.876929i −0.0300961 0.0521280i 0.850585 0.525838i \(-0.176248\pi\)
−0.880681 + 0.473710i \(0.842915\pi\)
\(284\) 23.4888 + 40.6838i 1.39380 + 2.41414i
\(285\) −0.0296032 + 0.0512743i −0.00175354 + 0.00303723i
\(286\) 0 0
\(287\) −10.0273 24.5365i −0.591890 1.44834i
\(288\) −4.38678 −0.258493
\(289\) 6.35465 11.0066i 0.373803 0.647446i
\(290\) −1.32676 2.29802i −0.0779101 0.134944i
\(291\) −0.313995 0.543855i −0.0184067 0.0318813i
\(292\) 11.1735 19.3531i 0.653879 1.13255i
\(293\) −0.199235 −0.0116394 −0.00581972 0.999983i \(-0.501852\pi\)
−0.00581972 + 0.999983i \(0.501852\pi\)
\(294\) −16.9558 + 16.6371i −0.988880 + 0.970295i
\(295\) 1.39057 0.0809622
\(296\) −10.0729 + 17.4467i −0.585474 + 1.01407i
\(297\) −4.24095 7.34554i −0.246085 0.426232i
\(298\) 7.32857 + 12.6935i 0.424532 + 0.735312i
\(299\) 0 0
\(300\) 20.8517 1.20387
\(301\) 9.27382 + 22.6928i 0.534534 + 1.30799i
\(302\) 1.52958 0.0880177
\(303\) 7.12368 12.3386i 0.409245 0.708833i
\(304\) −0.00742695 0.0128639i −0.000425965 0.000737793i
\(305\) 1.91570 + 3.31809i 0.109693 + 0.189993i
\(306\) −1.97807 + 3.42612i −0.113079 + 0.195858i
\(307\) −27.2004 −1.55241 −0.776204 0.630482i \(-0.782857\pi\)
−0.776204 + 0.630482i \(0.782857\pi\)
\(308\) −13.0255 1.77772i −0.742194 0.101295i
\(309\) 14.7015 0.836341
\(310\) 7.67057 13.2858i 0.435659 0.754584i
\(311\) −13.5505 23.4701i −0.768376 1.33087i −0.938443 0.345434i \(-0.887732\pi\)
0.170067 0.985432i \(-0.445602\pi\)
\(312\) 0 0
\(313\) 11.0392 19.1205i 0.623975 1.08076i −0.364763 0.931100i \(-0.618850\pi\)
0.988738 0.149656i \(-0.0478165\pi\)
\(314\) 38.1789 2.15456
\(315\) 1.13858 1.46934i 0.0641517 0.0827882i
\(316\) 38.5336 2.16768
\(317\) −3.53411 + 6.12126i −0.198496 + 0.343804i −0.948041 0.318149i \(-0.896939\pi\)
0.749545 + 0.661953i \(0.230272\pi\)
\(318\) −4.60133 7.96973i −0.258030 0.446920i
\(319\) −1.02209 1.77032i −0.0572263 0.0991188i
\(320\) −5.42750 + 9.40071i −0.303407 + 0.525516i
\(321\) −14.5306 −0.811020
\(322\) 29.1841 37.6622i 1.62637 2.09883i
\(323\) 0.0982407 0.00546626
\(324\) 9.62558 16.6720i 0.534754 0.926221i
\(325\) 0 0
\(326\) −10.4237 18.0544i −0.577318 0.999943i
\(327\) −8.54955 + 14.8082i −0.472791 + 0.818898i
\(328\) 30.1139 1.66276
\(329\) 0.943758 + 0.128805i 0.0520310 + 0.00710124i
\(330\) −4.32276 −0.237960
\(331\) −3.29429 + 5.70588i −0.181071 + 0.313623i −0.942245 0.334923i \(-0.891290\pi\)
0.761175 + 0.648547i \(0.224623\pi\)
\(332\) 19.0638 + 33.0195i 1.04626 + 1.81218i
\(333\) −2.77875 4.81294i −0.152275 0.263748i
\(334\) 3.06059 5.30110i 0.167468 0.290063i
\(335\) −1.73073 −0.0945599
\(336\) −0.461854 1.13015i −0.0251962 0.0616545i
\(337\) 4.22290 0.230036 0.115018 0.993363i \(-0.463307\pi\)
0.115018 + 0.993363i \(0.463307\pi\)
\(338\) 0 0
\(339\) −2.56187 4.43728i −0.139141 0.241000i
\(340\) 2.90030 + 5.02347i 0.157291 + 0.272436i
\(341\) 5.90916 10.2350i 0.319999 0.554254i
\(342\) 0.0905805 0.00489803
\(343\) −17.0079 7.33014i −0.918341 0.395790i
\(344\) −27.8512 −1.50163
\(345\) 4.88030 8.45293i 0.262747 0.455091i
\(346\) 22.5571 + 39.0700i 1.21268 + 2.10042i
\(347\) 4.54739 + 7.87631i 0.244117 + 0.422822i 0.961883 0.273462i \(-0.0881687\pi\)
−0.717766 + 0.696284i \(0.754835\pi\)
\(348\) 3.31056 5.73405i 0.177464 0.307378i
\(349\) −9.22053 −0.493564 −0.246782 0.969071i \(-0.579373\pi\)
−0.246782 + 0.969071i \(0.579373\pi\)
\(350\) 9.87149 + 24.1553i 0.527653 + 1.29116i
\(351\) 0 0
\(352\) −3.97674 + 6.88792i −0.211961 + 0.367127i
\(353\) 1.07724 + 1.86584i 0.0573359 + 0.0993087i 0.893269 0.449523i \(-0.148406\pi\)
−0.835933 + 0.548832i \(0.815073\pi\)
\(354\) 2.78473 + 4.82330i 0.148007 + 0.256356i
\(355\) −6.02167 + 10.4298i −0.319597 + 0.553559i
\(356\) 57.8752 3.06738
\(357\) 8.00046 + 1.09191i 0.423429 + 0.0577899i
\(358\) 6.66410 0.352208
\(359\) 4.27878 7.41107i 0.225825 0.391141i −0.730741 0.682654i \(-0.760825\pi\)
0.956567 + 0.291513i \(0.0941588\pi\)
\(360\) 1.05593 + 1.82892i 0.0556521 + 0.0963923i
\(361\) 9.49888 + 16.4525i 0.499941 + 0.865923i
\(362\) 1.57548 2.72881i 0.0828055 0.143423i
\(363\) 12.8769 0.675860
\(364\) 0 0
\(365\) 5.72896 0.299867
\(366\) −7.67270 + 13.2895i −0.401059 + 0.694654i
\(367\) −1.14912 1.99033i −0.0599833 0.103894i 0.834474 0.551047i \(-0.185771\pi\)
−0.894458 + 0.447153i \(0.852438\pi\)
\(368\) 1.22438 + 2.12070i 0.0638255 + 0.110549i
\(369\) −4.15368 + 7.19439i −0.216232 + 0.374525i
\(370\) −13.0796 −0.679975
\(371\) 4.39468 5.67136i 0.228160 0.294442i
\(372\) 38.2795 1.98470
\(373\) −5.88418 + 10.1917i −0.304672 + 0.527707i −0.977188 0.212375i \(-0.931880\pi\)
0.672517 + 0.740082i \(0.265213\pi\)
\(374\) 3.58636 + 6.21175i 0.185446 + 0.321202i
\(375\) 5.79373 + 10.0350i 0.299187 + 0.518207i
\(376\) −0.541073 + 0.937166i −0.0279037 + 0.0483307i
\(377\) 0 0
\(378\) 34.0646 + 4.64917i 1.75210 + 0.239127i
\(379\) −7.99093 −0.410466 −0.205233 0.978713i \(-0.565795\pi\)
−0.205233 + 0.978713i \(0.565795\pi\)
\(380\) 0.0664059 0.115018i 0.00340655 0.00590032i
\(381\) −11.5658 20.0325i −0.592532 1.02630i
\(382\) −1.74271 3.01846i −0.0891647 0.154438i
\(383\) 14.1223 24.4605i 0.721616 1.24988i −0.238736 0.971084i \(-0.576733\pi\)
0.960352 0.278791i \(-0.0899335\pi\)
\(384\) −27.8870 −1.42310
\(385\) −1.27494 3.11975i −0.0649770 0.158997i
\(386\) 16.0168 0.815233
\(387\) 3.84158 6.65381i 0.195278 0.338232i
\(388\) 0.704352 + 1.21997i 0.0357580 + 0.0619347i
\(389\) −3.84043 6.65182i −0.194717 0.337261i 0.752090 0.659060i \(-0.229046\pi\)
−0.946808 + 0.321799i \(0.895712\pi\)
\(390\) 0 0
\(391\) −16.1957 −0.819050
\(392\) 15.0186 14.7364i 0.758556 0.744300i
\(393\) 3.74996 0.189160
\(394\) −17.8241 + 30.8722i −0.897964 + 1.55532i
\(395\) 4.93931 + 8.55513i 0.248524 + 0.430455i
\(396\) 2.06008 + 3.56817i 0.103523 + 0.179307i
\(397\) 3.72641 6.45433i 0.187023 0.323933i −0.757233 0.653144i \(-0.773449\pi\)
0.944256 + 0.329211i \(0.106783\pi\)
\(398\) −15.2368 −0.763750
\(399\) −0.0699389 0.171139i −0.00350132 0.00856765i
\(400\) −1.34113 −0.0670563
\(401\) 9.09912 15.7601i 0.454389 0.787024i −0.544264 0.838914i \(-0.683191\pi\)
0.998653 + 0.0518898i \(0.0165244\pi\)
\(402\) −3.46593 6.00316i −0.172865 0.299411i
\(403\) 0 0
\(404\) −15.9798 + 27.6778i −0.795025 + 1.37702i
\(405\) 4.93530 0.245237
\(406\) 8.20978 + 1.12048i 0.407444 + 0.0556083i
\(407\) −10.0761 −0.499453
\(408\) −4.58681 + 7.94458i −0.227081 + 0.393315i
\(409\) 14.6413 + 25.3594i 0.723964 + 1.25394i 0.959399 + 0.282053i \(0.0910152\pi\)
−0.235435 + 0.971890i \(0.575651\pi\)
\(410\) 9.77568 + 16.9320i 0.482787 + 0.836211i
\(411\) 1.37371 2.37933i 0.0677599 0.117364i
\(412\) −32.9784 −1.62473
\(413\) −2.65967 + 3.43232i −0.130874 + 0.168893i
\(414\) −14.9328 −0.733909
\(415\) −4.88728 + 8.46502i −0.239907 + 0.415531i
\(416\) 0 0
\(417\) 11.4990 + 19.9169i 0.563109 + 0.975334i
\(418\) 0.0821139 0.142225i 0.00401632 0.00695647i
\(419\) −20.7393 −1.01318 −0.506591 0.862187i \(-0.669095\pi\)
−0.506591 + 0.862187i \(0.669095\pi\)
\(420\) 6.68630 8.62871i 0.326258 0.421038i
\(421\) 24.8696 1.21207 0.606036 0.795437i \(-0.292759\pi\)
0.606036 + 0.795437i \(0.292759\pi\)
\(422\) −9.32165 + 16.1456i −0.453771 + 0.785954i
\(423\) −0.149263 0.258531i −0.00725742 0.0125702i
\(424\) 4.07565 + 7.05923i 0.197931 + 0.342826i
\(425\) 4.43497 7.68159i 0.215128 0.372612i
\(426\) −48.2356 −2.33702
\(427\) −11.8540 1.61785i −0.573657 0.0782932i
\(428\) 32.5950 1.57554
\(429\) 0 0
\(430\) −9.04115 15.6597i −0.436003 0.755179i
\(431\) −10.5844 18.3327i −0.509832 0.883055i −0.999935 0.0113906i \(-0.996374\pi\)
0.490103 0.871665i \(-0.336959\pi\)
\(432\) −0.883489 + 1.53025i −0.0425069 + 0.0736241i
\(433\) −23.4296 −1.12595 −0.562977 0.826472i \(-0.690344\pi\)
−0.562977 + 0.826472i \(0.690344\pi\)
\(434\) 18.1220 + 44.3442i 0.869885 + 2.12859i
\(435\) 1.69741 0.0813848
\(436\) 19.1783 33.2178i 0.918474 1.59084i
\(437\) 0.185409 + 0.321139i 0.00886934 + 0.0153621i
\(438\) 11.4727 + 19.8713i 0.548187 + 0.949488i
\(439\) 6.01919 10.4256i 0.287280 0.497584i −0.685879 0.727715i \(-0.740582\pi\)
0.973160 + 0.230131i \(0.0739155\pi\)
\(440\) 3.82891 0.182536
\(441\) 1.44905 + 5.62067i 0.0690025 + 0.267651i
\(442\) 0 0
\(443\) −7.86656 + 13.6253i −0.373752 + 0.647357i −0.990139 0.140086i \(-0.955262\pi\)
0.616388 + 0.787443i \(0.288595\pi\)
\(444\) −16.3182 28.2640i −0.774427 1.34135i
\(445\) 7.41855 + 12.8493i 0.351673 + 0.609116i
\(446\) 18.4930 32.0308i 0.875669 1.51670i
\(447\) −9.37592 −0.443466
\(448\) −12.8227 31.3768i −0.605815 1.48242i
\(449\) 26.0012 1.22707 0.613536 0.789667i \(-0.289747\pi\)
0.613536 + 0.789667i \(0.289747\pi\)
\(450\) 4.08916 7.08263i 0.192765 0.333878i
\(451\) 7.53087 + 13.0438i 0.354615 + 0.614211i
\(452\) 5.74676 + 9.95369i 0.270305 + 0.468182i
\(453\) −0.489225 + 0.847362i −0.0229858 + 0.0398125i
\(454\) 2.98459 0.140074
\(455\) 0 0
\(456\) 0.210041 0.00983605
\(457\) 15.3979 26.6700i 0.720284 1.24757i −0.240602 0.970624i \(-0.577345\pi\)
0.960886 0.276945i \(-0.0893219\pi\)
\(458\) 23.9742 + 41.5245i 1.12024 + 1.94031i
\(459\) −5.84322 10.1208i −0.272738 0.472396i
\(460\) −10.9475 + 18.9616i −0.510429 + 0.884088i
\(461\) 34.0958 1.58800 0.794000 0.607918i \(-0.207995\pi\)
0.794000 + 0.607918i \(0.207995\pi\)
\(462\) 8.26791 10.6698i 0.384658 0.496403i
\(463\) 1.69184 0.0786263 0.0393131 0.999227i \(-0.487483\pi\)
0.0393131 + 0.999227i \(0.487483\pi\)
\(464\) −0.212926 + 0.368799i −0.00988485 + 0.0171211i
\(465\) 4.90674 + 8.49871i 0.227544 + 0.394118i
\(466\) −15.3216 26.5378i −0.709761 1.22934i
\(467\) −14.1762 + 24.5539i −0.655996 + 1.13622i 0.325647 + 0.945491i \(0.394418\pi\)
−0.981643 + 0.190727i \(0.938916\pi\)
\(468\) 0 0
\(469\) 3.31027 4.27192i 0.152854 0.197259i
\(470\) −0.702581 −0.0324076
\(471\) −12.2112 + 21.1504i −0.562662 + 0.974559i
\(472\) −2.46659 4.27226i −0.113534 0.196647i
\(473\) −6.96501 12.0637i −0.320251 0.554692i
\(474\) −19.7827 + 34.2647i −0.908651 + 1.57383i
\(475\) −0.203088 −0.00931830
\(476\) −17.9466 2.44936i −0.822581 0.112266i
\(477\) −2.24866 −0.102959
\(478\) −15.3918 + 26.6595i −0.704007 + 1.21938i
\(479\) −3.14123 5.44077i −0.143526 0.248595i 0.785296 0.619121i \(-0.212511\pi\)
−0.928822 + 0.370526i \(0.879178\pi\)
\(480\) −3.30213 5.71946i −0.150721 0.261056i
\(481\) 0 0
\(482\) −1.92128 −0.0875117
\(483\) 11.5299 + 28.2134i 0.524629 + 1.28375i
\(484\) −28.8853 −1.31297
\(485\) −0.180570 + 0.312757i −0.00819927 + 0.0142016i
\(486\) −9.60853 16.6425i −0.435852 0.754917i
\(487\) 6.50879 + 11.2736i 0.294942 + 0.510854i 0.974971 0.222331i \(-0.0713665\pi\)
−0.680030 + 0.733185i \(0.738033\pi\)
\(488\) 6.79613 11.7712i 0.307647 0.532859i
\(489\) 13.3358 0.603065
\(490\) 13.1612 + 3.66068i 0.594560 + 0.165373i
\(491\) −12.3523 −0.557453 −0.278726 0.960371i \(-0.589912\pi\)
−0.278726 + 0.960371i \(0.589912\pi\)
\(492\) −24.3925 + 42.2490i −1.09970 + 1.90473i
\(493\) −1.40825 2.43916i −0.0634244 0.109854i
\(494\) 0 0
\(495\) −0.528131 + 0.914749i −0.0237377 + 0.0411149i
\(496\) −2.46203 −0.110549
\(497\) −14.2264 34.8118i −0.638143 1.56152i
\(498\) −39.1487 −1.75430
\(499\) 4.57670 7.92708i 0.204881 0.354865i −0.745214 0.666826i \(-0.767652\pi\)
0.950095 + 0.311961i \(0.100986\pi\)
\(500\) −12.9965 22.5105i −0.581220 1.00670i
\(501\) 1.95781 + 3.39102i 0.0874684 + 0.151500i
\(502\) 31.4074 54.3993i 1.40178 2.42796i
\(503\) 22.5037 1.00339 0.501696 0.865044i \(-0.332710\pi\)
0.501696 + 0.865044i \(0.332710\pi\)
\(504\) −6.53389 0.891750i −0.291042 0.0397217i
\(505\) −8.19329 −0.364596
\(506\) −13.5370 + 23.4469i −0.601795 + 1.04234i
\(507\) 0 0
\(508\) 25.9443 + 44.9368i 1.15109 + 1.99375i
\(509\) −19.3303 + 33.4811i −0.856800 + 1.48402i 0.0181646 + 0.999835i \(0.494218\pi\)
−0.874965 + 0.484187i \(0.839116\pi\)
\(510\) −5.95594 −0.263734
\(511\) −10.9575 + 14.1407i −0.484730 + 0.625546i
\(512\) 3.53972 0.156435
\(513\) −0.133787 + 0.231727i −0.00590686 + 0.0102310i
\(514\) 7.54536 + 13.0690i 0.332812 + 0.576447i
\(515\) −4.22724 7.32179i −0.186274 0.322637i
\(516\) 22.5596 39.0744i 0.993132 1.72016i
\(517\) −0.541245 −0.0238039
\(518\) 25.0166 32.2841i 1.09917 1.41848i
\(519\) −28.8588 −1.26676
\(520\) 0 0
\(521\) −20.1176 34.8446i −0.881366 1.52657i −0.849823 0.527068i \(-0.823291\pi\)
−0.0315430 0.999502i \(-0.510042\pi\)
\(522\) −1.29844 2.24897i −0.0568313 0.0984348i
\(523\) 0.366073 0.634057i 0.0160073 0.0277254i −0.857911 0.513799i \(-0.828238\pi\)
0.873918 + 0.486073i \(0.161571\pi\)
\(524\) −8.41189 −0.367475
\(525\) −16.5389 2.25724i −0.721818 0.0985142i
\(526\) 52.0286 2.26856
\(527\) 8.14169 14.1018i 0.354658 0.614285i
\(528\) 0.346871 + 0.600798i 0.0150956 + 0.0261464i
\(529\) −19.0660 33.0234i −0.828959 1.43580i
\(530\) −2.64610 + 4.58319i −0.114939 + 0.199081i
\(531\) 1.36089 0.0590577
\(532\) 0.156887 + 0.383898i 0.00680189 + 0.0166441i
\(533\) 0 0
\(534\) −29.7125 + 51.4636i −1.28579 + 2.22705i
\(535\) 4.17809 + 7.23667i 0.180635 + 0.312868i
\(536\) 3.06996 + 5.31733i 0.132602 + 0.229674i
\(537\) −2.13146 + 3.69179i −0.0919791 + 0.159312i
\(538\) −36.8553 −1.58894
\(539\) 10.1389 + 2.82007i 0.436715 + 0.121469i
\(540\) −15.7989 −0.679877
\(541\) 11.8268 20.4847i 0.508476 0.880705i −0.491476 0.870891i \(-0.663543\pi\)
0.999952 0.00981448i \(-0.00312409\pi\)
\(542\) −10.0876 17.4722i −0.433298 0.750494i
\(543\) 1.00781 + 1.74558i 0.0432492 + 0.0749099i
\(544\) −5.47919 + 9.49024i −0.234918 + 0.406891i
\(545\) 9.83325 0.421210
\(546\) 0 0
\(547\) −12.9472 −0.553582 −0.276791 0.960930i \(-0.589271\pi\)
−0.276791 + 0.960930i \(0.589271\pi\)
\(548\) −3.08149 + 5.33730i −0.131635 + 0.227998i
\(549\) 1.87481 + 3.24727i 0.0800151 + 0.138590i
\(550\) −7.41388 12.8412i −0.316129 0.547552i
\(551\) −0.0322436 + 0.0558475i −0.00137362 + 0.00237918i
\(552\) −34.6267 −1.47381
\(553\) −30.5636 4.17134i −1.29970 0.177384i
\(554\) 45.8771 1.94913
\(555\) 4.18340 7.24585i 0.177575 0.307569i
\(556\) −25.7946 44.6775i −1.09393 1.89475i
\(557\) −3.20340 5.54845i −0.135732 0.235096i 0.790145 0.612921i \(-0.210005\pi\)
−0.925877 + 0.377825i \(0.876672\pi\)
\(558\) 7.50685 13.0023i 0.317790 0.550429i
\(559\) 0 0
\(560\) −0.430045 + 0.554975i −0.0181727 + 0.0234520i
\(561\) −4.58827 −0.193717
\(562\) −16.1498 + 27.9723i −0.681239 + 1.17994i
\(563\) −3.66042 6.34004i −0.154268 0.267201i 0.778524 0.627615i \(-0.215969\pi\)
−0.932792 + 0.360414i \(0.882635\pi\)
\(564\) −0.876546 1.51822i −0.0369092 0.0639287i
\(565\) −1.47326 + 2.55176i −0.0619806 + 0.107354i
\(566\) −2.33226 −0.0980324
\(567\) −9.43948 + 12.1817i −0.396421 + 0.511583i
\(568\) 42.7249 1.79270
\(569\) 2.15872 3.73901i 0.0904981 0.156747i −0.817223 0.576322i \(-0.804487\pi\)
0.907721 + 0.419575i \(0.137821\pi\)
\(570\) 0.0681842 + 0.118098i 0.00285592 + 0.00494660i
\(571\) −17.0847 29.5916i −0.714974 1.23837i −0.962970 0.269610i \(-0.913105\pi\)
0.247996 0.968761i \(-0.420228\pi\)
\(572\) 0 0
\(573\) 2.22956 0.0931413
\(574\) −60.4903 8.25576i −2.52482 0.344589i
\(575\) 33.4804 1.39623
\(576\) −5.31166 + 9.20007i −0.221319 + 0.383336i
\(577\) 3.17828 + 5.50494i 0.132314 + 0.229174i 0.924568 0.381017i \(-0.124426\pi\)
−0.792254 + 0.610191i \(0.791093\pi\)
\(578\) −14.6364 25.3511i −0.608796 1.05447i
\(579\) −5.12283 + 8.87301i −0.212898 + 0.368750i
\(580\) −3.80763 −0.158103
\(581\) −11.5464 28.2537i −0.479025 1.17216i
\(582\) −1.44643 −0.0599563
\(583\) −2.03847 + 3.53074i −0.0844249 + 0.146228i
\(584\) −10.1620 17.6011i −0.420507 0.728339i
\(585\) 0 0
\(586\) −0.229446 + 0.397412i −0.00947832 + 0.0164169i
\(587\) 31.4120 1.29651 0.648256 0.761422i \(-0.275499\pi\)
0.648256 + 0.761422i \(0.275499\pi\)
\(588\) 8.50954 + 33.0073i 0.350927 + 1.36120i
\(589\) −0.372827 −0.0153621
\(590\) 1.60143 2.77376i 0.0659298 0.114194i
\(591\) −11.4018 19.7484i −0.469006 0.812342i
\(592\) 1.04954 + 1.81786i 0.0431359 + 0.0747136i
\(593\) −0.236506 + 0.409641i −0.00971215 + 0.0168219i −0.870841 0.491565i \(-0.836425\pi\)
0.861128 + 0.508387i \(0.169758\pi\)
\(594\) −19.5361 −0.801575
\(595\) −1.75663 4.29842i −0.0720146 0.176218i
\(596\) 21.0320 0.861505
\(597\) 4.87335 8.44089i 0.199453 0.345463i
\(598\) 0 0
\(599\) 4.81348 + 8.33719i 0.196673 + 0.340648i 0.947448 0.319910i \(-0.103653\pi\)
−0.750774 + 0.660559i \(0.770320\pi\)
\(600\) 9.48206 16.4234i 0.387103 0.670483i
\(601\) −41.0799 −1.67568 −0.837842 0.545914i \(-0.816183\pi\)
−0.837842 + 0.545914i \(0.816183\pi\)
\(602\) 55.9451 + 7.63543i 2.28015 + 0.311197i
\(603\) −1.69379 −0.0689765
\(604\) 1.09743 1.90080i 0.0446537 0.0773424i
\(605\) −3.70257 6.41304i −0.150531 0.260727i
\(606\) −16.4077 28.4190i −0.666518 1.15444i
\(607\) −9.54289 + 16.5288i −0.387334 + 0.670882i −0.992090 0.125529i \(-0.959937\pi\)
0.604756 + 0.796411i \(0.293271\pi\)
\(608\) 0.250905 0.0101755
\(609\) −3.24655 + 4.18969i −0.131557 + 0.169775i
\(610\) 8.82474 0.357303
\(611\) 0 0
\(612\) 2.83840 + 4.91626i 0.114736 + 0.198728i
\(613\) −19.0024 32.9131i −0.767500 1.32935i −0.938915 0.344149i \(-0.888167\pi\)
0.171415 0.985199i \(-0.445166\pi\)
\(614\) −31.3249 + 54.2563i −1.26417 + 2.18961i
\(615\) −12.5067 −0.504318
\(616\) −7.32335 + 9.45082i −0.295066 + 0.380784i
\(617\) −8.31519 −0.334757 −0.167378 0.985893i \(-0.553530\pi\)
−0.167378 + 0.985893i \(0.553530\pi\)
\(618\) 16.9308 29.3250i 0.681056 1.17962i
\(619\) −22.2364 38.5146i −0.893756 1.54803i −0.835336 0.549739i \(-0.814727\pi\)
−0.0584199 0.998292i \(-0.518606\pi\)
\(620\) −11.0068 19.0643i −0.442042 0.765640i
\(621\) 22.0558 38.2018i 0.885069 1.53298i
\(622\) −62.4206 −2.50284
\(623\) −45.9048 6.26512i −1.83914 0.251007i
\(624\) 0 0
\(625\) −7.37342 + 12.7711i −0.294937 + 0.510845i
\(626\) −25.4263 44.0397i −1.01624 1.76018i
\(627\) 0.0525269 + 0.0909792i 0.00209772 + 0.00363336i
\(628\) 27.3921 47.4445i 1.09306 1.89324i
\(629\) −13.8829 −0.553549
\(630\) −1.61966 3.96326i −0.0645286 0.157900i
\(631\) −11.7524 −0.467858 −0.233929 0.972254i \(-0.575158\pi\)
−0.233929 + 0.972254i \(0.575158\pi\)
\(632\) 17.5227 30.3501i 0.697014 1.20726i
\(633\) −5.96290 10.3280i −0.237004 0.410503i
\(634\) 8.14001 + 14.0989i 0.323281 + 0.559939i
\(635\) −6.65117 + 11.5202i −0.263944 + 0.457164i
\(636\) −13.2052 −0.523620
\(637\) 0 0
\(638\) −4.70831 −0.186404
\(639\) −5.89315 + 10.2072i −0.233129 + 0.403792i
\(640\) 8.01854 + 13.8885i 0.316961 + 0.548992i
\(641\) −5.24342 9.08186i −0.207102 0.358712i 0.743698 0.668516i \(-0.233070\pi\)
−0.950801 + 0.309804i \(0.899737\pi\)
\(642\) −16.7339 + 28.9840i −0.660436 + 1.14391i
\(643\) −31.2822 −1.23365 −0.616825 0.787101i \(-0.711581\pi\)
−0.616825 + 0.787101i \(0.711581\pi\)
\(644\) −25.8638 63.2882i −1.01918 2.49390i
\(645\) 11.5669 0.455448
\(646\) 0.113137 0.195959i 0.00445133 0.00770992i
\(647\) 13.4337 + 23.2679i 0.528135 + 0.914757i 0.999462 + 0.0327983i \(0.0104419\pi\)
−0.471327 + 0.881959i \(0.656225\pi\)
\(648\) −8.75422 15.1627i −0.343898 0.595649i
\(649\) 1.23369 2.13681i 0.0484265 0.0838772i
\(650\) 0 0
\(651\) −30.3621 4.14384i −1.18998 0.162410i
\(652\) −29.9148 −1.17155
\(653\) 2.07081 3.58674i 0.0810369 0.140360i −0.822659 0.568536i \(-0.807510\pi\)
0.903696 + 0.428176i \(0.140844\pi\)
\(654\) 19.6919 + 34.1073i 0.770014 + 1.33370i
\(655\) −1.07825 1.86759i −0.0421308 0.0729726i
\(656\) 1.56886 2.71734i 0.0612536 0.106094i
\(657\) 5.60668 0.218738
\(658\) 1.34379 1.73417i 0.0523863 0.0676048i
\(659\) 21.4551 0.835773 0.417887 0.908499i \(-0.362771\pi\)
0.417887 + 0.908499i \(0.362771\pi\)
\(660\) −3.10144 + 5.37185i −0.120723 + 0.209099i
\(661\) 21.1936 + 36.7084i 0.824335 + 1.42779i 0.902426 + 0.430844i \(0.141784\pi\)
−0.0780909 + 0.996946i \(0.524882\pi\)
\(662\) 7.58763 + 13.1422i 0.294902 + 0.510785i
\(663\) 0 0
\(664\) 34.6762 1.34570
\(665\) −0.0651220 + 0.0840403i −0.00252532 + 0.00325894i
\(666\) −12.8004 −0.496006
\(667\) 5.31558 9.20685i 0.205820 0.356491i
\(668\) −4.39175 7.60673i −0.169922 0.294313i
\(669\) 11.8297 + 20.4896i 0.457361 + 0.792173i
\(670\) −1.99317 + 3.45226i −0.0770027 + 0.133373i
\(671\) 6.79830 0.262445
\(672\) 20.4330 + 2.78872i 0.788222 + 0.107577i
\(673\) −29.5856 −1.14044 −0.570220 0.821492i \(-0.693142\pi\)
−0.570220 + 0.821492i \(0.693142\pi\)
\(674\) 4.86323 8.42336i 0.187324 0.324456i
\(675\) 12.0794 + 20.9221i 0.464935 + 0.805292i
\(676\) 0 0
\(677\) −16.0830 + 27.8565i −0.618118 + 1.07061i 0.371711 + 0.928349i \(0.378771\pi\)
−0.989829 + 0.142263i \(0.954562\pi\)
\(678\) −11.8013 −0.453227
\(679\) −0.426604 1.04389i −0.0163716 0.0400609i
\(680\) 5.27551 0.202306
\(681\) −0.954596 + 1.65341i −0.0365802 + 0.0633587i
\(682\) −13.6104 23.5738i −0.521168 0.902689i
\(683\) −4.30118 7.44986i −0.164580 0.285061i 0.771926 0.635712i \(-0.219294\pi\)
−0.936506 + 0.350651i \(0.885960\pi\)
\(684\) 0.0649885 0.112563i 0.00248490 0.00430397i
\(685\) −1.57997 −0.0603674
\(686\) −34.2082 + 25.4838i −1.30608 + 0.972978i
\(687\) −30.6717 −1.17020
\(688\) −1.45097 + 2.51316i −0.0553179 + 0.0958134i
\(689\) 0 0
\(690\) −11.2406 19.4694i −0.427924 0.741186i
\(691\) 10.2210 17.7033i 0.388826 0.673466i −0.603466 0.797388i \(-0.706214\pi\)
0.992292 + 0.123923i \(0.0395476\pi\)
\(692\) 64.7359 2.46089
\(693\) −1.24773 3.05316i −0.0473973 0.115980i
\(694\) 20.9477 0.795164
\(695\) 6.61279 11.4537i 0.250837 0.434463i
\(696\) −3.01087 5.21498i −0.114127 0.197673i
\(697\) 10.3761 + 17.9719i 0.393023 + 0.680736i
\(698\) −10.6187 + 18.3921i −0.401922 + 0.696150i
\(699\) 19.6020 0.741415
\(700\) 37.1000 + 5.06344i 1.40225 + 0.191380i
\(701\) 25.1373 0.949422 0.474711 0.880142i \(-0.342553\pi\)
0.474711 + 0.880142i \(0.342553\pi\)
\(702\) 0 0
\(703\) 0.158933 + 0.275280i 0.00599427 + 0.0103824i
\(704\) 9.63036 + 16.6803i 0.362958 + 0.628661i
\(705\) 0.224715 0.389217i 0.00846324 0.0146588i
\(706\) 4.96236 0.186761
\(707\) 15.6709 20.2233i 0.589363 0.760576i
\(708\) 7.99182 0.300351
\(709\) −14.7464 + 25.5416i −0.553814 + 0.959234i 0.444181 + 0.895937i \(0.353495\pi\)
−0.997995 + 0.0632970i \(0.979838\pi\)
\(710\) 13.8695 + 24.0227i 0.520514 + 0.901556i
\(711\) 4.83389 + 8.37254i 0.181285 + 0.313995i
\(712\) 26.3180 45.5841i 0.986309 1.70834i
\(713\) 61.4632 2.30182
\(714\) 11.3916 14.7009i 0.426320 0.550169i
\(715\) 0 0
\(716\) 4.78127 8.28140i 0.178684 0.309491i
\(717\) −9.84591 17.0536i −0.367702 0.636879i
\(718\) −9.85518 17.0697i −0.367792 0.637034i
\(719\) 4.16576 7.21531i 0.155357 0.269086i −0.777832 0.628472i \(-0.783681\pi\)
0.933189 + 0.359386i \(0.117014\pi\)
\(720\) 0.220044 0.00820055
\(721\) 26.1574 + 3.56999i 0.974154 + 0.132953i
\(722\) 43.7569 1.62846
\(723\) 0.614504 1.06435i 0.0228537 0.0395837i
\(724\) −2.26071 3.91567i −0.0840188 0.145525i
\(725\) 2.91120 + 5.04235i 0.108119 + 0.187268i
\(726\) 14.8294 25.6853i 0.550371 0.953271i
\(727\) −9.66141 −0.358322 −0.179161 0.983820i \(-0.557338\pi\)
−0.179161 + 0.983820i \(0.557338\pi\)
\(728\) 0 0
\(729\) 29.7672 1.10249
\(730\) 6.59766 11.4275i 0.244190 0.422950i
\(731\) −9.59645 16.6215i −0.354938 0.614770i
\(732\) 11.0098 + 19.0696i 0.406935 + 0.704832i
\(733\) −7.00894 + 12.1398i −0.258881 + 0.448395i −0.965942 0.258757i \(-0.916687\pi\)
0.707061 + 0.707152i \(0.250020\pi\)
\(734\) −5.29344 −0.195384
\(735\) −6.23743 + 6.12021i −0.230071 + 0.225747i
\(736\) −41.3635 −1.52468
\(737\) −1.53547 + 2.65951i −0.0565598 + 0.0979644i
\(738\) 9.56704 + 16.5706i 0.352168 + 0.609972i
\(739\) −19.4073 33.6145i −0.713910 1.23653i −0.963378 0.268146i \(-0.913589\pi\)
0.249468 0.968383i \(-0.419744\pi\)
\(740\) −9.38417 + 16.2539i −0.344969 + 0.597504i
\(741\) 0 0
\(742\) −6.25153 15.2973i −0.229501 0.561583i
\(743\) 34.3942 1.26180 0.630901 0.775863i \(-0.282685\pi\)
0.630901 + 0.775863i \(0.282685\pi\)
\(744\) 17.4071 30.1500i 0.638175 1.10535i
\(745\) 2.69592 + 4.66948i 0.0987710 + 0.171076i
\(746\) 13.5528 + 23.4742i 0.496205 + 0.859452i
\(747\) −4.78297 + 8.28434i −0.175000 + 0.303108i
\(748\) 10.2924 0.376327
\(749\) −25.8533 3.52848i −0.944660 0.128928i
\(750\) 26.6890 0.974545
\(751\) −24.0735 + 41.6965i −0.878454 + 1.52153i −0.0254165 + 0.999677i \(0.508091\pi\)
−0.853037 + 0.521850i \(0.825242\pi\)
\(752\) 0.0563770 + 0.0976479i 0.00205586 + 0.00356085i
\(753\) 20.0908 + 34.7983i 0.732150 + 1.26812i
\(754\) 0 0
\(755\) 0.562681 0.0204781
\(756\) 30.2177 38.9961i 1.09901 1.41828i
\(757\) −6.90638 −0.251016 −0.125508 0.992093i \(-0.540056\pi\)
−0.125508 + 0.992093i \(0.540056\pi\)
\(758\) −9.20262 + 15.9394i −0.334254 + 0.578945i
\(759\) −8.65942 14.9986i −0.314317 0.544413i
\(760\) −0.0603945 0.104606i −0.00219074 0.00379447i
\(761\) −15.9865 + 27.6895i −0.579511 + 1.00374i 0.416025 + 0.909353i \(0.363423\pi\)
−0.995535 + 0.0943888i \(0.969910\pi\)
\(762\) −53.2781 −1.93006
\(763\) −18.8075 + 24.2712i −0.680878 + 0.878676i
\(764\) −5.00135 −0.180942
\(765\) −0.727663 + 1.26035i −0.0263087 + 0.0455680i
\(766\) −32.5274 56.3391i −1.17526 2.03562i
\(767\) 0 0
\(768\) −13.2397 + 22.9319i −0.477748 + 0.827483i
\(769\) 14.3950 0.519099 0.259549 0.965730i \(-0.416426\pi\)
0.259549 + 0.965730i \(0.416426\pi\)
\(770\) −7.69119 1.04970i −0.277171 0.0378285i
\(771\) −9.65328 −0.347654
\(772\) 11.4915 19.9039i 0.413589 0.716357i
\(773\) 18.6385 + 32.2829i 0.670382 + 1.16114i 0.977796 + 0.209560i \(0.0672030\pi\)
−0.307414 + 0.951576i \(0.599464\pi\)
\(774\) −8.84818 15.3255i −0.318041 0.550864i
\(775\) −16.8309 + 29.1520i −0.604583 + 1.04717i
\(776\) 1.28118 0.0459917
\(777\) 9.88344 + 24.1845i 0.354566 + 0.867616i
\(778\) −17.6911 −0.634255
\(779\) 0.237573 0.411489i 0.00851194 0.0147431i
\(780\) 0 0
\(781\) 10.6846 + 18.5063i 0.382326 + 0.662208i
\(782\)