Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1183,2,Mod(170,1183)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1183, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([2, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1183.170");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 1183 = 7 \cdot 13^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1183.e (of order \(3\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(9.44630255912\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Relative dimension: | \(12\) over \(\Q(\zeta_{3})\) |
Twist minimal: | no (minimal twist has level 91) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
170.1 | −1.29430 | + | 2.24179i | −0.259233 | − | 0.449005i | −2.35043 | − | 4.07106i | −0.806027 | + | 1.39608i | 1.34210 | 2.13104 | + | 1.56802i | 6.99143 | 1.36560 | − | 2.36528i | −2.08648 | − | 3.61389i | ||||
170.2 | −1.15163 | + | 1.99469i | 0.736680 | + | 1.27597i | −1.65252 | − | 2.86225i | −0.423646 | + | 0.733776i | −3.39354 | −1.00088 | − | 2.44913i | 3.00585 | 0.414604 | − | 0.718115i | −0.975769 | − | 1.69008i | ||||
170.3 | −0.689527 | + | 1.19430i | −1.44060 | − | 2.49520i | 0.0491037 | + | 0.0850501i | −0.402974 | + | 0.697972i | 3.97334 | −1.26180 | − | 2.32548i | −2.89354 | −2.65067 | + | 4.59109i | −0.555723 | − | 0.962541i | ||||
170.4 | −0.672613 | + | 1.16500i | −1.02505 | − | 1.77544i | 0.0951832 | + | 0.164862i | −1.78389 | + | 3.08979i | 2.75785 | 2.62255 | − | 0.349630i | −2.94654 | −0.601462 | + | 1.04176i | −2.39973 | − | 4.15646i | ||||
170.5 | −0.249993 | + | 0.433001i | −0.424801 | − | 0.735776i | 0.875007 | + | 1.51556i | 0.521238 | − | 0.902810i | 0.424789 | −2.40155 | + | 1.11021i | −1.87496 | 1.13909 | − | 1.97296i | 0.260612 | + | 0.451393i | ||||
170.6 | −0.0904119 | + | 0.156598i | 0.913006 | + | 1.58137i | 0.983651 | + | 1.70373i | −1.34332 | + | 2.32670i | −0.330186 | −1.64912 | + | 2.06892i | −0.717383 | −0.167162 | + | 0.289532i | −0.242904 | − | 0.420723i | ||||
170.7 | 0.0904119 | − | 0.156598i | 0.913006 | + | 1.58137i | 0.983651 | + | 1.70373i | 1.34332 | − | 2.32670i | 0.330186 | 1.64912 | − | 2.06892i | 0.717383 | −0.167162 | + | 0.289532i | −0.242904 | − | 0.420723i | ||||
170.8 | 0.249993 | − | 0.433001i | −0.424801 | − | 0.735776i | 0.875007 | + | 1.51556i | −0.521238 | + | 0.902810i | −0.424789 | 2.40155 | − | 1.11021i | 1.87496 | 1.13909 | − | 1.97296i | 0.260612 | + | 0.451393i | ||||
170.9 | 0.672613 | − | 1.16500i | −1.02505 | − | 1.77544i | 0.0951832 | + | 0.164862i | 1.78389 | − | 3.08979i | −2.75785 | −2.62255 | + | 0.349630i | 2.94654 | −0.601462 | + | 1.04176i | −2.39973 | − | 4.15646i | ||||
170.10 | 0.689527 | − | 1.19430i | −1.44060 | − | 2.49520i | 0.0491037 | + | 0.0850501i | 0.402974 | − | 0.697972i | −3.97334 | 1.26180 | + | 2.32548i | 2.89354 | −2.65067 | + | 4.59109i | −0.555723 | − | 0.962541i | ||||
170.11 | 1.15163 | − | 1.99469i | 0.736680 | + | 1.27597i | −1.65252 | − | 2.86225i | 0.423646 | − | 0.733776i | 3.39354 | 1.00088 | + | 2.44913i | −3.00585 | 0.414604 | − | 0.718115i | −0.975769 | − | 1.69008i | ||||
170.12 | 1.29430 | − | 2.24179i | −0.259233 | − | 0.449005i | −2.35043 | − | 4.07106i | 0.806027 | − | 1.39608i | −1.34210 | −2.13104 | − | 1.56802i | −6.99143 | 1.36560 | − | 2.36528i | −2.08648 | − | 3.61389i | ||||
508.1 | −1.29430 | − | 2.24179i | −0.259233 | + | 0.449005i | −2.35043 | + | 4.07106i | −0.806027 | − | 1.39608i | 1.34210 | 2.13104 | − | 1.56802i | 6.99143 | 1.36560 | + | 2.36528i | −2.08648 | + | 3.61389i | ||||
508.2 | −1.15163 | − | 1.99469i | 0.736680 | − | 1.27597i | −1.65252 | + | 2.86225i | −0.423646 | − | 0.733776i | −3.39354 | −1.00088 | + | 2.44913i | 3.00585 | 0.414604 | + | 0.718115i | −0.975769 | + | 1.69008i | ||||
508.3 | −0.689527 | − | 1.19430i | −1.44060 | + | 2.49520i | 0.0491037 | − | 0.0850501i | −0.402974 | − | 0.697972i | 3.97334 | −1.26180 | + | 2.32548i | −2.89354 | −2.65067 | − | 4.59109i | −0.555723 | + | 0.962541i | ||||
508.4 | −0.672613 | − | 1.16500i | −1.02505 | + | 1.77544i | 0.0951832 | − | 0.164862i | −1.78389 | − | 3.08979i | 2.75785 | 2.62255 | + | 0.349630i | −2.94654 | −0.601462 | − | 1.04176i | −2.39973 | + | 4.15646i | ||||
508.5 | −0.249993 | − | 0.433001i | −0.424801 | + | 0.735776i | 0.875007 | − | 1.51556i | 0.521238 | + | 0.902810i | 0.424789 | −2.40155 | − | 1.11021i | −1.87496 | 1.13909 | + | 1.97296i | 0.260612 | − | 0.451393i | ||||
508.6 | −0.0904119 | − | 0.156598i | 0.913006 | − | 1.58137i | 0.983651 | − | 1.70373i | −1.34332 | − | 2.32670i | −0.330186 | −1.64912 | − | 2.06892i | −0.717383 | −0.167162 | − | 0.289532i | −0.242904 | + | 0.420723i | ||||
508.7 | 0.0904119 | + | 0.156598i | 0.913006 | − | 1.58137i | 0.983651 | − | 1.70373i | 1.34332 | + | 2.32670i | 0.330186 | 1.64912 | + | 2.06892i | 0.717383 | −0.167162 | − | 0.289532i | −0.242904 | + | 0.420723i | ||||
508.8 | 0.249993 | + | 0.433001i | −0.424801 | + | 0.735776i | 0.875007 | − | 1.51556i | −0.521238 | − | 0.902810i | −0.424789 | 2.40155 | + | 1.11021i | 1.87496 | 1.13909 | + | 1.97296i | 0.260612 | − | 0.451393i | ||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.c | even | 3 | 1 | inner |
13.b | even | 2 | 1 | inner |
91.r | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1183.2.e.j | 24 | |
7.c | even | 3 | 1 | inner | 1183.2.e.j | 24 | |
7.c | even | 3 | 1 | 8281.2.a.cp | 12 | ||
7.d | odd | 6 | 1 | 8281.2.a.co | 12 | ||
13.b | even | 2 | 1 | inner | 1183.2.e.j | 24 | |
13.f | odd | 12 | 1 | 91.2.k.b | ✓ | 12 | |
13.f | odd | 12 | 1 | 91.2.u.b | yes | 12 | |
39.k | even | 12 | 1 | 819.2.bm.f | 12 | ||
39.k | even | 12 | 1 | 819.2.do.e | 12 | ||
91.r | even | 6 | 1 | inner | 1183.2.e.j | 24 | |
91.r | even | 6 | 1 | 8281.2.a.cp | 12 | ||
91.s | odd | 6 | 1 | 8281.2.a.co | 12 | ||
91.w | even | 12 | 1 | 637.2.k.i | 12 | ||
91.w | even | 12 | 1 | 637.2.q.i | 12 | ||
91.x | odd | 12 | 1 | 91.2.u.b | yes | 12 | |
91.x | odd | 12 | 1 | 637.2.q.g | 12 | ||
91.ba | even | 12 | 1 | 637.2.q.i | 12 | ||
91.ba | even | 12 | 1 | 637.2.u.g | 12 | ||
91.bc | even | 12 | 1 | 637.2.k.i | 12 | ||
91.bc | even | 12 | 1 | 637.2.u.g | 12 | ||
91.bd | odd | 12 | 1 | 91.2.k.b | ✓ | 12 | |
91.bd | odd | 12 | 1 | 637.2.q.g | 12 | ||
273.bv | even | 12 | 1 | 819.2.do.e | 12 | ||
273.bw | even | 12 | 1 | 819.2.bm.f | 12 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
91.2.k.b | ✓ | 12 | 13.f | odd | 12 | 1 | |
91.2.k.b | ✓ | 12 | 91.bd | odd | 12 | 1 | |
91.2.u.b | yes | 12 | 13.f | odd | 12 | 1 | |
91.2.u.b | yes | 12 | 91.x | odd | 12 | 1 | |
637.2.k.i | 12 | 91.w | even | 12 | 1 | ||
637.2.k.i | 12 | 91.bc | even | 12 | 1 | ||
637.2.q.g | 12 | 91.x | odd | 12 | 1 | ||
637.2.q.g | 12 | 91.bd | odd | 12 | 1 | ||
637.2.q.i | 12 | 91.w | even | 12 | 1 | ||
637.2.q.i | 12 | 91.ba | even | 12 | 1 | ||
637.2.u.g | 12 | 91.ba | even | 12 | 1 | ||
637.2.u.g | 12 | 91.bc | even | 12 | 1 | ||
819.2.bm.f | 12 | 39.k | even | 12 | 1 | ||
819.2.bm.f | 12 | 273.bw | even | 12 | 1 | ||
819.2.do.e | 12 | 39.k | even | 12 | 1 | ||
819.2.do.e | 12 | 273.bv | even | 12 | 1 | ||
1183.2.e.j | 24 | 1.a | even | 1 | 1 | trivial | |
1183.2.e.j | 24 | 7.c | even | 3 | 1 | inner | |
1183.2.e.j | 24 | 13.b | even | 2 | 1 | inner | |
1183.2.e.j | 24 | 91.r | even | 6 | 1 | inner | |
8281.2.a.co | 12 | 7.d | odd | 6 | 1 | ||
8281.2.a.co | 12 | 91.s | odd | 6 | 1 | ||
8281.2.a.cp | 12 | 7.c | even | 3 | 1 | ||
8281.2.a.cp | 12 | 91.r | even | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1183, [\chi])\):
\( T_{2}^{24} + 16 T_{2}^{22} + 168 T_{2}^{20} + 1014 T_{2}^{18} + 4420 T_{2}^{16} + 11868 T_{2}^{14} + 23099 T_{2}^{12} + 27564 T_{2}^{10} + 22404 T_{2}^{8} + 5798 T_{2}^{6} + 1124 T_{2}^{4} + 36 T_{2}^{2} + 1 \)
|
\( T_{3}^{12} + 3 T_{3}^{11} + 14 T_{3}^{10} + 17 T_{3}^{9} + 69 T_{3}^{8} + 75 T_{3}^{7} + 233 T_{3}^{6} + 147 T_{3}^{5} + 355 T_{3}^{4} + 300 T_{3}^{3} + 333 T_{3}^{2} + 133 T_{3} + 49 \)
|