Properties

Label 1183.2.e.i
Level $1183$
Weight $2$
Character orbit 1183.e
Analytic conductor $9.446$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1183,2,Mod(170,1183)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1183, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1183.170"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1183 = 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1183.e (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.44630255912\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 11x^{14} + 85x^{12} + 334x^{10} + 952x^{8} + 1050x^{6} + 853x^{4} + 93x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 91)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{9} q^{2} + ( - \beta_{6} - \beta_{4} - 1) q^{3} + ( - \beta_{10} - \beta_{6} - 1) q^{4} + \beta_{13} q^{5} + ( - \beta_{13} - \beta_{12} + \cdots - \beta_1) q^{6} + (\beta_{14} + \beta_{13} + \cdots + \beta_{9}) q^{7}+ \cdots + (2 \beta_{15} + \beta_{14} + \cdots - 2 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 4 q^{3} - 6 q^{4} - 12 q^{9} + 6 q^{10} - 18 q^{12} - 26 q^{14} + 2 q^{16} - 8 q^{17} - 36 q^{22} + 12 q^{23} + 32 q^{27} - 16 q^{29} - 38 q^{30} + 56 q^{36} - 34 q^{38} - 4 q^{40} + 16 q^{42} - 16 q^{43}+ \cdots + 16 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{16} + 11x^{14} + 85x^{12} + 334x^{10} + 952x^{8} + 1050x^{6} + 853x^{4} + 93x^{2} + 9 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 24498 \nu^{14} + 246060 \nu^{12} + 1852321 \nu^{10} + 6411671 \nu^{8} + 17193085 \nu^{6} + \cdots - 40872159 ) / 14163622 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 24498 \nu^{15} - 246060 \nu^{13} - 1852321 \nu^{11} - 6411671 \nu^{9} - 17193085 \nu^{7} + \cdots + 55035781 \nu ) / 14163622 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 172099 \nu^{14} + 2170865 \nu^{12} + 17340370 \nu^{10} + 78484018 \nu^{8} + 236538400 \nu^{6} + \cdots + 23829231 ) / 42490866 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 99072 \nu^{14} + 1000291 \nu^{12} + 7490944 \nu^{10} + 25929344 \nu^{8} + 66564370 \nu^{6} + \cdots - 20454191 ) / 14163622 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 539569 \nu^{14} + 5861765 \nu^{12} + 45125185 \nu^{10} + 174659083 \nu^{8} + 494434675 \nu^{6} + \cdots + 5618970 ) / 42490866 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 102312 \nu^{14} - 1048444 \nu^{12} - 7735924 \nu^{10} - 26777324 \nu^{8} - 67022271 \nu^{6} + \cdots + 23341327 ) / 7081811 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 123570 \nu^{15} + 1246351 \nu^{13} + 9343265 \nu^{11} + 32341015 \nu^{9} + 83757455 \nu^{7} + \cdots - 61326350 \nu ) / 14163622 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( - 539569 \nu^{15} - 5861765 \nu^{13} - 45125185 \nu^{11} - 174659083 \nu^{9} + \cdots - 48109836 \nu ) / 42490866 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( - 515071 \nu^{14} - 5615705 \nu^{12} - 43272864 \nu^{10} - 168247412 \nu^{8} - 477241590 \nu^{6} + \cdots - 46491129 ) / 14163622 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( 3598 \nu^{14} + 40712 \nu^{12} + 317920 \nu^{10} + 1287475 \nu^{8} + 3722089 \nu^{6} + 4460568 \nu^{4} + \cdots + 366555 ) / 95271 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( 1079138 \nu^{15} + 11723530 \nu^{13} + 90250370 \nu^{11} + 349318166 \nu^{9} + \cdots + 11237940 \nu ) / 21245433 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( - 205171 \nu^{15} - 2261795 \nu^{13} - 17480377 \nu^{11} - 68898667 \nu^{9} - 196608895 \nu^{7} + \cdots - 19219314 \nu ) / 3862806 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( 1137374 \nu^{15} + 12639109 \nu^{13} + 98087264 \nu^{11} + 390741062 \nu^{9} + \cdots + 167644965 \nu ) / 11588418 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( 17689120 \nu^{15} + 191553668 \nu^{13} + 1470474691 \nu^{11} + 5653350919 \nu^{9} + \cdots - 359333319 \nu ) / 127472598 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{10} + 3\beta_{6} - \beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -\beta_{12} - 4\beta_{9} - 4\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -5\beta_{10} - 14\beta_{6} - \beta_{4} - 14 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( \beta_{13} + 6\beta_{12} + 19\beta_{9} + 6\beta_{3} \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( -\beta_{7} - 8\beta_{5} + 24\beta_{2} + 61 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( \beta_{15} - \beta_{14} - 11\beta_{8} - 32\beta_{3} + 94\beta_1 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( -11\beta_{11} + 115\beta_{10} + 11\beta_{7} + 345\beta_{6} + 52\beta_{5} + 52\beta_{4} - 115\beta_{2} + 52 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( -22\beta_{15} - 11\beta_{14} - 85\beta_{13} - 145\beta_{12} - 493\beta_{9} + 85\beta_{8} + 11\beta_{3} - 482\beta_1 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( 85\beta_{11} - 553\beta_{10} - 1736\beta_{6} - 315\beta_{4} - 1736 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( 85\beta_{15} + 170\beta_{14} + 570\beta_{13} + 698\beta_{12} + 2544\beta_{9} + 783\beta_{3} + 85\beta_1 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( -570\beta_{7} - 1838\beta_{5} + 2672\beta_{2} + 6935 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( 570\beta_{15} - 570\beta_{14} - 3548\beta_{8} - 4510\beta_{3} + 12015\beta_1 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( - 3548 \beta_{11} + 12977 \beta_{10} + 3548 \beta_{7} + 44495 \beta_{6} + 10466 \beta_{5} + \cdots + 10466 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( - 7096 \beta_{15} - 3548 \beta_{14} - 21110 \beta_{13} - 16347 \beta_{12} - 68116 \beta_{9} + \cdots - 64568 \beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1183\mathbb{Z}\right)^\times\).

\(n\) \(339\) \(1016\)
\(\chi(n)\) \(\beta_{6}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
170.1
−1.14241 1.97871i
−1.06275 1.84073i
−0.536527 0.929293i
−0.166188 0.287846i
0.166188 + 0.287846i
0.536527 + 0.929293i
1.06275 + 1.84073i
1.14241 + 1.97871i
−1.14241 + 1.97871i
−1.06275 + 1.84073i
−0.536527 + 0.929293i
−0.166188 + 0.287846i
0.166188 0.287846i
0.536527 0.929293i
1.06275 1.84073i
1.14241 1.97871i
−1.14241 + 1.97871i −1.57521 2.72835i −1.61019 2.78892i −1.06250 + 1.84030i 7.19813 0.331665 + 2.62488i 2.78832 −3.46258 + 5.99736i −2.42760 4.20473i
170.2 −1.06275 + 1.84073i 0.0894272 + 0.154892i −1.25885 2.18040i 1.80301 3.12291i −0.380153 2.35320 1.20931i 1.10038 1.48401 2.57037i 3.83229 + 6.63772i
170.3 −0.536527 + 0.929293i 1.21570 + 2.10566i 0.424277 + 0.734868i 0.312716 0.541640i −2.60903 −1.21561 + 2.34996i −3.05665 −1.45586 + 2.52163i 0.335561 + 0.581209i
170.4 −0.166188 + 0.287846i −0.729919 1.26426i 0.944763 + 1.63638i −0.722811 + 1.25195i 0.485214 −1.36920 2.26391i −1.29278 0.434437 0.752468i −0.240245 0.416116i
170.5 0.166188 0.287846i −0.729919 1.26426i 0.944763 + 1.63638i 0.722811 1.25195i −0.485214 1.36920 + 2.26391i 1.29278 0.434437 0.752468i −0.240245 0.416116i
170.6 0.536527 0.929293i 1.21570 + 2.10566i 0.424277 + 0.734868i −0.312716 + 0.541640i 2.60903 1.21561 2.34996i 3.05665 −1.45586 + 2.52163i 0.335561 + 0.581209i
170.7 1.06275 1.84073i 0.0894272 + 0.154892i −1.25885 2.18040i −1.80301 + 3.12291i 0.380153 −2.35320 + 1.20931i −1.10038 1.48401 2.57037i 3.83229 + 6.63772i
170.8 1.14241 1.97871i −1.57521 2.72835i −1.61019 2.78892i 1.06250 1.84030i −7.19813 −0.331665 2.62488i −2.78832 −3.46258 + 5.99736i −2.42760 4.20473i
508.1 −1.14241 1.97871i −1.57521 + 2.72835i −1.61019 + 2.78892i −1.06250 1.84030i 7.19813 0.331665 2.62488i 2.78832 −3.46258 5.99736i −2.42760 + 4.20473i
508.2 −1.06275 1.84073i 0.0894272 0.154892i −1.25885 + 2.18040i 1.80301 + 3.12291i −0.380153 2.35320 + 1.20931i 1.10038 1.48401 + 2.57037i 3.83229 6.63772i
508.3 −0.536527 0.929293i 1.21570 2.10566i 0.424277 0.734868i 0.312716 + 0.541640i −2.60903 −1.21561 2.34996i −3.05665 −1.45586 2.52163i 0.335561 0.581209i
508.4 −0.166188 0.287846i −0.729919 + 1.26426i 0.944763 1.63638i −0.722811 1.25195i 0.485214 −1.36920 + 2.26391i −1.29278 0.434437 + 0.752468i −0.240245 + 0.416116i
508.5 0.166188 + 0.287846i −0.729919 + 1.26426i 0.944763 1.63638i 0.722811 + 1.25195i −0.485214 1.36920 2.26391i 1.29278 0.434437 + 0.752468i −0.240245 + 0.416116i
508.6 0.536527 + 0.929293i 1.21570 2.10566i 0.424277 0.734868i −0.312716 0.541640i 2.60903 1.21561 + 2.34996i 3.05665 −1.45586 2.52163i 0.335561 0.581209i
508.7 1.06275 + 1.84073i 0.0894272 0.154892i −1.25885 + 2.18040i −1.80301 3.12291i 0.380153 −2.35320 1.20931i −1.10038 1.48401 + 2.57037i 3.83229 6.63772i
508.8 1.14241 + 1.97871i −1.57521 + 2.72835i −1.61019 + 2.78892i 1.06250 + 1.84030i −7.19813 −0.331665 + 2.62488i −2.78832 −3.46258 5.99736i −2.42760 + 4.20473i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 170.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner
13.b even 2 1 inner
91.r even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1183.2.e.i 16
7.c even 3 1 inner 1183.2.e.i 16
7.c even 3 1 8281.2.a.ck 8
7.d odd 6 1 8281.2.a.cj 8
13.b even 2 1 inner 1183.2.e.i 16
13.d odd 4 2 91.2.r.a 16
39.f even 4 2 819.2.dl.e 16
91.i even 4 2 637.2.r.f 16
91.r even 6 1 inner 1183.2.e.i 16
91.r even 6 1 8281.2.a.ck 8
91.s odd 6 1 8281.2.a.cj 8
91.z odd 12 2 91.2.r.a 16
91.z odd 12 2 637.2.c.f 8
91.bb even 12 2 637.2.c.e 8
91.bb even 12 2 637.2.r.f 16
273.cd even 12 2 819.2.dl.e 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
91.2.r.a 16 13.d odd 4 2
91.2.r.a 16 91.z odd 12 2
637.2.c.e 8 91.bb even 12 2
637.2.c.f 8 91.z odd 12 2
637.2.r.f 16 91.i even 4 2
637.2.r.f 16 91.bb even 12 2
819.2.dl.e 16 39.f even 4 2
819.2.dl.e 16 273.cd even 12 2
1183.2.e.i 16 1.a even 1 1 trivial
1183.2.e.i 16 7.c even 3 1 inner
1183.2.e.i 16 13.b even 2 1 inner
1183.2.e.i 16 91.r even 6 1 inner
8281.2.a.cj 8 7.d odd 6 1
8281.2.a.cj 8 91.s odd 6 1
8281.2.a.ck 8 7.c even 3 1
8281.2.a.ck 8 91.r even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1183, [\chi])\):

\( T_{2}^{16} + 11T_{2}^{14} + 85T_{2}^{12} + 334T_{2}^{10} + 952T_{2}^{8} + 1050T_{2}^{6} + 853T_{2}^{4} + 93T_{2}^{2} + 9 \) Copy content Toggle raw display
\( T_{3}^{8} + 2T_{3}^{7} + 11T_{3}^{6} + 6T_{3}^{5} + 67T_{3}^{4} + 62T_{3}^{3} + 114T_{3}^{2} - 20T_{3} + 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{16} + 11 T^{14} + \cdots + 9 \) Copy content Toggle raw display
$3$ \( (T^{8} + 2 T^{7} + 11 T^{6} + \cdots + 4)^{2} \) Copy content Toggle raw display
$5$ \( T^{16} + 20 T^{14} + \cdots + 2304 \) Copy content Toggle raw display
$7$ \( T^{16} + 20 T^{14} + \cdots + 5764801 \) Copy content Toggle raw display
$11$ \( T^{16} + 52 T^{14} + \cdots + 729 \) Copy content Toggle raw display
$13$ \( T^{16} \) Copy content Toggle raw display
$17$ \( (T^{8} + 4 T^{7} + \cdots + 15129)^{2} \) Copy content Toggle raw display
$19$ \( T^{16} + 44 T^{14} + \cdots + 10673289 \) Copy content Toggle raw display
$23$ \( (T^{8} - 6 T^{7} + 31 T^{6} + \cdots + 36)^{2} \) Copy content Toggle raw display
$29$ \( (T^{4} + 4 T^{3} + \cdots + 624)^{4} \) Copy content Toggle raw display
$31$ \( T^{16} + \cdots + 1136229264 \) Copy content Toggle raw display
$37$ \( T^{16} + 120 T^{14} + \cdots + 76527504 \) Copy content Toggle raw display
$41$ \( (T^{8} - 132 T^{6} + \cdots + 292032)^{2} \) Copy content Toggle raw display
$43$ \( (T^{4} + 4 T^{3} + \cdots - 104)^{4} \) Copy content Toggle raw display
$47$ \( T^{16} + \cdots + 57728231289 \) Copy content Toggle raw display
$53$ \( (T^{8} + 10 T^{7} + \cdots + 7569)^{2} \) Copy content Toggle raw display
$59$ \( T^{16} + \cdots + 12487392009 \) Copy content Toggle raw display
$61$ \( (T^{8} + 6 T^{7} + \cdots + 49729)^{2} \) Copy content Toggle raw display
$67$ \( T^{16} + \cdots + 66330457209 \) Copy content Toggle raw display
$71$ \( (T^{8} - 292 T^{6} + \cdots + 397488)^{2} \) Copy content Toggle raw display
$73$ \( T^{16} + \cdots + 8437677133824 \) Copy content Toggle raw display
$79$ \( (T^{8} - 10 T^{7} + \cdots + 64)^{2} \) Copy content Toggle raw display
$83$ \( (T^{8} - 296 T^{6} + \cdots + 5483712)^{2} \) Copy content Toggle raw display
$89$ \( T^{16} + \cdots + 58102628210064 \) Copy content Toggle raw display
$97$ \( (T^{8} - 104 T^{6} + \cdots + 192)^{2} \) Copy content Toggle raw display
show more
show less