Properties

Label 1183.2.e.h.170.1
Level $1183$
Weight $2$
Character 1183.170
Analytic conductor $9.446$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1183,2,Mod(170,1183)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1183, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1183.170"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1183 = 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1183.e (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,2,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.44630255912\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{11} + 7x^{10} - 2x^{9} + 33x^{8} - 11x^{7} + 55x^{6} + 17x^{5} + 47x^{4} + x^{3} + 8x^{2} + x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 91)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 170.1
Root \(0.217953 + 0.377506i\) of defining polynomial
Character \(\chi\) \(=\) 1183.170
Dual form 1183.2.e.h.508.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.929081 + 1.60921i) q^{2} +(-1.14703 - 1.98672i) q^{3} +(-0.726381 - 1.25813i) q^{4} +(0.0986811 - 0.170921i) q^{5} +4.26275 q^{6} +(-2.62662 + 0.317598i) q^{7} -1.01686 q^{8} +(-1.13137 + 1.95960i) q^{9} +(0.183365 + 0.317598i) q^{10} +(2.09137 + 3.62236i) q^{11} +(-1.66637 + 2.88623i) q^{12} +(1.92926 - 4.52187i) q^{14} -0.452762 q^{15} +(2.39750 - 4.15260i) q^{16} +(-0.420653 - 0.728592i) q^{17} +(-2.10227 - 3.64125i) q^{18} +(-0.675876 + 1.17065i) q^{19} -0.286720 q^{20} +(3.64380 + 4.85406i) q^{21} -7.77220 q^{22} +(2.05760 - 3.56386i) q^{23} +(1.16637 + 2.02021i) q^{24} +(2.48052 + 4.29639i) q^{25} -1.69131 q^{27} +(2.30751 + 3.07393i) q^{28} -8.23861 q^{29} +(0.420653 - 0.728592i) q^{30} +(0.640350 + 1.10912i) q^{31} +(3.43809 + 5.95495i) q^{32} +(4.79774 - 8.30993i) q^{33} +1.56328 q^{34} +(-0.204914 + 0.480285i) q^{35} +3.28723 q^{36} +(-1.52242 + 2.63692i) q^{37} +(-1.25589 - 2.17526i) q^{38} +(-0.100344 + 0.173802i) q^{40} +5.39696 q^{41} +(-11.1966 + 1.35384i) q^{42} +5.32778 q^{43} +(3.03826 - 5.26242i) q^{44} +(0.223290 + 0.386750i) q^{45} +(3.82334 + 6.62223i) q^{46} +(5.83204 - 10.1014i) q^{47} -11.0001 q^{48} +(6.79826 - 1.66842i) q^{49} -9.21843 q^{50} +(-0.965006 + 1.67144i) q^{51} +(-2.32398 - 4.02525i) q^{53} +(1.57136 - 2.72168i) q^{54} +0.825514 q^{55} +(2.67089 - 0.322952i) q^{56} +3.10101 q^{57} +(7.65434 - 13.2577i) q^{58} +(-3.02905 - 5.24648i) q^{59} +(0.328878 + 0.569634i) q^{60} +(5.68285 - 9.84298i) q^{61} -2.37975 q^{62} +(2.34932 - 5.50644i) q^{63} -3.18704 q^{64} +(8.91498 + 15.4412i) q^{66} +(-6.69851 - 11.6022i) q^{67} +(-0.611109 + 1.05847i) q^{68} -9.44053 q^{69} +(-0.582500 - 0.775973i) q^{70} -5.97040 q^{71} +(1.15044 - 1.99263i) q^{72} +(-1.94273 - 3.36491i) q^{73} +(-2.82891 - 4.89982i) q^{74} +(5.69049 - 9.85622i) q^{75} +1.96377 q^{76} +(-6.64368 - 8.85034i) q^{77} +(5.36669 - 9.29537i) q^{79} +(-0.473177 - 0.819566i) q^{80} +(5.33411 + 9.23895i) q^{81} +(-5.01421 + 8.68486i) q^{82} +3.07390 q^{83} +(3.46025 - 8.11027i) q^{84} -0.166042 q^{85} +(-4.94994 + 8.57354i) q^{86} +(9.44997 + 16.3678i) q^{87} +(-2.12662 - 3.68341i) q^{88} +(5.99207 - 10.3786i) q^{89} -0.829819 q^{90} -5.97840 q^{92} +(1.46901 - 2.54439i) q^{93} +(10.8369 + 18.7700i) q^{94} +(0.133392 + 0.231042i) q^{95} +(7.88721 - 13.6611i) q^{96} +19.4727 q^{97} +(-3.63129 + 12.4900i) q^{98} -9.46448 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 2 q^{2} + q^{3} - 4 q^{4} + q^{5} + 18 q^{6} - 6 q^{7} - 6 q^{8} + 3 q^{9} + 4 q^{10} + 4 q^{11} + 5 q^{12} - 2 q^{14} + 4 q^{15} + 8 q^{16} + 5 q^{17} + 3 q^{18} - q^{19} + 2 q^{20} - 9 q^{21}+ \cdots - 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1183\mathbb{Z}\right)^\times\).

\(n\) \(339\) \(1016\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.929081 + 1.60921i −0.656959 + 1.13789i 0.324440 + 0.945906i \(0.394824\pi\)
−0.981399 + 0.191980i \(0.938509\pi\)
\(3\) −1.14703 1.98672i −0.662240 1.14703i −0.980026 0.198871i \(-0.936272\pi\)
0.317785 0.948163i \(-0.397061\pi\)
\(4\) −0.726381 1.25813i −0.363191 0.629065i
\(5\) 0.0986811 0.170921i 0.0441315 0.0764381i −0.843116 0.537732i \(-0.819281\pi\)
0.887247 + 0.461294i \(0.152615\pi\)
\(6\) 4.26275 1.74026
\(7\) −2.62662 + 0.317598i −0.992769 + 0.120041i
\(8\) −1.01686 −0.359513
\(9\) −1.13137 + 1.95960i −0.377125 + 0.653199i
\(10\) 0.183365 + 0.317598i 0.0579852 + 0.100433i
\(11\) 2.09137 + 3.62236i 0.630571 + 1.09218i 0.987435 + 0.158025i \(0.0505127\pi\)
−0.356864 + 0.934156i \(0.616154\pi\)
\(12\) −1.66637 + 2.88623i −0.481039 + 0.833184i
\(13\) 0 0
\(14\) 1.92926 4.52187i 0.515616 1.20852i
\(15\) −0.452762 −0.116903
\(16\) 2.39750 4.15260i 0.599376 1.03815i
\(17\) −0.420653 0.728592i −0.102023 0.176709i 0.810495 0.585746i \(-0.199198\pi\)
−0.912518 + 0.409036i \(0.865865\pi\)
\(18\) −2.10227 3.64125i −0.495511 0.858250i
\(19\) −0.675876 + 1.17065i −0.155057 + 0.268566i −0.933080 0.359670i \(-0.882889\pi\)
0.778023 + 0.628236i \(0.216223\pi\)
\(20\) −0.286720 −0.0641126
\(21\) 3.64380 + 4.85406i 0.795143 + 1.05924i
\(22\) −7.77220 −1.65704
\(23\) 2.05760 3.56386i 0.429038 0.743116i −0.567750 0.823201i \(-0.692186\pi\)
0.996788 + 0.0800850i \(0.0255192\pi\)
\(24\) 1.16637 + 2.02021i 0.238084 + 0.412373i
\(25\) 2.48052 + 4.29639i 0.496105 + 0.859279i
\(26\) 0 0
\(27\) −1.69131 −0.325492
\(28\) 2.30751 + 3.07393i 0.436078 + 0.580918i
\(29\) −8.23861 −1.52987 −0.764936 0.644106i \(-0.777230\pi\)
−0.764936 + 0.644106i \(0.777230\pi\)
\(30\) 0.420653 0.728592i 0.0768003 0.133022i
\(31\) 0.640350 + 1.10912i 0.115010 + 0.199203i 0.917784 0.397080i \(-0.129977\pi\)
−0.802774 + 0.596284i \(0.796643\pi\)
\(32\) 3.43809 + 5.95495i 0.607774 + 1.05270i
\(33\) 4.79774 8.30993i 0.835180 1.44657i
\(34\) 1.56328 0.268100
\(35\) −0.204914 + 0.480285i −0.0346367 + 0.0811829i
\(36\) 3.28723 0.547872
\(37\) −1.52242 + 2.63692i −0.250285 + 0.433506i −0.963604 0.267333i \(-0.913858\pi\)
0.713319 + 0.700839i \(0.247191\pi\)
\(38\) −1.25589 2.17526i −0.203732 0.352874i
\(39\) 0 0
\(40\) −0.100344 + 0.173802i −0.0158659 + 0.0274805i
\(41\) 5.39696 0.842863 0.421431 0.906860i \(-0.361528\pi\)
0.421431 + 0.906860i \(0.361528\pi\)
\(42\) −11.1966 + 1.35384i −1.72768 + 0.208902i
\(43\) 5.32778 0.812479 0.406239 0.913767i \(-0.366840\pi\)
0.406239 + 0.913767i \(0.366840\pi\)
\(44\) 3.03826 5.26242i 0.458035 0.793340i
\(45\) 0.223290 + 0.386750i 0.0332862 + 0.0576534i
\(46\) 3.82334 + 6.62223i 0.563721 + 0.976394i
\(47\) 5.83204 10.1014i 0.850690 1.47344i −0.0298969 0.999553i \(-0.509518\pi\)
0.880587 0.473885i \(-0.157149\pi\)
\(48\) −11.0001 −1.58772
\(49\) 6.79826 1.66842i 0.971180 0.238346i
\(50\) −9.21843 −1.30368
\(51\) −0.965006 + 1.67144i −0.135128 + 0.234048i
\(52\) 0 0
\(53\) −2.32398 4.02525i −0.319223 0.552911i 0.661103 0.750295i \(-0.270089\pi\)
−0.980326 + 0.197384i \(0.936755\pi\)
\(54\) 1.57136 2.72168i 0.213835 0.370373i
\(55\) 0.825514 0.111312
\(56\) 2.67089 0.322952i 0.356913 0.0431562i
\(57\) 3.10101 0.410739
\(58\) 7.65434 13.2577i 1.00506 1.74082i
\(59\) −3.02905 5.24648i −0.394349 0.683033i 0.598669 0.800997i \(-0.295697\pi\)
−0.993018 + 0.117964i \(0.962363\pi\)
\(60\) 0.328878 + 0.569634i 0.0424580 + 0.0735394i
\(61\) 5.68285 9.84298i 0.727614 1.26026i −0.230275 0.973126i \(-0.573962\pi\)
0.957889 0.287139i \(-0.0927042\pi\)
\(62\) −2.37975 −0.302228
\(63\) 2.34932 5.50644i 0.295987 0.693746i
\(64\) −3.18704 −0.398380
\(65\) 0 0
\(66\) 8.91498 + 15.4412i 1.09736 + 1.90068i
\(67\) −6.69851 11.6022i −0.818354 1.41743i −0.906895 0.421357i \(-0.861554\pi\)
0.0885411 0.996073i \(-0.471780\pi\)
\(68\) −0.611109 + 1.05847i −0.0741078 + 0.128358i
\(69\) −9.44053 −1.13651
\(70\) −0.582500 0.775973i −0.0696221 0.0927465i
\(71\) −5.97040 −0.708556 −0.354278 0.935140i \(-0.615273\pi\)
−0.354278 + 0.935140i \(0.615273\pi\)
\(72\) 1.15044 1.99263i 0.135581 0.234833i
\(73\) −1.94273 3.36491i −0.227380 0.393833i 0.729651 0.683820i \(-0.239683\pi\)
−0.957031 + 0.289986i \(0.906349\pi\)
\(74\) −2.82891 4.89982i −0.328854 0.569592i
\(75\) 5.69049 9.85622i 0.657081 1.13810i
\(76\) 1.96377 0.225260
\(77\) −6.64368 8.85034i −0.757118 1.00859i
\(78\) 0 0
\(79\) 5.36669 9.29537i 0.603799 1.04581i −0.388441 0.921474i \(-0.626986\pi\)
0.992240 0.124337i \(-0.0396805\pi\)
\(80\) −0.473177 0.819566i −0.0529028 0.0916303i
\(81\) 5.33411 + 9.23895i 0.592679 + 1.02655i
\(82\) −5.01421 + 8.68486i −0.553726 + 0.959082i
\(83\) 3.07390 0.337404 0.168702 0.985667i \(-0.446042\pi\)
0.168702 + 0.985667i \(0.446042\pi\)
\(84\) 3.46025 8.11027i 0.377544 0.884903i
\(85\) −0.166042 −0.0180098
\(86\) −4.94994 + 8.57354i −0.533765 + 0.924509i
\(87\) 9.44997 + 16.3678i 1.01314 + 1.75482i
\(88\) −2.12662 3.68341i −0.226698 0.392653i
\(89\) 5.99207 10.3786i 0.635159 1.10013i −0.351323 0.936254i \(-0.614268\pi\)
0.986482 0.163873i \(-0.0523986\pi\)
\(90\) −0.829819 −0.0874706
\(91\) 0 0
\(92\) −5.97840 −0.623291
\(93\) 1.46901 2.54439i 0.152329 0.263841i
\(94\) 10.8369 + 18.7700i 1.11774 + 1.93598i
\(95\) 0.133392 + 0.231042i 0.0136858 + 0.0237045i
\(96\) 7.88721 13.6611i 0.804986 1.39428i
\(97\) 19.4727 1.97716 0.988578 0.150709i \(-0.0481558\pi\)
0.988578 + 0.150709i \(0.0481558\pi\)
\(98\) −3.63129 + 12.4900i −0.366815 + 1.26168i
\(99\) −9.46448 −0.951216
\(100\) 3.60361 6.24164i 0.360361 0.624164i
\(101\) 8.46697 + 14.6652i 0.842495 + 1.45924i 0.887779 + 0.460270i \(0.152247\pi\)
−0.0452843 + 0.998974i \(0.514419\pi\)
\(102\) −1.79314 3.10580i −0.177547 0.307520i
\(103\) 3.61712 6.26504i 0.356406 0.617313i −0.630952 0.775822i \(-0.717335\pi\)
0.987357 + 0.158509i \(0.0506688\pi\)
\(104\) 0 0
\(105\) 1.18923 0.143797i 0.116057 0.0140331i
\(106\) 8.63667 0.838867
\(107\) 4.92625 8.53251i 0.476238 0.824869i −0.523391 0.852093i \(-0.675333\pi\)
0.999629 + 0.0272237i \(0.00866664\pi\)
\(108\) 1.22853 + 2.12788i 0.118216 + 0.204756i
\(109\) 6.90796 + 11.9649i 0.661662 + 1.14603i 0.980179 + 0.198115i \(0.0634821\pi\)
−0.318516 + 0.947917i \(0.603185\pi\)
\(110\) −0.766969 + 1.32843i −0.0731277 + 0.126661i
\(111\) 6.98509 0.662995
\(112\) −4.97847 + 11.6687i −0.470421 + 1.10259i
\(113\) −4.26864 −0.401560 −0.200780 0.979636i \(-0.564348\pi\)
−0.200780 + 0.979636i \(0.564348\pi\)
\(114\) −2.88109 + 4.99019i −0.269839 + 0.467374i
\(115\) −0.406092 0.703371i −0.0378682 0.0655897i
\(116\) 5.98437 + 10.3652i 0.555635 + 0.962388i
\(117\) 0 0
\(118\) 11.2569 1.03629
\(119\) 1.33629 + 1.78014i 0.122498 + 0.163185i
\(120\) 0.460394 0.0420280
\(121\) −3.24765 + 5.62509i −0.295240 + 0.511372i
\(122\) 10.5596 + 18.2898i 0.956026 + 1.65589i
\(123\) −6.19049 10.7222i −0.558178 0.966792i
\(124\) 0.930276 1.61129i 0.0835412 0.144698i
\(125\) 1.96593 0.175839
\(126\) 6.67833 + 8.89649i 0.594953 + 0.792562i
\(127\) −2.19024 −0.194352 −0.0971761 0.995267i \(-0.530981\pi\)
−0.0971761 + 0.995267i \(0.530981\pi\)
\(128\) −3.91516 + 6.78126i −0.346055 + 0.599385i
\(129\) −6.11114 10.5848i −0.538056 0.931941i
\(130\) 0 0
\(131\) −1.13806 + 1.97117i −0.0994326 + 0.172222i −0.911450 0.411411i \(-0.865036\pi\)
0.812017 + 0.583633i \(0.198369\pi\)
\(132\) −13.9400 −1.21332
\(133\) 1.40347 3.28951i 0.121696 0.285237i
\(134\) 24.8938 2.15050
\(135\) −0.166900 + 0.289079i −0.0143645 + 0.0248800i
\(136\) 0.427743 + 0.740873i 0.0366787 + 0.0635293i
\(137\) −6.72399 11.6463i −0.574469 0.995010i −0.996099 0.0882417i \(-0.971875\pi\)
0.421630 0.906768i \(-0.361458\pi\)
\(138\) 8.77101 15.1918i 0.746638 1.29321i
\(139\) 4.04540 0.343126 0.171563 0.985173i \(-0.445118\pi\)
0.171563 + 0.985173i \(0.445118\pi\)
\(140\) 0.753106 0.0910619i 0.0636490 0.00769614i
\(141\) −26.7582 −2.25344
\(142\) 5.54698 9.60765i 0.465492 0.806256i
\(143\) 0 0
\(144\) 5.42494 + 9.39628i 0.452079 + 0.783023i
\(145\) −0.812996 + 1.40815i −0.0675156 + 0.116940i
\(146\) 7.21982 0.597517
\(147\) −11.1125 11.5925i −0.916545 0.956135i
\(148\) 4.42344 0.363605
\(149\) −7.67596 + 13.2952i −0.628840 + 1.08918i 0.358945 + 0.933359i \(0.383136\pi\)
−0.987785 + 0.155823i \(0.950197\pi\)
\(150\) 10.5738 + 18.3144i 0.863351 + 1.49537i
\(151\) −3.06054 5.30101i −0.249063 0.431390i 0.714203 0.699939i \(-0.246789\pi\)
−0.963266 + 0.268548i \(0.913456\pi\)
\(152\) 0.687268 1.19038i 0.0557448 0.0965528i
\(153\) 1.90366 0.153902
\(154\) 20.4146 2.46844i 1.64506 0.198912i
\(155\) 0.252762 0.0203023
\(156\) 0 0
\(157\) −2.26834 3.92888i −0.181033 0.313559i 0.761199 0.648518i \(-0.224611\pi\)
−0.942233 + 0.334959i \(0.891278\pi\)
\(158\) 9.97217 + 17.2723i 0.793343 + 1.37411i
\(159\) −5.33137 + 9.23421i −0.422805 + 0.732320i
\(160\) 1.35710 0.107288
\(161\) −4.27265 + 10.0144i −0.336732 + 0.789245i
\(162\) −19.8233 −1.55746
\(163\) −0.911271 + 1.57837i −0.0713762 + 0.123627i −0.899505 0.436911i \(-0.856072\pi\)
0.828128 + 0.560538i \(0.189406\pi\)
\(164\) −3.92025 6.79007i −0.306120 0.530215i
\(165\) −0.946893 1.64007i −0.0737155 0.127679i
\(166\) −2.85590 + 4.94656i −0.221661 + 0.383928i
\(167\) −10.7079 −0.828606 −0.414303 0.910139i \(-0.635975\pi\)
−0.414303 + 0.910139i \(0.635975\pi\)
\(168\) −3.70522 4.93588i −0.285864 0.380812i
\(169\) 0 0
\(170\) 0.154266 0.267197i 0.0118317 0.0204931i
\(171\) −1.52934 2.64889i −0.116951 0.202566i
\(172\) −3.87000 6.70303i −0.295085 0.511102i
\(173\) 6.74634 11.6850i 0.512915 0.888395i −0.486973 0.873417i \(-0.661899\pi\)
0.999888 0.0149778i \(-0.00476775\pi\)
\(174\) −35.1191 −2.66237
\(175\) −7.87992 10.4972i −0.595666 0.793512i
\(176\) 20.0563 1.51180
\(177\) −6.94886 + 12.0358i −0.522308 + 0.904664i
\(178\) 11.1342 + 19.2851i 0.834547 + 1.44548i
\(179\) −5.23458 9.06657i −0.391251 0.677667i 0.601364 0.798975i \(-0.294624\pi\)
−0.992615 + 0.121309i \(0.961291\pi\)
\(180\) 0.324388 0.561857i 0.0241785 0.0418783i
\(181\) 12.5209 0.930674 0.465337 0.885133i \(-0.345933\pi\)
0.465337 + 0.885133i \(0.345933\pi\)
\(182\) 0 0
\(183\) −26.0737 −1.92742
\(184\) −2.09228 + 3.62393i −0.154245 + 0.267160i
\(185\) 0.300469 + 0.520428i 0.0220909 + 0.0382626i
\(186\) 2.72965 + 4.72789i 0.200148 + 0.346666i
\(187\) 1.75948 3.04751i 0.128666 0.222856i
\(188\) −16.9451 −1.23585
\(189\) 4.44242 0.537156i 0.323139 0.0390724i
\(190\) −0.495729 −0.0359640
\(191\) −6.55685 + 11.3568i −0.474437 + 0.821749i −0.999572 0.0292704i \(-0.990682\pi\)
0.525135 + 0.851019i \(0.324015\pi\)
\(192\) 3.65565 + 6.33176i 0.263823 + 0.456956i
\(193\) −0.520786 0.902028i −0.0374870 0.0649294i 0.846673 0.532113i \(-0.178602\pi\)
−0.884160 + 0.467184i \(0.845269\pi\)
\(194\) −18.0917 + 31.3358i −1.29891 + 2.24978i
\(195\) 0 0
\(196\) −7.03722 7.34118i −0.502658 0.524370i
\(197\) 1.47833 0.105327 0.0526635 0.998612i \(-0.483229\pi\)
0.0526635 + 0.998612i \(0.483229\pi\)
\(198\) 8.79326 15.2304i 0.624910 1.08238i
\(199\) −7.04993 12.2108i −0.499756 0.865603i 0.500244 0.865885i \(-0.333244\pi\)
−1.00000 0.000281618i \(0.999910\pi\)
\(200\) −2.52233 4.36881i −0.178356 0.308922i
\(201\) −15.3668 + 26.6162i −1.08389 + 1.87736i
\(202\) −31.4660 −2.21394
\(203\) 21.6397 2.61657i 1.51881 0.183647i
\(204\) 2.80385 0.196309
\(205\) 0.532578 0.922451i 0.0371968 0.0644268i
\(206\) 6.72120 + 11.6415i 0.468288 + 0.811099i
\(207\) 4.65582 + 8.06412i 0.323602 + 0.560495i
\(208\) 0 0
\(209\) −5.65402 −0.391097
\(210\) −0.873495 + 2.04733i −0.0602769 + 0.141279i
\(211\) 26.4692 1.82222 0.911108 0.412167i \(-0.135228\pi\)
0.911108 + 0.412167i \(0.135228\pi\)
\(212\) −3.37619 + 5.84774i −0.231878 + 0.401624i
\(213\) 6.84825 + 11.8615i 0.469234 + 0.812737i
\(214\) 9.15376 + 15.8548i 0.625738 + 1.08381i
\(215\) 0.525751 0.910628i 0.0358559 0.0621043i
\(216\) 1.71981 0.117019
\(217\) −2.03421 2.70986i −0.138091 0.183957i
\(218\) −25.6722 −1.73874
\(219\) −4.45676 + 7.71934i −0.301160 + 0.521625i
\(220\) −0.599638 1.03860i −0.0404276 0.0700227i
\(221\) 0 0
\(222\) −6.48971 + 11.2405i −0.435561 + 0.754414i
\(223\) −0.728048 −0.0487537 −0.0243769 0.999703i \(-0.507760\pi\)
−0.0243769 + 0.999703i \(0.507760\pi\)
\(224\) −10.9218 14.5495i −0.729746 0.972126i
\(225\) −11.2256 −0.748373
\(226\) 3.96591 6.86916i 0.263808 0.456929i
\(227\) 1.42598 + 2.46986i 0.0946454 + 0.163931i 0.909461 0.415790i \(-0.136495\pi\)
−0.814815 + 0.579721i \(0.803162\pi\)
\(228\) −2.25252 3.90147i −0.149177 0.258381i
\(229\) −1.58676 + 2.74835i −0.104856 + 0.181616i −0.913679 0.406436i \(-0.866772\pi\)
0.808823 + 0.588052i \(0.200105\pi\)
\(230\) 1.50917 0.0995116
\(231\) −9.96262 + 23.3508i −0.655492 + 1.53637i
\(232\) 8.37748 0.550009
\(233\) −6.70354 + 11.6109i −0.439163 + 0.760653i −0.997625 0.0688769i \(-0.978058\pi\)
0.558462 + 0.829530i \(0.311392\pi\)
\(234\) 0 0
\(235\) −1.15102 1.99363i −0.0750845 0.130050i
\(236\) −4.40050 + 7.62188i −0.286448 + 0.496142i
\(237\) −24.6231 −1.59944
\(238\) −4.10614 + 0.496495i −0.266162 + 0.0321830i
\(239\) −15.5538 −1.00609 −0.503046 0.864259i \(-0.667788\pi\)
−0.503046 + 0.864259i \(0.667788\pi\)
\(240\) −1.08550 + 1.88014i −0.0700687 + 0.121363i
\(241\) 3.78787 + 6.56078i 0.243998 + 0.422617i 0.961849 0.273579i \(-0.0882076\pi\)
−0.717851 + 0.696196i \(0.754874\pi\)
\(242\) −6.03465 10.4523i −0.387922 0.671900i
\(243\) 9.69985 16.8006i 0.622245 1.07776i
\(244\) −16.5117 −1.05705
\(245\) 0.385693 1.32661i 0.0246410 0.0847537i
\(246\) 23.0059 1.46680
\(247\) 0 0
\(248\) −0.651143 1.12781i −0.0413476 0.0716162i
\(249\) −3.52587 6.10698i −0.223443 0.387014i
\(250\) −1.82651 + 3.16361i −0.115519 + 0.200084i
\(251\) 1.27476 0.0804624 0.0402312 0.999190i \(-0.487191\pi\)
0.0402312 + 0.999190i \(0.487191\pi\)
\(252\) −8.63432 + 1.04402i −0.543911 + 0.0657671i
\(253\) 17.2128 1.08216
\(254\) 2.03491 3.52456i 0.127682 0.221151i
\(255\) 0.190456 + 0.329879i 0.0119268 + 0.0206578i
\(256\) −10.4620 18.1208i −0.653878 1.13255i
\(257\) 4.24010 7.34406i 0.264490 0.458110i −0.702940 0.711249i \(-0.748130\pi\)
0.967430 + 0.253139i \(0.0814631\pi\)
\(258\) 22.7110 1.41392
\(259\) 3.16135 7.40970i 0.196437 0.460416i
\(260\) 0 0
\(261\) 9.32095 16.1444i 0.576952 0.999311i
\(262\) −2.11470 3.66276i −0.130646 0.226286i
\(263\) −6.39415 11.0750i −0.394280 0.682913i 0.598729 0.800952i \(-0.295673\pi\)
−0.993009 + 0.118038i \(0.962339\pi\)
\(264\) −4.87861 + 8.45000i −0.300258 + 0.520062i
\(265\) −0.917333 −0.0563513
\(266\) 3.98959 + 5.31471i 0.244618 + 0.325866i
\(267\) −27.4925 −1.68251
\(268\) −9.73135 + 16.8552i −0.594437 + 1.02959i
\(269\) 2.35586 + 4.08047i 0.143639 + 0.248790i 0.928864 0.370420i \(-0.120786\pi\)
−0.785225 + 0.619210i \(0.787453\pi\)
\(270\) −0.310127 0.537156i −0.0188737 0.0326903i
\(271\) 9.00562 15.5982i 0.547052 0.947522i −0.451422 0.892310i \(-0.649083\pi\)
0.998475 0.0552119i \(-0.0175834\pi\)
\(272\) −4.03407 −0.244601
\(273\) 0 0
\(274\) 24.9885 1.50961
\(275\) −10.3754 + 17.9707i −0.625659 + 1.08367i
\(276\) 6.85742 + 11.8774i 0.412768 + 0.714936i
\(277\) 13.0604 + 22.6213i 0.784725 + 1.35918i 0.929163 + 0.369670i \(0.120529\pi\)
−0.144438 + 0.989514i \(0.546137\pi\)
\(278\) −3.75850 + 6.50991i −0.225420 + 0.390439i
\(279\) −2.89790 −0.173493
\(280\) 0.208368 0.488380i 0.0124523 0.0291863i
\(281\) −3.66197 −0.218455 −0.109227 0.994017i \(-0.534838\pi\)
−0.109227 + 0.994017i \(0.534838\pi\)
\(282\) 24.8605 43.0596i 1.48042 2.56416i
\(283\) −3.82263 6.62099i −0.227232 0.393577i 0.729755 0.683709i \(-0.239634\pi\)
−0.956987 + 0.290132i \(0.906301\pi\)
\(284\) 4.33678 + 7.51153i 0.257341 + 0.445727i
\(285\) 0.306011 0.530027i 0.0181265 0.0313961i
\(286\) 0 0
\(287\) −14.1757 + 1.71406i −0.836768 + 0.101178i
\(288\) −15.5591 −0.916827
\(289\) 8.14610 14.1095i 0.479183 0.829968i
\(290\) −1.51068 2.61657i −0.0887100 0.153650i
\(291\) −22.3359 38.6869i −1.30935 2.26787i
\(292\) −2.82233 + 4.88842i −0.165164 + 0.286073i
\(293\) −17.1534 −1.00211 −0.501056 0.865415i \(-0.667055\pi\)
−0.501056 + 0.865415i \(0.667055\pi\)
\(294\) 28.9793 7.11205i 1.69011 0.414783i
\(295\) −1.19564 −0.0696130
\(296\) 1.54809 2.68136i 0.0899807 0.155851i
\(297\) −3.53715 6.12652i −0.205246 0.355497i
\(298\) −14.2632 24.7045i −0.826244 1.43110i
\(299\) 0 0
\(300\) −16.5339 −0.954583
\(301\) −13.9940 + 1.69209i −0.806604 + 0.0975306i
\(302\) 11.3740 0.654498
\(303\) 19.4238 33.6430i 1.11587 1.93274i
\(304\) 3.24083 + 5.61328i 0.185874 + 0.321944i
\(305\) −1.12158 1.94263i −0.0642215 0.111235i
\(306\) −1.76866 + 3.06340i −0.101107 + 0.175123i
\(307\) −28.0696 −1.60201 −0.801007 0.598655i \(-0.795702\pi\)
−0.801007 + 0.598655i \(0.795702\pi\)
\(308\) −6.30902 + 14.7873i −0.359490 + 0.842586i
\(309\) −16.5959 −0.944105
\(310\) −0.234836 + 0.406748i −0.0133378 + 0.0231017i
\(311\) 11.7670 + 20.3811i 0.667248 + 1.15571i 0.978671 + 0.205436i \(0.0658611\pi\)
−0.311423 + 0.950271i \(0.600806\pi\)
\(312\) 0 0
\(313\) 1.67430 2.89997i 0.0946370 0.163916i −0.814820 0.579714i \(-0.803164\pi\)
0.909457 + 0.415798i \(0.136498\pi\)
\(314\) 8.42989 0.475726
\(315\) −0.709330 0.944930i −0.0399662 0.0532408i
\(316\) −15.5930 −0.877177
\(317\) 3.63917 6.30323i 0.204396 0.354025i −0.745544 0.666456i \(-0.767810\pi\)
0.949940 + 0.312432i \(0.101144\pi\)
\(318\) −9.90655 17.1586i −0.555532 0.962209i
\(319\) −17.2300 29.8432i −0.964694 1.67090i
\(320\) −0.314501 + 0.544732i −0.0175811 + 0.0304514i
\(321\) −22.6023 −1.26154
\(322\) −12.1457 16.1798i −0.676852 0.901664i
\(323\) 1.13724 0.0632775
\(324\) 7.74919 13.4220i 0.430511 0.745666i
\(325\) 0 0
\(326\) −1.69329 2.93286i −0.0937826 0.162436i
\(327\) 15.8473 27.4484i 0.876359 1.51790i
\(328\) −5.48792 −0.303020
\(329\) −12.1104 + 28.3847i −0.667666 + 1.56490i
\(330\) 3.51896 0.193712
\(331\) 7.16168 12.4044i 0.393642 0.681807i −0.599285 0.800536i \(-0.704548\pi\)
0.992927 + 0.118728i \(0.0378818\pi\)
\(332\) −2.23282 3.86736i −0.122542 0.212249i
\(333\) −3.44486 5.96668i −0.188777 0.326972i
\(334\) 9.94855 17.2314i 0.544360 0.942860i
\(335\) −2.64407 −0.144461
\(336\) 28.8930 3.49360i 1.57624 0.190592i
\(337\) 17.1802 0.935868 0.467934 0.883764i \(-0.344999\pi\)
0.467934 + 0.883764i \(0.344999\pi\)
\(338\) 0 0
\(339\) 4.89627 + 8.48060i 0.265929 + 0.460603i
\(340\) 0.120610 + 0.208902i 0.00654098 + 0.0113293i
\(341\) −2.67841 + 4.63915i −0.145044 + 0.251224i
\(342\) 5.68351 0.307329
\(343\) −17.3266 + 6.54142i −0.935547 + 0.353203i
\(344\) −5.41758 −0.292096
\(345\) −0.931602 + 1.61358i −0.0501558 + 0.0868723i
\(346\) 12.5358 + 21.7126i 0.673928 + 1.16728i
\(347\) 3.85139 + 6.67080i 0.206753 + 0.358107i 0.950690 0.310143i \(-0.100377\pi\)
−0.743937 + 0.668250i \(0.767044\pi\)
\(348\) 13.7286 23.7786i 0.735928 1.27466i
\(349\) 22.3701 1.19744 0.598721 0.800958i \(-0.295676\pi\)
0.598721 + 0.800958i \(0.295676\pi\)
\(350\) 24.2133 2.92776i 1.29426 0.156495i
\(351\) 0 0
\(352\) −14.3806 + 24.9080i −0.766490 + 1.32760i
\(353\) 11.1311 + 19.2797i 0.592451 + 1.02616i 0.993901 + 0.110275i \(0.0351731\pi\)
−0.401450 + 0.915881i \(0.631494\pi\)
\(354\) −12.9121 22.3644i −0.686270 1.18865i
\(355\) −0.589165 + 1.02046i −0.0312697 + 0.0541606i
\(356\) −17.4101 −0.922735
\(357\) 2.00386 4.69672i 0.106055 0.248577i
\(358\) 19.4534 1.02814
\(359\) 1.37921 2.38887i 0.0727920 0.126079i −0.827332 0.561713i \(-0.810142\pi\)
0.900124 + 0.435634i \(0.143476\pi\)
\(360\) −0.227054 0.393269i −0.0119668 0.0207271i
\(361\) 8.58638 + 14.8721i 0.451915 + 0.782740i
\(362\) −11.6330 + 20.1489i −0.611415 + 1.05900i
\(363\) 14.9006 0.782081
\(364\) 0 0
\(365\) −0.766844 −0.0401385
\(366\) 24.2246 41.9582i 1.26624 2.19319i
\(367\) 7.07485 + 12.2540i 0.369304 + 0.639654i 0.989457 0.144827i \(-0.0462626\pi\)
−0.620153 + 0.784481i \(0.712929\pi\)
\(368\) −9.86618 17.0887i −0.514310 0.890812i
\(369\) −6.10597 + 10.5759i −0.317864 + 0.550557i
\(370\) −1.11664 −0.0580514
\(371\) 7.38263 + 9.83472i 0.383287 + 0.510593i
\(372\) −4.26823 −0.221298
\(373\) 2.52142 4.36723i 0.130554 0.226127i −0.793336 0.608784i \(-0.791658\pi\)
0.923890 + 0.382657i \(0.124991\pi\)
\(374\) 3.26940 + 5.66276i 0.169056 + 0.292814i
\(375\) −2.25499 3.90576i −0.116447 0.201693i
\(376\) −5.93034 + 10.2716i −0.305834 + 0.529720i
\(377\) 0 0
\(378\) −3.26297 + 7.64787i −0.167829 + 0.393364i
\(379\) −6.05964 −0.311263 −0.155631 0.987815i \(-0.549741\pi\)
−0.155631 + 0.987815i \(0.549741\pi\)
\(380\) 0.193787 0.335650i 0.00994109 0.0172185i
\(381\) 2.51228 + 4.35139i 0.128708 + 0.222929i
\(382\) −12.1837 21.1028i −0.623371 1.07971i
\(383\) 2.27052 3.93266i 0.116018 0.200950i −0.802168 0.597098i \(-0.796320\pi\)
0.918186 + 0.396149i \(0.129654\pi\)
\(384\) 17.9633 0.916686
\(385\) −2.16831 + 0.262182i −0.110507 + 0.0133620i
\(386\) 1.93541 0.0985098
\(387\) −6.02771 + 10.4403i −0.306406 + 0.530710i
\(388\) −14.1446 24.4992i −0.718085 1.24376i
\(389\) −2.25383 3.90374i −0.114273 0.197927i 0.803216 0.595688i \(-0.203121\pi\)
−0.917489 + 0.397761i \(0.869787\pi\)
\(390\) 0 0
\(391\) −3.46213 −0.175088
\(392\) −6.91285 + 1.69654i −0.349152 + 0.0856883i
\(393\) 5.22157 0.263393
\(394\) −1.37349 + 2.37896i −0.0691955 + 0.119850i
\(395\) −1.05918 1.83456i −0.0532932 0.0923065i
\(396\) 6.87482 + 11.9075i 0.345473 + 0.598376i
\(397\) −2.00174 + 3.46712i −0.100465 + 0.174010i −0.911876 0.410465i \(-0.865366\pi\)
0.811412 + 0.584475i \(0.198700\pi\)
\(398\) 26.1998 1.31328
\(399\) −8.14518 + 0.984875i −0.407769 + 0.0493054i
\(400\) 23.7883 1.18941
\(401\) −6.30674 + 10.9236i −0.314944 + 0.545498i −0.979426 0.201806i \(-0.935319\pi\)
0.664482 + 0.747304i \(0.268652\pi\)
\(402\) −28.5541 49.4571i −1.42415 2.46670i
\(403\) 0 0
\(404\) 12.3005 21.3051i 0.611972 1.05997i
\(405\) 2.10550 0.104623
\(406\) −15.8944 + 37.2539i −0.788826 + 1.84888i
\(407\) −12.7358 −0.631290
\(408\) 0.981272 1.69961i 0.0485802 0.0841434i
\(409\) −10.3476 17.9226i −0.511657 0.886216i −0.999909 0.0135128i \(-0.995699\pi\)
0.488252 0.872703i \(-0.337635\pi\)
\(410\) 0.989615 + 1.71406i 0.0488736 + 0.0846516i
\(411\) −15.4253 + 26.7174i −0.760873 + 1.31787i
\(412\) −10.5096 −0.517773
\(413\) 9.62244 + 12.8185i 0.473490 + 0.630756i
\(414\) −17.3025 −0.850373
\(415\) 0.303336 0.525393i 0.0148902 0.0257905i
\(416\) 0 0
\(417\) −4.64021 8.03708i −0.227232 0.393577i
\(418\) 5.25304 9.09854i 0.256935 0.445024i
\(419\) −21.8175 −1.06586 −0.532928 0.846161i \(-0.678908\pi\)
−0.532928 + 0.846161i \(0.678908\pi\)
\(420\) −1.04475 1.39176i −0.0509787 0.0679109i
\(421\) 9.42727 0.459457 0.229728 0.973255i \(-0.426216\pi\)
0.229728 + 0.973255i \(0.426216\pi\)
\(422\) −24.5920 + 42.5947i −1.19712 + 2.07348i
\(423\) 13.1964 + 22.8569i 0.641632 + 1.11134i
\(424\) 2.36315 + 4.09310i 0.114765 + 0.198779i
\(425\) 2.08688 3.61458i 0.101228 0.175333i
\(426\) −25.4503 −1.23307
\(427\) −11.8006 + 27.6586i −0.571070 + 1.33850i
\(428\) −14.3133 −0.691861
\(429\) 0 0
\(430\) 0.976930 + 1.69209i 0.0471118 + 0.0816000i
\(431\) −10.2138 17.6908i −0.491980 0.852134i 0.507977 0.861370i \(-0.330393\pi\)
−0.999957 + 0.00923613i \(0.997060\pi\)
\(432\) −4.05491 + 7.02332i −0.195092 + 0.337909i
\(433\) 26.3486 1.26623 0.633117 0.774056i \(-0.281775\pi\)
0.633117 + 0.774056i \(0.281775\pi\)
\(434\) 6.25069 0.755803i 0.300043 0.0362797i
\(435\) 3.73014 0.178846
\(436\) 10.0356 17.3822i 0.480619 0.832457i
\(437\) 2.78136 + 4.81745i 0.133050 + 0.230450i
\(438\) −8.28138 14.3438i −0.395700 0.685372i
\(439\) −12.5655 + 21.7641i −0.599720 + 1.03875i 0.393142 + 0.919478i \(0.371388\pi\)
−0.992862 + 0.119267i \(0.961945\pi\)
\(440\) −0.839429 −0.0400182
\(441\) −4.42195 + 15.2095i −0.210569 + 0.724260i
\(442\) 0 0
\(443\) −9.25995 + 16.0387i −0.439953 + 0.762022i −0.997685 0.0679994i \(-0.978338\pi\)
0.557732 + 0.830021i \(0.311672\pi\)
\(444\) −5.07384 8.78815i −0.240794 0.417067i
\(445\) −1.18261 2.04834i −0.0560611 0.0971006i
\(446\) 0.676415 1.17159i 0.0320292 0.0554762i
\(447\) 35.2184 1.66577
\(448\) 8.37115 1.01220i 0.395500 0.0478219i
\(449\) 11.6431 0.549471 0.274736 0.961520i \(-0.411410\pi\)
0.274736 + 0.961520i \(0.411410\pi\)
\(450\) 10.4295 18.0644i 0.491651 0.851564i
\(451\) 11.2870 + 19.5497i 0.531485 + 0.920559i
\(452\) 3.10066 + 5.37050i 0.145843 + 0.252607i
\(453\) −7.02109 + 12.1609i −0.329880 + 0.571368i
\(454\) −5.29939 −0.248713
\(455\) 0 0
\(456\) −3.15328 −0.147666
\(457\) −10.2592 + 17.7695i −0.479906 + 0.831222i −0.999734 0.0230490i \(-0.992663\pi\)
0.519828 + 0.854271i \(0.325996\pi\)
\(458\) −2.94845 5.10687i −0.137772 0.238629i
\(459\) 0.711453 + 1.23227i 0.0332078 + 0.0575176i
\(460\) −0.589955 + 1.02183i −0.0275068 + 0.0476431i
\(461\) 2.04075 0.0950473 0.0475236 0.998870i \(-0.484867\pi\)
0.0475236 + 0.998870i \(0.484867\pi\)
\(462\) −28.3203 37.7268i −1.31758 1.75521i
\(463\) 3.03155 0.140888 0.0704441 0.997516i \(-0.477558\pi\)
0.0704441 + 0.997516i \(0.477558\pi\)
\(464\) −19.7521 + 34.2116i −0.916968 + 1.58824i
\(465\) −0.289926 0.502167i −0.0134450 0.0232874i
\(466\) −12.4563 21.5749i −0.577025 0.999436i
\(467\) 6.46371 11.1955i 0.299105 0.518065i −0.676827 0.736142i \(-0.736645\pi\)
0.975931 + 0.218078i \(0.0699787\pi\)
\(468\) 0 0
\(469\) 21.2793 + 28.3470i 0.982585 + 1.30894i
\(470\) 4.27757 0.197310
\(471\) −5.20373 + 9.01312i −0.239775 + 0.415303i
\(472\) 3.08011 + 5.33491i 0.141774 + 0.245559i
\(473\) 11.1423 + 19.2991i 0.512326 + 0.887374i
\(474\) 22.8768 39.6238i 1.05077 1.81998i
\(475\) −6.70611 −0.307697
\(476\) 1.26898 2.97429i 0.0581637 0.136326i
\(477\) 10.5172 0.481548
\(478\) 14.4507 25.0294i 0.660962 1.14482i
\(479\) −18.2911 31.6810i −0.835740 1.44754i −0.893427 0.449209i \(-0.851706\pi\)
0.0576873 0.998335i \(-0.481627\pi\)
\(480\) −1.55664 2.69618i −0.0710505 0.123063i
\(481\) 0 0
\(482\) −14.0769 −0.641187
\(483\) 24.7967 2.99830i 1.12829 0.136427i
\(484\) 9.43611 0.428914
\(485\) 1.92159 3.32829i 0.0872550 0.151130i
\(486\) 18.0239 + 31.2183i 0.817580 + 1.41609i
\(487\) −18.3748 31.8261i −0.832642 1.44218i −0.895936 0.444183i \(-0.853494\pi\)
0.0632939 0.997995i \(-0.479839\pi\)
\(488\) −5.77864 + 10.0089i −0.261587 + 0.453081i
\(489\) 4.18103 0.189073
\(490\) 1.77645 + 1.85319i 0.0802520 + 0.0837184i
\(491\) −8.19797 −0.369969 −0.184985 0.982741i \(-0.559224\pi\)
−0.184985 + 0.982741i \(0.559224\pi\)
\(492\) −8.99331 + 15.5769i −0.405450 + 0.702260i
\(493\) 3.46560 + 6.00259i 0.156083 + 0.270343i
\(494\) 0 0
\(495\) −0.933965 + 1.61768i −0.0419786 + 0.0727091i
\(496\) 6.14096 0.275737
\(497\) 15.6820 1.89619i 0.703432 0.0850556i
\(498\) 13.1033 0.587171
\(499\) 21.6266 37.4584i 0.968141 1.67687i 0.267211 0.963638i \(-0.413898\pi\)
0.700929 0.713231i \(-0.252769\pi\)
\(500\) −1.42802 2.47340i −0.0638629 0.110614i
\(501\) 12.2824 + 21.2737i 0.548736 + 0.950439i
\(502\) −1.18436 + 2.05137i −0.0528605 + 0.0915571i
\(503\) 0.0181922 0.000811149 0.000405575 1.00000i \(-0.499871\pi\)
0.000405575 1.00000i \(0.499871\pi\)
\(504\) −2.38892 + 5.59925i −0.106411 + 0.249411i
\(505\) 3.34212 0.148722
\(506\) −15.9920 + 27.6990i −0.710933 + 1.23137i
\(507\) 0 0
\(508\) 1.59095 + 2.75560i 0.0705869 + 0.122260i
\(509\) −21.5503 + 37.3262i −0.955200 + 1.65446i −0.221292 + 0.975208i \(0.571027\pi\)
−0.733909 + 0.679248i \(0.762306\pi\)
\(510\) −0.707795 −0.0313417
\(511\) 6.17151 + 8.22134i 0.273012 + 0.363691i
\(512\) 23.2197 1.02617
\(513\) 1.14311 1.97993i 0.0504697 0.0874161i
\(514\) 7.87878 + 13.6464i 0.347518 + 0.601919i
\(515\) −0.713884 1.23648i −0.0314575 0.0544859i
\(516\) −8.87804 + 15.3772i −0.390834 + 0.676944i
\(517\) 48.7877 2.14568
\(518\) 8.98664 + 11.9715i 0.394850 + 0.525997i
\(519\) −30.9531 −1.35869
\(520\) 0 0
\(521\) −10.4770 18.1467i −0.459006 0.795022i 0.539903 0.841727i \(-0.318461\pi\)
−0.998909 + 0.0467056i \(0.985128\pi\)
\(522\) 17.3198 + 29.9988i 0.758068 + 1.31301i
\(523\) 17.3701 30.0860i 0.759543 1.31557i −0.183541 0.983012i \(-0.558756\pi\)
0.943084 0.332555i \(-0.107911\pi\)
\(524\) 3.30666 0.144452
\(525\) −11.8164 + 27.6958i −0.515712 + 1.20875i
\(526\) 23.7627 1.03610
\(527\) 0.538730 0.933107i 0.0234674 0.0406468i
\(528\) −23.0052 39.8462i −1.00117 1.73408i
\(529\) 3.03260 + 5.25262i 0.131852 + 0.228375i
\(530\) 0.852276 1.47619i 0.0370205 0.0641214i
\(531\) 13.7080 0.594875
\(532\) −5.15809 + 0.623691i −0.223631 + 0.0270404i
\(533\) 0 0
\(534\) 25.5427 44.2413i 1.10534 1.91451i
\(535\) −0.972255 1.68400i −0.0420343 0.0728055i
\(536\) 6.81142 + 11.7977i 0.294209 + 0.509584i
\(537\) −12.0085 + 20.7993i −0.518205 + 0.897557i
\(538\) −8.75513 −0.377460
\(539\) 20.2613 + 21.1365i 0.872715 + 0.910411i
\(540\) 0.484932 0.0208682
\(541\) 1.64923 2.85655i 0.0709059 0.122813i −0.828393 0.560148i \(-0.810744\pi\)
0.899299 + 0.437335i \(0.144078\pi\)
\(542\) 16.7339 + 28.9839i 0.718782 + 1.24497i
\(543\) −14.3619 24.8756i −0.616330 1.06752i
\(544\) 2.89249 5.00993i 0.124014 0.214799i
\(545\) 2.72674 0.116801
\(546\) 0 0
\(547\) 21.9417 0.938161 0.469080 0.883155i \(-0.344585\pi\)
0.469080 + 0.883155i \(0.344585\pi\)
\(548\) −9.76836 + 16.9193i −0.417284 + 0.722756i
\(549\) 12.8589 + 22.2722i 0.548803 + 0.950554i
\(550\) −19.2791 33.3924i −0.822065 1.42386i
\(551\) 5.56828 9.64455i 0.237217 0.410871i
\(552\) 9.59965 0.408588
\(553\) −11.1440 + 26.1199i −0.473893 + 1.11073i
\(554\) −48.5368 −2.06213
\(555\) 0.689297 1.19390i 0.0292590 0.0506781i
\(556\) −2.93850 5.08963i −0.124620 0.215848i
\(557\) 7.14329 + 12.3725i 0.302671 + 0.524241i 0.976740 0.214427i \(-0.0687884\pi\)
−0.674069 + 0.738668i \(0.735455\pi\)
\(558\) 2.69238 4.66334i 0.113978 0.197415i
\(559\) 0 0
\(560\) 1.50315 + 2.00241i 0.0635196 + 0.0846172i
\(561\) −8.07273 −0.340831
\(562\) 3.40226 5.89289i 0.143516 0.248577i
\(563\) −3.39392 5.87844i −0.143037 0.247747i 0.785602 0.618732i \(-0.212353\pi\)
−0.928639 + 0.370985i \(0.879020\pi\)
\(564\) 19.4366 + 33.6652i 0.818430 + 1.41756i
\(565\) −0.421234 + 0.729599i −0.0177215 + 0.0306945i
\(566\) 14.2061 0.597128
\(567\) −16.9449 22.5731i −0.711621 0.947981i
\(568\) 6.07103 0.254735
\(569\) 8.66061 15.0006i 0.363072 0.628859i −0.625393 0.780310i \(-0.715061\pi\)
0.988465 + 0.151451i \(0.0483947\pi\)
\(570\) 0.568618 + 0.984875i 0.0238168 + 0.0412519i
\(571\) 6.50581 + 11.2684i 0.272260 + 0.471568i 0.969440 0.245328i \(-0.0788957\pi\)
−0.697180 + 0.716896i \(0.745562\pi\)
\(572\) 0 0
\(573\) 30.0837 1.25676
\(574\) 10.4121 24.4043i 0.434593 1.01862i
\(575\) 20.4157 0.851392
\(576\) 3.60574 6.24532i 0.150239 0.260222i
\(577\) 0.365767 + 0.633528i 0.0152271 + 0.0263741i 0.873539 0.486755i \(-0.161820\pi\)
−0.858311 + 0.513129i \(0.828486\pi\)
\(578\) 15.1368 + 26.2177i 0.629607 + 1.09051i
\(579\) −1.19472 + 2.06931i −0.0496508 + 0.0859978i
\(580\) 2.36218 0.0980842
\(581\) −8.07396 + 0.976265i −0.334964 + 0.0405023i
\(582\) 83.0073 3.44076
\(583\) 9.72061 16.8366i 0.402586 0.697300i
\(584\) 1.97548 + 3.42163i 0.0817459 + 0.141588i
\(585\) 0 0
\(586\) 15.9369 27.6035i 0.658347 1.14029i
\(587\) −8.52284 −0.351775 −0.175888 0.984410i \(-0.556280\pi\)
−0.175888 + 0.984410i \(0.556280\pi\)
\(588\) −6.51296 + 22.4016i −0.268590 + 0.923825i
\(589\) −1.73119 −0.0713323
\(590\) 1.11085 1.92404i 0.0457329 0.0792117i
\(591\) −1.69570 2.93704i −0.0697517 0.120814i
\(592\) 7.30004 + 12.6440i 0.300030 + 0.519667i
\(593\) 15.6547 27.1147i 0.642860 1.11347i −0.341932 0.939725i \(-0.611081\pi\)
0.984791 0.173741i \(-0.0555854\pi\)
\(594\) 13.1452 0.539353
\(595\) 0.436129 0.0527346i 0.0178795 0.00216191i
\(596\) 22.3027 0.913554
\(597\) −16.1730 + 28.0125i −0.661917 + 1.14647i
\(598\) 0 0
\(599\) 0.375116 + 0.649720i 0.0153268 + 0.0265468i 0.873587 0.486668i \(-0.161788\pi\)
−0.858260 + 0.513215i \(0.828454\pi\)
\(600\) −5.78641 + 10.0224i −0.236229 + 0.409161i
\(601\) −9.55305 −0.389677 −0.194838 0.980835i \(-0.562418\pi\)
−0.194838 + 0.980835i \(0.562418\pi\)
\(602\) 10.2787 24.0915i 0.418927 0.981897i
\(603\) 30.3141 1.23449
\(604\) −4.44624 + 7.70111i −0.180915 + 0.313354i
\(605\) 0.640963 + 1.11018i 0.0260588 + 0.0451352i
\(606\) 36.0925 + 62.5141i 1.46616 + 2.53946i
\(607\) −11.1197 + 19.2599i −0.451336 + 0.781737i −0.998469 0.0553087i \(-0.982386\pi\)
0.547133 + 0.837045i \(0.315719\pi\)
\(608\) −9.29489 −0.376958
\(609\) −30.0199 39.9908i −1.21647 1.62051i
\(610\) 4.16815 0.168764
\(611\) 0 0
\(612\) −1.38278 2.39505i −0.0558957 0.0968143i
\(613\) 4.13993 + 7.17057i 0.167210 + 0.289617i 0.937438 0.348152i \(-0.113191\pi\)
−0.770228 + 0.637769i \(0.779857\pi\)
\(614\) 26.0789 45.1699i 1.05246 1.82291i
\(615\) −2.44354 −0.0985330
\(616\) 6.75567 + 8.99952i 0.272194 + 0.362601i
\(617\) 20.3312 0.818503 0.409252 0.912422i \(-0.365790\pi\)
0.409252 + 0.912422i \(0.365790\pi\)
\(618\) 15.4189 26.7063i 0.620238 1.07428i
\(619\) −2.67049 4.62542i −0.107336 0.185911i 0.807354 0.590067i \(-0.200899\pi\)
−0.914690 + 0.404156i \(0.867565\pi\)
\(620\) −0.183601 0.318007i −0.00737361 0.0127715i
\(621\) −3.48003 + 6.02758i −0.139649 + 0.241879i
\(622\) −43.7301 −1.75342
\(623\) −12.4427 + 29.1636i −0.498506 + 1.16842i
\(624\) 0 0
\(625\) −12.2086 + 21.1459i −0.488345 + 0.845838i
\(626\) 3.11112 + 5.38862i 0.124345 + 0.215372i
\(627\) 6.48536 + 11.2330i 0.259000 + 0.448601i
\(628\) −3.29536 + 5.70773i −0.131499 + 0.227763i
\(629\) 2.56165 0.102140
\(630\) 2.17962 0.263549i 0.0868381 0.0105001i
\(631\) 6.46662 0.257432 0.128716 0.991681i \(-0.458914\pi\)
0.128716 + 0.991681i \(0.458914\pi\)
\(632\) −5.45714 + 9.45205i −0.217074 + 0.375982i
\(633\) −30.3611 52.5870i −1.20675 2.09014i
\(634\) 6.76217 + 11.7124i 0.268560 + 0.465160i
\(635\) −0.216135 + 0.374357i −0.00857707 + 0.0148559i
\(636\) 15.4904 0.614236
\(637\) 0 0
\(638\) 64.0322 2.53506
\(639\) 6.75475 11.6996i 0.267214 0.462828i
\(640\) 0.772706 + 1.33837i 0.0305439 + 0.0529035i
\(641\) −11.6644 20.2034i −0.460717 0.797985i 0.538280 0.842766i \(-0.319074\pi\)
−0.998997 + 0.0447808i \(0.985741\pi\)
\(642\) 20.9993 36.3719i 0.828778 1.43549i
\(643\) −3.58878 −0.141527 −0.0707637 0.997493i \(-0.522544\pi\)
−0.0707637 + 0.997493i \(0.522544\pi\)
\(644\) 15.7030 1.89873i 0.618784 0.0748204i
\(645\) −2.41222 −0.0949810
\(646\) −1.05658 + 1.83006i −0.0415707 + 0.0720026i
\(647\) 19.8262 + 34.3400i 0.779448 + 1.35004i 0.932260 + 0.361788i \(0.117834\pi\)
−0.152812 + 0.988255i \(0.548833\pi\)
\(648\) −5.42402 9.39467i −0.213076 0.369058i
\(649\) 12.6697 21.9446i 0.497331 0.861402i
\(650\) 0 0
\(651\) −3.05042 + 7.14970i −0.119556 + 0.280219i
\(652\) 2.64772 0.103693
\(653\) −9.06777 + 15.7058i −0.354849 + 0.614617i −0.987092 0.160153i \(-0.948801\pi\)
0.632243 + 0.774770i \(0.282135\pi\)
\(654\) 29.4469 + 51.0035i 1.15146 + 1.99439i
\(655\) 0.224610 + 0.389035i 0.00877623 + 0.0152009i
\(656\) 12.9392 22.4114i 0.505192 0.875017i
\(657\) 8.79183 0.343002
\(658\) −34.4256 45.8599i −1.34205 1.78780i
\(659\) 13.4810 0.525147 0.262573 0.964912i \(-0.415429\pi\)
0.262573 + 0.964912i \(0.415429\pi\)
\(660\) −1.37561 + 2.38263i −0.0535456 + 0.0927437i
\(661\) −5.15611 8.93064i −0.200549 0.347362i 0.748156 0.663523i \(-0.230939\pi\)
−0.948706 + 0.316161i \(0.897606\pi\)
\(662\) 13.3076 + 23.0494i 0.517213 + 0.895839i
\(663\) 0 0
\(664\) −3.12571 −0.121301
\(665\) −0.423750 0.564495i −0.0164323 0.0218902i
\(666\) 12.8022 0.496076
\(667\) −16.9517 + 29.3613i −0.656374 + 1.13687i
\(668\) 7.77805 + 13.4720i 0.300942 + 0.521247i
\(669\) 0.835096 + 1.44643i 0.0322867 + 0.0559222i
\(670\) 2.45655 4.25487i 0.0949049 0.164380i
\(671\) 47.5397 1.83525
\(672\) −16.3780 + 38.3874i −0.631795 + 1.48082i
\(673\) −9.23056 −0.355812 −0.177906 0.984048i \(-0.556932\pi\)
−0.177906 + 0.984048i \(0.556932\pi\)
\(674\) −15.9618 + 27.6467i −0.614827 + 1.06491i
\(675\) −4.19533 7.26652i −0.161478 0.279689i
\(676\) 0 0
\(677\) 10.5467 18.2674i 0.405343 0.702075i −0.589018 0.808120i \(-0.700485\pi\)
0.994361 + 0.106045i \(0.0338187\pi\)
\(678\) −18.1961 −0.698818
\(679\) −51.1475 + 6.18450i −1.96286 + 0.237340i
\(680\) 0.168841 0.00647474
\(681\) 3.27129 5.66604i 0.125356 0.217123i
\(682\) −4.97693 8.62029i −0.190576 0.330088i
\(683\) 19.1106 + 33.1005i 0.731246 + 1.26656i 0.956351 + 0.292221i \(0.0943944\pi\)
−0.225104 + 0.974335i \(0.572272\pi\)
\(684\) −2.22176 + 3.84821i −0.0849512 + 0.147140i
\(685\) −2.65412 −0.101409
\(686\) 5.57122 33.9597i 0.212710 1.29659i
\(687\) 7.28027 0.277760
\(688\) 12.7734 22.1241i 0.486980 0.843474i
\(689\) 0 0
\(690\) −1.73107 2.99830i −0.0659006 0.114143i
\(691\) 13.1161 22.7178i 0.498960 0.864224i −0.501039 0.865425i \(-0.667049\pi\)
0.999999 + 0.00120019i \(0.000382034\pi\)
\(692\) −19.6017 −0.745144
\(693\) 24.8596 3.00590i 0.944338 0.114185i
\(694\) −14.3130 −0.543314
\(695\) 0.399204 0.691442i 0.0151427 0.0262279i
\(696\) −9.60925 16.6437i −0.364238 0.630878i
\(697\) −2.27024 3.93218i −0.0859916 0.148942i
\(698\) −20.7836 + 35.9982i −0.786670 + 1.36255i
\(699\) 30.7567 1.16333
\(700\) −7.48299 + 17.5389i −0.282830 + 0.662909i
\(701\) −46.7346 −1.76514 −0.882570 0.470180i \(-0.844189\pi\)
−0.882570 + 0.470180i \(0.844189\pi\)
\(702\) 0 0
\(703\) −2.05794 3.56446i −0.0776167 0.134436i
\(704\) −6.66528 11.5446i −0.251207 0.435104i
\(705\) −2.64053 + 4.57353i −0.0994480 + 0.172249i
\(706\) −41.3669 −1.55687
\(707\) −26.8972 35.8309i −1.01157 1.34756i
\(708\) 20.1901 0.758789
\(709\) 23.7232 41.0898i 0.890944 1.54316i 0.0521988 0.998637i \(-0.483377\pi\)
0.838745 0.544524i \(-0.183290\pi\)
\(710\) −1.09476 1.89619i −0.0410858 0.0711626i
\(711\) 12.1435 + 21.0331i 0.455415 + 0.788802i
\(712\) −6.09307 + 10.5535i −0.228348 + 0.395510i
\(713\) 5.27032 0.197375
\(714\) 5.69629 + 7.58827i 0.213178 + 0.283984i
\(715\) 0 0
\(716\) −7.60461 + 13.1716i −0.284197 + 0.492244i
\(717\) 17.8408 + 30.9011i 0.666275 + 1.15402i
\(718\) 2.56280 + 4.43890i 0.0956428 + 0.165658i
\(719\) 24.6190 42.6413i 0.918133 1.59025i 0.115884 0.993263i \(-0.463030\pi\)
0.802249 0.596990i \(-0.203637\pi\)
\(720\) 2.14136 0.0798037
\(721\) −7.51104 + 17.6047i −0.279726 + 0.655632i
\(722\) −31.9098 −1.18756
\(723\) 8.68963 15.0509i 0.323171 0.559748i
\(724\) −9.09498 15.7530i −0.338012 0.585454i
\(725\) −20.4361 35.3963i −0.758977 1.31459i
\(726\) −13.8439 + 23.9783i −0.513795 + 0.889919i
\(727\) −32.0495 −1.18865 −0.594325 0.804225i \(-0.702581\pi\)
−0.594325 + 0.804225i \(0.702581\pi\)
\(728\) 0 0
\(729\) −12.4996 −0.462947
\(730\) 0.712460 1.23402i 0.0263693 0.0456730i
\(731\) −2.24114 3.88178i −0.0828917 0.143573i
\(732\) 18.9394 + 32.8041i 0.700022 + 1.21247i
\(733\) −14.1005 + 24.4228i −0.520813 + 0.902075i 0.478894 + 0.877873i \(0.341038\pi\)
−0.999707 + 0.0242025i \(0.992295\pi\)
\(734\) −26.2924 −0.970472
\(735\) −3.07800 + 0.755398i −0.113534 + 0.0278633i
\(736\) 28.2968 1.04303
\(737\) 28.0181 48.5288i 1.03206 1.78758i
\(738\) −11.3459 19.6516i −0.417648 0.723387i
\(739\) 21.2685 + 36.8381i 0.782375 + 1.35511i 0.930555 + 0.366153i \(0.119325\pi\)
−0.148180 + 0.988960i \(0.547342\pi\)
\(740\) 0.436510 0.756058i 0.0160464 0.0277932i
\(741\) 0 0
\(742\) −22.6852 + 2.74299i −0.832801 + 0.100698i
\(743\) 15.9142 0.583836 0.291918 0.956443i \(-0.405706\pi\)
0.291918 + 0.956443i \(0.405706\pi\)
\(744\) −1.49377 + 2.58728i −0.0547641 + 0.0948543i
\(745\) 1.51495 + 2.62396i 0.0555033 + 0.0961346i
\(746\) 4.68521 + 8.11502i 0.171538 + 0.297112i
\(747\) −3.47773 + 6.02360i −0.127243 + 0.220392i
\(748\) −5.11221 −0.186921
\(749\) −10.2295 + 23.9762i −0.373777 + 0.876072i
\(750\) 8.38028 0.306005
\(751\) −9.09981 + 15.7613i −0.332057 + 0.575139i −0.982915 0.184060i \(-0.941076\pi\)
0.650858 + 0.759199i \(0.274409\pi\)
\(752\) −27.9646 48.4362i −1.01977 1.76629i
\(753\) −1.46220 2.53260i −0.0532855 0.0922931i
\(754\) 0 0
\(755\) −1.20807 −0.0439662
\(756\) −3.90270 5.19896i −0.141940 0.189084i
\(757\) −44.9004 −1.63193 −0.815967 0.578099i \(-0.803795\pi\)
−0.815967 + 0.578099i \(0.803795\pi\)
\(758\) 5.62989 9.75126i 0.204487 0.354182i
\(759\) −19.7436 34.1970i −0.716648 1.24127i
\(760\) −0.135641 0.234937i −0.00492021 0.00852205i
\(761\) 13.2444 22.9399i 0.480108 0.831572i −0.519631 0.854391i \(-0.673931\pi\)
0.999740 + 0.0228184i \(0.00726396\pi\)
\(762\) −9.33644 −0.338223
\(763\) −21.9446 29.2334i −0.794449 1.05832i
\(764\) 19.0511 0.689244
\(765\) 0.187856 0.325375i 0.00679193 0.0117640i
\(766\) 4.21900 + 7.30752i 0.152439 + 0.264031i
\(767\) 0 0
\(768\) −24.0006 + 41.5703i −0.866049 + 1.50004i
\(769\) 13.9625 0.503502 0.251751 0.967792i \(-0.418994\pi\)
0.251751 + 0.967792i \(0.418994\pi\)
\(770\) 1.59263 3.73287i 0.0573944 0.134523i
\(771\) −19.4541 −0.700623
\(772\) −0.756579 + 1.31043i −0.0272299 + 0.0471635i
\(773\) −6.40564 11.0949i −0.230395 0.399056i 0.727529 0.686077i \(-0.240668\pi\)
−0.957924 + 0.287021i \(0.907335\pi\)
\(774\) −11.2005 19.3998i −0.402592 0.697310i
\(775\) −3.17681 + 5.50239i −0.114114 + 0.197652i
\(776\) −19.8010 −0.710813
\(777\) −18.3472 + 2.21845i −0.658201 + 0.0795865i
\(778\) 8.37594 0.300292
\(779\) −3.64767 + 6.31795i −0.130691 + 0.226364i
\(780\) 0 0
\(781\) −12.4863 21.6269i −0.446795 0.773871i
\(782\) 3.21660 5.57132i 0.115025 0.199230i
\(783\) 13.9340 0.497961
\(784\) 9.37058 32.2305i 0.334664 1.15109i
\(785\) −0.895370 −0.0319571
\(786\) −4.85125 + 8.40262i −0.173039 + 0.299712i
\(787\) 13.6599 + 23.6597i 0.486924 + 0.843377i 0.999887 0.0150334i \(-0.00478545\pi\)
−0.512963 + 0.858411i \(0.671452\pi\)
\(788\) −1.07383 1.85993i −0.0382537 0.0662574i
\(789\) −14.6686 + 25.4068i −0.522217 + 0.904506i
\(790\) 3.93626 0.140046
\(791\) 11.2121 1.35571i 0.398656 0.0482036i
\(792\) 9.62401 0.341974
\(793\) 0 0
\(794\) −3.71956 6.44247i −0.132002 0.228635i
\(795\) 1.05221 + 1.82248i 0.0373181 + 0.0646369i
\(796\) −10.2419 + 17.7394i −0.363013 + 0.628758i
\(797\) −29.4003 −1.04141 −0.520707 0.853736i \(-0.674332\pi\)
−0.520707 + 0.853736i \(0.674332\pi\)
\(798\) 5.98265 14.0224i 0.211783 0.496386i
\(799\) −9.81305 −0.347161
\(800\) −17.0565 + 29.5428i −0.603040 + 1.04450i
\(801\) 13.5586 + 23.4841i 0.479068 + 0.829770i
\(802\) −11.7189 20.2978i −0.413810 0.716740i
\(803\) 8.12594 14.0745i 0.286758 0.496680i
\(804\) 44.6487 1.57464
\(805\) 1.29004 + 1.71852i 0.0454679 + 0.0605697i
\(806\) 0 0
\(807\) 5.40450 9.36087i 0.190247 0.329518i
\(808\) −8.60968 14.9124i −0.302888 0.524617i
\(809\) 3.00617 + 5.20683i 0.105691 + 0.183063i 0.914020 0.405668i \(-0.132961\pi\)
−0.808329 + 0.588731i \(0.799628\pi\)
\(810\) −1.95618 + 3.38821i −0.0687332 + 0.119049i
\(811\) 8.44807 0.296652 0.148326 0.988939i \(-0.452612\pi\)
0.148326 + 0.988939i \(0.452612\pi\)
\(812\) −19.0107 25.3249i −0.667143 0.888730i
\(813\) −41.3190 −1.44912
\(814\) 11.8326 20.4946i 0.414732 0.718337i
\(815\) 0.179850 + 0.311510i 0.00629989 + 0.0109117i
\(816\) 4.62721 + 8.01456i 0.161985 + 0.280566i
\(817\) −3.60092 + 6.23697i −0.125980 + 0.218204i
\(818\) 38.4551 1.34455
\(819\) 0 0
\(820\) −1.54742 −0.0540382
\(821\) 17.1318 29.6731i 0.597903 1.03560i −0.395228 0.918583i \(-0.629334\pi\)
0.993130 0.117014i \(-0.0373324\pi\)
\(822\) −28.6627 49.6452i −0.999725 1.73157i
\(823\) 3.11866 + 5.40168i 0.108710 + 0.188291i 0.915248 0.402891i \(-0.131995\pi\)
−0.806538 + 0.591182i \(0.798661\pi\)
\(824\) −3.67809 + 6.37064i −0.128132 + 0.221932i
\(825\) 47.6037 1.65735
\(826\) −29.5677 + 3.57518i −1.02879 + 0.124397i
\(827\) 19.5232 0.678889 0.339445 0.940626i \(-0.389761\pi\)
0.339445 + 0.940626i \(0.389761\pi\)
\(828\) 6.76380 11.7152i 0.235058 0.407133i
\(829\) −16.3383 28.2988i −0.567453 0.982857i −0.996817 0.0797254i \(-0.974596\pi\)
0.429364 0.903131i \(-0.358738\pi\)
\(830\) 0.563647 + 0.976265i 0.0195645 + 0.0338866i
\(831\) 29.9615 51.8949i 1.03935 1.80021i
\(832\) 0 0
\(833\) −4.07530 4.25133i −0.141201 0.147300i
\(834\) 17.2445 0.597128
\(835\) −1.05667 + 1.83021i −0.0365677 + 0.0633370i
\(836\) 4.10698 + 7.11349i 0.142043 + 0.246025i
\(837\) −1.08303 1.87586i −0.0374349 0.0648392i
\(838\) 20.2702 35.1091i 0.700223 1.21282i
\(839\) 24.7427 0.854212 0.427106 0.904202i \(-0.359533\pi\)
0.427106 + 0.904202i \(0.359533\pi\)
\(840\) −1.20928 + 0.146220i −0.0417241 + 0.00504508i
\(841\) 38.8748 1.34051
\(842\) −8.75869 + 15.1705i −0.301844 + 0.522810i
\(843\) 4.20040 + 7.27531i 0.144669 + 0.250575i
\(844\) −19.2267 33.3017i −0.661812 1.14629i
\(845\) 0 0
\(846\) −49.0422 −1.68610
\(847\) 6.74381 15.8064i 0.231720 0.543115i
\(848\) −22.2870 −0.765339
\(849\) −8.76938 + 15.1890i −0.300964 + 0.521285i
\(850\) 3.87776 + 6.71647i 0.133006 + 0.230373i
\(851\) 6.26507 + 10.8514i 0.214764 + 0.371982i
\(852\) 9.94888 17.2320i 0.340843 0.590357i
\(853\) 18.2245 0.623994 0.311997 0.950083i \(-0.399002\pi\)
0.311997 + 0.950083i \(0.399002\pi\)
\(854\) −33.5450 44.6868i −1.14789 1.52915i
\(855\) −0.603667 −0.0206450
\(856\) −5.00928 + 8.67633i −0.171214 + 0.296551i
\(857\) −1.27340 2.20559i −0.0434984 0.0753414i 0.843457 0.537197i \(-0.180517\pi\)
−0.886955 + 0.461856i \(0.847184\pi\)
\(858\) 0 0
\(859\) −27.0045 + 46.7732i −0.921382 + 1.59588i −0.124104 + 0.992269i \(0.539606\pi\)
−0.797278 + 0.603612i \(0.793728\pi\)
\(860\) −1.52758 −0.0520902
\(861\) 19.6654 + 26.1972i 0.670196 + 0.892797i
\(862\) 37.9577 1.29284
\(863\) −0.621545 + 1.07655i −0.0211576 + 0.0366461i −0.876410 0.481565i \(-0.840069\pi\)
0.855253 + 0.518211i \(0.173402\pi\)
\(864\) −5.81487 10.0716i −0.197826 0.342644i
\(865\) −1.33147 2.30618i −0.0452715 0.0784125i
\(866\) −24.4800 + 42.4006i −0.831864 + 1.44083i
\(867\) −37.3754 −1.26934
\(868\) −1.93174 + 4.52769i −0.0655675 + 0.153680i
\(869\) 44.8949 1.52295
\(870\) −3.46560 + 6.00259i −0.117495 + 0.203507i
\(871\) 0 0
\(872\) −7.02440 12.1666i −0.237876 0.412013i
\(873\) −22.0309 + 38.1587i −0.745634 + 1.29148i
\(874\) −10.3364 −0.349635
\(875\) −5.16376 + 0.624377i −0.174567 + 0.0211078i
\(876\) 12.9492 0.437514
\(877\) −0.401330 + 0.695125i −0.0135520 + 0.0234727i −0.872722 0.488218i \(-0.837647\pi\)
0.859170 + 0.511690i \(0.170981\pi\)
\(878\) −23.3488 40.4412i −0.787983 1.36483i
\(879\) 19.6755 + 34.0790i 0.663639 + 1.14946i
\(880\) 1.97917 3.42803i 0.0667179 0.115559i
\(881\) −37.0636 −1.24870 −0.624352 0.781143i \(-0.714637\pi\)
−0.624352 + 0.781143i \(0.714637\pi\)
\(882\) −20.3669 21.2467i −0.685791 0.715413i
\(883\) −22.8671 −0.769539 −0.384770 0.923013i \(-0.625719\pi\)
−0.384770 + 0.923013i \(0.625719\pi\)
\(884\) 0 0
\(885\) 1.37144 + 2.37541i 0.0461005 + 0.0798484i
\(886\) −17.2065 29.8025i −0.578063 1.00123i
\(887\) 24.6287 42.6581i 0.826950 1.43232i −0.0734699 0.997297i \(-0.523407\pi\)
0.900420 0.435022i \(-0.143259\pi\)
\(888\) −7.10283 −0.238355
\(889\) 5.75292 0.695616i 0.192947 0.0233302i
\(890\) 4.39496 0.147319
\(891\) −22.3112 + 38.6441i −0.747452 + 1.29463i
\(892\) 0.528840 + 0.915978i 0.0177069 + 0.0306692i
\(893\) 7.88347 + 13.6546i 0.263810 + 0.456932i
\(894\) −32.7207 + 56.6739i −1.09434 + 1.89546i
\(895\) −2.06622 −0.0690661
\(896\) 8.12993 19.0552i 0.271602 0.636591i
\(897\) 0 0
\(898\) −10.8174 + 18.7362i −0.360980 + 0.625236i
\(899\) −5.27559 9.13760i −0.175951 0.304756i
\(900\) 8.15406 + 14.1233i 0.271802 + 0.470775i
\(901\) −1.95518 + 3.38647i −0.0651365 + 0.112820i
\(902\) −41.9462 −1.39666
\(903\) 19.4134 + 25.8614i 0.646036 + 0.860613i
\(904\) 4.34059 0.144366
\(905\) 1.23558 2.14009i 0.0410721 0.0711390i
\(906\) −13.0463 22.5969i −0.433435 0.750731i
\(907\) 2.50228 + 4.33407i 0.0830867 + 0.143910i 0.904574 0.426316i \(-0.140189\pi\)
−0.821488 + 0.570226i \(0.806855\pi\)
\(908\) 2.07161 3.58813i 0.0687487 0.119076i
\(909\) −38.3172 −1.27090
\(910\) 0 0
\(911\) 49.0582 1.62537 0.812685 0.582703i \(-0.198005\pi\)
0.812685 + 0.582703i \(0.198005\pi\)
\(912\) 7.43468 12.8772i 0.246187 0.426408i
\(913\) 6.42866 + 11.1348i 0.212757 + 0.368507i
\(914\) −19.0633 33.0186i −0.630557 1.09216i
\(915\) −2.57298 + 4.45653i −0.0850601 + 0.147328i
\(916\) 4.61037 0.152331
\(917\) 2.36320 5.53897i 0.0780399 0.182913i
\(918\) −2.64399 −0.0872646
\(919\) −14.8028 + 25.6392i −0.488299 + 0.845758i −0.999909 0.0134590i \(-0.995716\pi\)
0.511611 + 0.859217i \(0.329049\pi\)
\(920\) 0.412937 + 0.715227i 0.0136141 + 0.0235803i
\(921\) 32.1967 + 55.7664i 1.06092 + 1.83756i
\(922\) −1.89602 + 3.28401i −0.0624422 + 0.108153i
\(923\) 0 0
\(924\) 36.6150 4.42731i 1.20454 0.145648i
\(925\) −15.1056 −0.496670
\(926\) −2.81656 + 4.87842i −0.0925578 + 0.160315i
\(927\) 8.18464 + 14.1762i 0.268819 + 0.465608i
\(928\) −28.3251 49.0605i −0.929817 1.61049i
\(929\) −8.41525 + 14.5756i −0.276095 + 0.478211i −0.970411 0.241460i \(-0.922374\pi\)
0.694316 + 0.719671i \(0.255707\pi\)
\(930\) 1.07746 0.0353313
\(931\) −2.64164 + 9.08604i −0.0865764 + 0.297783i
\(932\) 19.4773 0.638000
\(933\) 26.9944 46.7557i 0.883757 1.53071i
\(934\) 12.0106 + 20.8030i 0.392999 + 0.680695i
\(935\) −0.347255 0.601463i −0.0113565 0.0196699i
\(936\) 0 0
\(937\) 44.0131 1.43784 0.718922 0.695091i \(-0.244636\pi\)
0.718922 + 0.695091i \(0.244636\pi\)
\(938\) −65.3866 + 7.90624i −2.13495 + 0.258148i
\(939\) −7.68191 −0.250690
\(940\) −1.67216 + 2.89627i −0.0545400 + 0.0944660i
\(941\) −26.5338 45.9578i −0.864976 1.49818i −0.867071 0.498184i \(-0.834000\pi\)
0.00209573 0.999998i \(-0.499333\pi\)
\(942\) −9.66937 16.7478i −0.315045 0.545674i
\(943\) 11.1048 19.2340i 0.361620 0.626345i
\(944\) −29.0487 −0.945453
\(945\) 0.346572 0.812309i 0.0112740 0.0264244i
\(946\) −41.4086 −1.34631
\(947\) 13.9409 24.1463i 0.453017 0.784649i −0.545555 0.838075i \(-0.683681\pi\)
0.998572 + 0.0534265i \(0.0170143\pi\)
\(948\) 17.8857 + 30.9790i 0.580902 + 1.00615i
\(949\) 0 0
\(950\) 6.23051 10.7916i 0.202145 0.350125i
\(951\) −16.6970 −0.541438
\(952\) −1.35882 1.81014i −0.0440396 0.0586670i
\(953\) −36.3568 −1.17771 −0.588856 0.808238i \(-0.700421\pi\)
−0.588856 + 0.808238i \(0.700421\pi\)
\(954\) −9.77130 + 16.9244i −0.316357 + 0.547947i
\(955\) 1.29407 + 2.24140i 0.0418753 + 0.0725301i
\(956\) 11.2980 + 19.5687i 0.365403 + 0.632897i
\(957\) −39.5267 + 68.4623i −1.27772 + 2.21307i
\(958\) 67.9754 2.19619
\(959\) 21.3602 + 28.4548i 0.689757 + 0.918855i
\(960\) 1.44297 0.0465718
\(961\) 14.6799 25.4263i 0.473545 0.820205i
\(962\) 0 0
\(963\) 11.1469 + 19.3069i 0.359202 + 0.622157i
\(964\) 5.50287 9.53126i 0.177236 0.306981i
\(965\) −0.205567 −0.00661744
\(966\) −18.2132 + 42.6888i −0.586000 + 1.37349i
\(967\) −15.2681 −0.490988 −0.245494 0.969398i \(-0.578950\pi\)
−0.245494 + 0.969398i \(0.578950\pi\)
\(968\) 3.30239 5.71990i 0.106143 0.183845i
\(969\) −1.30445 2.25937i −0.0419049 0.0725815i
\(970\) 3.57063 + 6.18450i 0.114646 + 0.198572i
\(971\) 18.4460 31.9494i 0.591961 1.02531i −0.402008 0.915636i \(-0.631687\pi\)
0.993968 0.109669i \(-0.0349792\pi\)
\(972\) −28.1831 −0.903975
\(973\) −10.6257 + 1.28481i −0.340645 + 0.0411891i
\(974\) 68.2867 2.18805
\(975\) 0 0
\(976\) −27.2493 47.1972i −0.872229 1.51074i
\(977\) 0.221957 + 0.384441i 0.00710104 + 0.0122994i 0.869554 0.493838i \(-0.164406\pi\)
−0.862453 + 0.506137i \(0.831073\pi\)
\(978\) −3.88452 + 6.72818i −0.124213 + 0.215144i
\(979\) 50.1265 1.60205
\(980\) −1.94920 + 0.478370i −0.0622649 + 0.0152810i
\(981\) −31.2619 −0.998117
\(982\) 7.61658 13.1923i 0.243055 0.420983i
\(983\) −22.7802 39.4564i −0.726575 1.25846i −0.958323 0.285688i \(-0.907778\pi\)
0.231748 0.972776i \(-0.425556\pi\)
\(984\) 6.29483 + 10.9030i 0.200672 + 0.347574i
\(985\) 0.145884 0.252678i 0.00464824 0.00805099i
\(986\) −12.8793 −0.410160
\(987\) 70.2835 8.49835i 2.23715 0.270505i
\(988\) 0 0
\(989\) 10.9624 18.9875i 0.348585 0.603766i
\(990\) −1.73546 3.00590i −0.0551565 0.0955338i
\(991\) −26.8148 46.4445i −0.851799 1.47536i −0.879583 0.475745i \(-0.842178\pi\)
0.0277842 0.999614i \(-0.491155\pi\)
\(992\) −4.40316 + 7.62650i −0.139801 + 0.242142i
\(993\) −32.8588 −1.04274
\(994\) −11.5184 + 26.9974i −0.365342 + 0.856304i
\(995\) −2.78278 −0.0882200
\(996\) −5.12225 + 8.87199i −0.162305 + 0.281120i
\(997\) −14.5426 25.1886i −0.460569 0.797730i 0.538420 0.842677i \(-0.319021\pi\)
−0.998989 + 0.0449470i \(0.985688\pi\)
\(998\) 40.1857 + 69.6038i 1.27206 + 2.20327i
\(999\) 2.57489 4.45984i 0.0814658 0.141103i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1183.2.e.h.170.1 12
7.2 even 3 8281.2.a.bz.1.6 6
7.4 even 3 inner 1183.2.e.h.508.1 12
7.5 odd 6 8281.2.a.ca.1.6 6
13.3 even 3 91.2.g.b.9.1 12
13.9 even 3 91.2.h.b.16.6 yes 12
13.12 even 2 1183.2.e.g.170.6 12
39.29 odd 6 819.2.n.d.100.6 12
39.35 odd 6 819.2.s.d.289.1 12
91.3 odd 6 637.2.h.l.165.6 12
91.9 even 3 637.2.f.k.393.1 12
91.12 odd 6 8281.2.a.cf.1.1 6
91.16 even 3 637.2.f.k.295.1 12
91.25 even 6 1183.2.e.g.508.6 12
91.48 odd 6 637.2.h.l.471.6 12
91.51 even 6 8281.2.a.ce.1.1 6
91.55 odd 6 637.2.g.l.373.1 12
91.61 odd 6 637.2.f.j.393.1 12
91.68 odd 6 637.2.f.j.295.1 12
91.74 even 3 91.2.g.b.81.1 yes 12
91.81 even 3 91.2.h.b.74.6 yes 12
91.87 odd 6 637.2.g.l.263.1 12
273.74 odd 6 819.2.n.d.172.6 12
273.263 odd 6 819.2.s.d.802.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
91.2.g.b.9.1 12 13.3 even 3
91.2.g.b.81.1 yes 12 91.74 even 3
91.2.h.b.16.6 yes 12 13.9 even 3
91.2.h.b.74.6 yes 12 91.81 even 3
637.2.f.j.295.1 12 91.68 odd 6
637.2.f.j.393.1 12 91.61 odd 6
637.2.f.k.295.1 12 91.16 even 3
637.2.f.k.393.1 12 91.9 even 3
637.2.g.l.263.1 12 91.87 odd 6
637.2.g.l.373.1 12 91.55 odd 6
637.2.h.l.165.6 12 91.3 odd 6
637.2.h.l.471.6 12 91.48 odd 6
819.2.n.d.100.6 12 39.29 odd 6
819.2.n.d.172.6 12 273.74 odd 6
819.2.s.d.289.1 12 39.35 odd 6
819.2.s.d.802.1 12 273.263 odd 6
1183.2.e.g.170.6 12 13.12 even 2
1183.2.e.g.508.6 12 91.25 even 6
1183.2.e.h.170.1 12 1.1 even 1 trivial
1183.2.e.h.508.1 12 7.4 even 3 inner
8281.2.a.bz.1.6 6 7.2 even 3
8281.2.a.ca.1.6 6 7.5 odd 6
8281.2.a.ce.1.1 6 91.51 even 6
8281.2.a.cf.1.1 6 91.12 odd 6